Универзитет у Београду
Електротехнички факултет

НАСТАВНО-НАУЧНОМ ВЕЋУ

Предмет: Реферат о урађеној докторској дисертацији кандидата Ане Гавровске, дипл. инжењера

Одлуком 768. седнице Наставно-научног већа Електротехничког факултета у Београду од 05.11.2013. године, именовани смо за чланове Комисије за преглед, оцену и одбрану докторске дисертације кандидата Ане Гавровске, дипл. инжењера, под насловом „АНАЛИЗА КАРДИОСИГНАЛА ПОМОЋУ ДРУГЕ ГЕНЕРАЦИЈЕ ТАЛАСИЊА“.

После прегледа достављене Дисертације и других пратећих материјала и разговора са Кандидатом, Комисија је сачинила следећи

РЕФЕРАТ

1. УВОД

1.1. Хронологија одобравања и израде дисертације

Кандидат Ане Гавровске је уписана на докторске студије 2008. године. Тему докторске дисертације под насловом „Анализа кардиосигнала помоћу друге генерације таласиња“ је пријавила 02.07.2012. године. Наставно-научно веће је 03.07.2012. године именовало Комисију за оцену услова и прихватано теме докторске дисертације у саставу:

1. др Ирини Рељин, вајр. професор, Универзитет у Београду, Електротехнички факултет,
2. др Драгана Шумарац-Павловић, доцент, Универзитет у Београду, Електротехнички факултет,
3. др Десанка Радуновић, вајр. професор, Универзитет у Београду, Математички факултет,
4. др Мијана Поповић, редовни професор, Универзитет у Београду, Електротехнички факултет,
5. др Миодраг Поповић, редовни професор, Универзитет у Београду, Електротехнички факултет.

Наставно научно веће је 05.11.2013. године именовало Комисију за преглед и оцену урађене докторске дисертације у саставу:

1. др Ирини Рељин, редовни професор, Универзитет у Београду, Електротехнички факултет,
2. др Драгана Шумарац-Павловић, вајр. професор, Универзитет у Београду, Електротехнички факултет,
3. др Десанка Радуновић, вајр. професор, Универзитет у Београду, Математички факултет,
4. др Мијана Поповић, редовни професор, Универзитет у Београду, Електротехнички факултет,
5. др Миодраг Поповић, редовни професор, Универзитет у Београду, Електротехнички факултет.
1.2. Научна област дисертације

Предмет дисертације је развој модела за анализу кардиоисигнала на основу клиничке релевантности појединих његових компоненти. Наиме, хипотеза од које се полази у истраживању кандидала односи се на употребу техника обраде сигнала које би омогућиле издајање клинички релевантних локалних карактеристика записа и спречили дисторзију оваквих налаза.

Употребом класичних техника филтрирања и стандардном применом дискретне таласне трансформације при филтрирању, често се утиче на компоненте кардиоисигнала у домену високих фrekвенција. Такође, последњих година посебно су од интереса технике за аутоматску анализу здравственог стања помоћу фонокардиографије које омогућавају постављање иницијалне дијагнозе на основу прибављеног записа, а у оквиру кардиолошких и телекардиолошких система за примарну здравствену заштиту.

У складу са хипотезом, предложени модел је оријентисан, пре свега, ка реалним фонокардиографским записима и записима педијатријских пацијената са проласком митралне валуле због карактеристичног клик-налаза у домену високих фrekвенција који не мора бити доминантне амплитуде. Циљ истраживања је да се развије модел заснован на употреби спектралних и спектрограмских техника у екстракцији клинички релевантних информација које би се могле искористити при адаптивном филтрирању у складу са дијагностичким налазом. Друга генерација таласика је искоришћена као ефикасан оквир за потребе филтрирања и омогућавање побољшање визуелне инспекције потенцијалне аномалности.

Дисертација припада научној области Електротехника и радиоинжинирство, ужа област Телекомуникације (подобласт Телемедицина) и Обрада сигнала.

Ментор кандидата је др Ирини Рељин, редовни професор Електротехничког факултета, Универзитета у Београду. Ментор предвоје неколико предмета на Катедри за телекомуникације и информационе технологије у складу са пријављеним темом. Аутор је и коаутор радова у међународним часописима са импакт фактором који квалификују ментора за вођење ове дисертације, а који су наведени при пријави теме дисертације кандидата.

1.3. Биографски подаци о кандидату

Ангажована је на реализацији и програму истраживања на домаћим пројектима:
- “Аутоматска детекција микрокапацификација у дигитализованом мамограму у циљу рање дијагнозе карцинома доки” (евид.бр. 145096), од 2008-2010.
- “Развој висококвалитетних уређаја посебне намене на бази нових технологија кристалних јединки” (евид.бр. ТР32048), од 2011.
- “Развој дигиталних технологија и умрежених сервиса у системима са уgraђеним електронским компонентама” (евид.бр. И144009), од 2011.

Ангажована је на реализацији и програму истраживања на следећим међународним пројектима:
- европски пројекат COST 292 “Semantic multimodal analysis of digital media”, волонтерски рад,
- европски пројекат COST IC0604 “Anatomic Telepathology Network (EURO-TELEPATH)”, волонтерски рад,
• међународни пројекат INTELLI-CHAIR (интелигентна колица за хендикепирани особе, 2496) за PF-FOUNDATION из Хонг Конга, 2009-2011.
• европски пројекат COST IC1005 “HDRI- High Dynamic Range Images” и COST IC1002 “MUMIA - Multilingual and multifaceted interactive information access”.

Усавршавала се кроз бројне курсеве за области и пројекте на којима је радила. Најзначајнији пројекти и курсеви у којима је учествовала су:
• MUMIA Training School, Олимпијада, Халкидики, Грчка, у области претраживања и индексирања текстуалних, аудио и видео информација, 2012. (пројекат COST Action IC1002 “Multilingual and multifaceted interactive information access (MUMIA)”),
• HDRI Training School, Ren, Bretanja, Francuska, у области побољшanja динамиčkog opsega u obradi slike, 2012 (пројекат COST Action IC1005 “HDRI: High Dynamic Range Imaging (Digital capture, storage, transmission and display of real-world lighting”)”,
• IEEE International Measurement University 2011 u Trentu, Italija, u organizaciji IEEE Instrumentation & Measurement Society,
• Huawei letnja škola 2010. (Shenzhen, Shanghai, Hangzhou, Hong Kong) obilazak Huawei izložbenih prostora i upoznavanje sa radom logističkih centara Huawei kompanije.

Рецензент је радова (TELFOR, NEUREL, EUSIPCO) и председавајући на неколико сесија за мултимедијалне системе (TELFOR). Члан организационог одбора конференције NEUREL. Члан IEEE од 2006. године. Члан IPTM групе за дигиталну обраду слике, телемедицину и мултимедију на Електротехничком факултету у Београду. Учествовала у приреми и реализацији лабораторијских вежби из области видео технологија и предмета Телемедицина. У оквиру предмета Видео системи и Телевизија помагала при упознању студената са технологијом рада TV центра.

Ангажована је као члан комисије на вештачкој аутентичности видео записа у кривичним поступцима од стране Електротехничког факултета у Београду.

Аутор је и коаутор преко четрдесет научних радова од тога је: један рад објављен у часопису са SCI листе, 6 радова у домаћим часописима, 13 радова објављених у зборницима међународних конференција, као и 20 радова у зборницима домаћих конференција. Коаутор је неколико техничких решења и једног уџбеника (“Телемедицина”).

Добитник је неколико истакнутих признања (награда “Илија Стојановић”, “Мирко Милађ”, “ЕТРАН” и др.) за радове који су у вези области дисертације.

2. ОПИС ДИСЕРТАЦИЈЕ

2.1. Садржај дисертације

Докторска дисертација кандидата је написана на 123 стране технички добро obraђеног текста. Садржи списак скраћеница, 58 слика и 7 табела, као и литературу са 152 референц. Састоји се од девет поглавља:

1. Увод
2. Дигитални запис рада срца
3. Анализи кардиосигнала
4. Репрезентација и декомпозиција кардиосигнала
5. Друга генерација таласица и лифтинг шема
6. Адаптиван приступ у анализи кардиосигнала
7. Предложени модели за анализу кардиосигнала
8. Експериментални резултати предложених приступа у фонокардиографији
9. Закључак
2.2. Кратац приказ појединачних поглавља

У првом поглављу је описана иницијална мотивација и објашњени су циљеви истраживања. Хипотезе су постављене у складу са наведеним циљевима.

С обзиром на интердисциплинарност самог истраживања, у другом поглављу је дат кратак увод у могућности мониторинга дигиталног записа рада срца и његовог значаја за контролу здравственог стања. Предмет истраживања су кардиосигнални и то, пре свега, фонокардиограми који заузимају централно место у дисертацији. Представљен је типичан локални кардиолошки и телекардиолошки систем у оквиру којег се спроводи анализа кардиосигнална.

Треће поглавље је посвећено анализи кардиосигнална. Објашњено је шта се најчешће подразумева под анализом кардиосигнална. На примеру фонокардиограма, описан је начин аквизиције и основе сагледавања фундаменталних срчаних догађаја у кардиолошком запису. Такође, дат је увод у филтрирање кардиосигнална и отклањање шума.

У четвртом поглављу је приказан збирни преглед најчешће коришћених техника за репрезентацију, декомпозицију и филтрирање кардиосигнална, са посебним освртом на таласну трансформацију. Наведене су неке од основних предности дискретне таласне трансформације, али и других техника које су коришћене при истраживању, као што су спектралне и спектрограрске репрезентације за анализу садржаја фонокардиограма.

Пето поглавље је посвећено другој генерацији таласница и лифтинг шеми. Објашњена је стандардна двоканална FIR филтар банка и њена полиписна конструкција. Представљени су елементарни кораци лифтинг структуре за потребе филтрирања у временском домену. Наведене су предности употребе лифтинг шеме при реализацији дискретне таласне трансформације.

У шестом поглављу је објашњен значај детекције доминантних компонената ниских фrekвенција и клинички релевантних компонената високих фrekвенција за очување квалитета филтрираног сигнала. Представљене су могућности за адаптацију лифтинг шеме и реализацију модела за процесирање кардиосигнална у зависности од његових карактеристика.

Модел за анализу кардиосигнална и редукцију шума је описан у седмом поглављу. Представљени су нови приступи у детекцији доминантних интервалова код фонокардиограма и анализи студије са утврђеном дијагнозом. Предложена је адаптивна примена лифтинг шеме у зависности од расположивости додатних информација о анализираним фонокардиограму.

Експериментални резултати предложеног модела у фонокардиографији су приказани у осmom поглављу. Представљени су резултати предложених приступа детекције компонената у нискофrekвенцијском и високофrekвенцијском домену. Приказани су резултати употребе дискретне таласне трансформације и предложеног модела у односу на стандардне технике филтрирања.

У деветом поглављу је дат преглед постизнутих резултата и изведенih закључака. Наведени су допирноси дисертације. Дате су смернице за будућа истраживања у циљу даљег унапређивања квалитета анализе кардиосигнална.

У дисертацији је дат списак употребљених скраћеница, као и список слика и табела. Литература обухвата релевантне референце за област дисертације. На крају је приложена биографија кандидата.

3. ОЦЕНА ДИСЕРТАЦИЈЕ

3.1. Савременост и оригиналност

Предмет дисертације је веома значајан и актуелан с обзиром на интензивна истраживања аутоматских начина за анализу кардиосигнала у циљу што ефикасније дијагностике кардиоваскуларних болести. Последњих неколико година посебно су од интереса технике за анализу фонокардиограма у примарној здравственој нези пацијената, с обзиром на чињеницу да
се одређене аномалије могу адекватније регистровати фонокардиографијом у односу на електрокардиографију. Реч је о одабиру адекватног трансформационог догма за репрезентацију и декомпозицију фонокардиограма, где им могуће ефикасније сагледати релевантни садржај и где је таласна трансформација често истакнута као алат који даје задовољавајуће резултате.

У дисертацији кандидата је предложен нови модел заснован на новим приступима здружене временско-фrekvencijske и мултифракталне анализе, где се декомпозиција употребом друге генерације таласика и лифтинг шеме показала као адекватно окружење за интерпретације расположивог информација о кардиосигналу, као што је фонокардиограм. На тај начин постигне се контрола над процесирањем сигнала при редукцији високофrekвencijskог шума, али и очување клинички релевантних високофrekвencijskih компоненти, што је показано на примеру пропласа митралне валвуле код педијатријских пацијената. Спроведена истраживања су показала да су се предложенi приступи били погодни за анализу и верификацију потенцијалне аномалије и успешности од постојећих, у литератури описаних, техника.

3.2. Осврт на референтну и коришћену литературу

Кандидат је у докторској дисертацији укупно навела 152 референце, које обухватају релевантне књиге и радове из међународних и домаћих часописа и конференција, значајне за предмет дисертације.

Литература обухвата релативно широк опсег доступних публикација, од старијих до савремених, чиме је обезбеђен целовит приступ одабраној проблематици. Изабрана је референтна литература за сагледавање основних приступа у анализи фонокардиограма, са освртом на електрокардиограме. Овацким одабраним литературам, направљена је платформа дисертације у виду прегледа основних репрезентационих и декомпозиционих техника за анализу кардиосигнала. Посебна пажња је посвећена савременој литератури и актуелним трендовима при анализи кардиосигнала.

3.3. Опис и адекватност примењених научних метода

У изради дисертације коришћене су методе прикупљања и анализе постојећих доступних научних техника и резултата. У конзултација са лекарима, прикупљена су додатна сазнања о карактеристичним студијама и повећању ефикасности верификације потенцијалних аномалија помоћу кардиосигнала пре употребе техника скренина ехокардиографије. Након приказа постојећих сазнања кроз литературу, спроведене су иницијалне анализе ефикасних алата у обради сигнала у циљу моделовања фонокардиограма, односно његове аутоматске сегментације и детекције карактеристичних налаза у виду поновљивих сигнала. Предложен модел за анализу фонокардиограма заснива се на аутоматским приступима и приказан је у једној компактној целини дисертације. Употребљена је здружене временско-фrekvencijska анализ и мултифрактална анализа за детекцију и локализацију потенцијалне аномалије.

Резултати истраживања су презентовани помоћу блок дијаграма, текстуално, дескриптивно, табелама и сликама. Предложенi приступи су тестиранi у случају ниског нивоа шума и у присуству Гаусовог шума. Резултати експерименталних тестирања су базирани на тест сигналима здравих пацијената и пацијената са познатом дијагнозом. Евалуација је обављена на записима који нису били саставни део тестирања. Експериментални резултати су адекватно презентовани и дискутовани. Избор научних метода које су коришћене у истраживању одређене су предметом и циљевима дисертације.

3.4. Примењивост остварених резултата

Резултати докторске дисертације могу имати широку практичну примену у примарној нези пацијената. С обзиром да се све већи број система за анализу кардиосигнала заснива на напредним софтверским алата, предложенi модел може значајно допринети унапређењу анализе фонокардиограма педијатријских пацијената у односу на употребу стандардних техника анализе и аускутације, али и спречити употребу комплексних техника скренина у
случајевима када то није неопходно. Добијени резултати су значајни и настали су анализом и синтезом постојећих сазнања, али и имплементацијом познатих техника обраде сигнала у нов модел за анализу реалних кардиосигнала у примарној здравственој заштити.

Приказани резултати предложеног модела, као и његова евалуација, односе се на конкретне примере из прaksi, записи педијатријских пацијената са здравим срцем и пацијената са пролапсом митралне валвуле. Тиме је остварена верификација развијених приступа и добијених резултата који су изнети у дисертацији.

3.5. Оцена достигнутих способности кандидата за самостояти научни рад

Кандидат Ана Гавровска је стекла велико искуство радећи на међународном пројекту чији је предмет био анализ за ритмова на основу електрокардиограма и фонокардиограма. Објавила је преко 40 радова у часописима (један часопис са SCI лиستе) и зборницама конференција. Већина радова припада области дисертације. Неколико радова је цитирано у иностраној литератури, часописима и међународним конференцијама. Неколико радова Ана Гавровске из ове области је добило угледне награде. Део истраживања је објављен у часопису са SCI листет, а реферисан на више међународних и домаћих научних скупова.

На основу остварених резултата који су приказани у дисертацији може се закључити да је кандидат показала способност да креативно приступи истраживању, уочи недостатке у постојећим решењима за анализу кардиосигнала и успешно спроведе истраживање у циљу њиховог унапређења. У дисертацији Ана Гавровска је показано да је она способна за самостояти научни рад, што достигнути резултати и систематичност, мултидисциплинарност и оригиналност при научно-истраживачком раду само потврђују.

4. ОСТВАРЕНИ НАУЧНИ ДОПРИНОС

4.1. Приказ остварених научних доприноса

Кандидат Ана Гавровска је остварила вредне научне доприносе приказане у докторској дисертацији. Прегледом расположиве литературе и пресеком постојећих сазнања о аутоматској анализи примарних кардиосигнала учињен је важан допринос у истраживању оваквих реалних сигнала кроз:
- преглед и анализу стандардних техника за у克拉њење шума код примарних кардиосигнала укључујући преглед најчешћих параметара коришћених при стандардном уклевању шума употребом таласне трансформације;
- преглед и анализу важних својстава расположивих техника филтрирања заснованих на другој генерацији таласа и лифтинг шеми укључујући преглед расположивих структура и самоподешавајућих приступа код лифтинг шеме;
- преглед техника за потребе анализе и сегментације релевантних интервала код примарних кардиосигнала, пре свега фонокардиограма, употребом здручених временско-фrekвенцијских репрезентација и спектралних приступа.

Научни доприноси у дисертацији кандидата се могу сагледати кроз:
- дефинишење и предлог новог алгоритма за потребе сегментације виброакустичних сигнала, са освртом на електрокардиограме;
- дефинишење и предлог новог алгоритма за детекцију клик-налаза код фонокардиограма;
- дефинишење и предлог новог модела за самоподешавајуће филтрирање примарних кардиосигнала употребом друге генерације таласа и сегментационе технике (у складу са потенцијалним налазима у сигналу);
- компаративна анализа предложеног модела са постојећим техникама филтрирања и пример студије са утврђеном дијагнозом;
- примена методологије за потребе самостояте анализе примарних кардиосигнала, пре свега фонокардиограма.
4.2. Критичка анализа резултата истраживања

Предложени начин филтрирања представља значајно унапређење у односу на постојеће технике, јер зависи од индикације о потенцијалној егзистенцији сингуларитета важних за дијагностику. Кандидат је у докторској дисертацији истраживао које се технике аутоматске анализе најчешће користе код примарних кардиосигналова. Истраживање је засновано на обимној литератури постојећих приступа за: филтрирање, сегментацију и карактеризацију карактеристичних срачних догађаја. На основу расположиве литературе, истраживачки рад је усмерен ка реализацији унапређеног модела за анализу фонокардиограма у коме се може обавити верификација дијагностичких релевантних обележја у домену високих фреквенција, као што је клин-синдром, чак и у случају када постоји потреба за редукцијом шума.

Критичком анализом се може констатовати да се при редукцији шума код примарних кардиосигналова ретко води рачуна о компонентама у домену високих фреквенција при употреби постојећих класичних техника филтрирања, али и при стандардној употреби таласне трансформације која се истиче као једна од најежекаснијих приступа. Додатно, у појединим досадашњим истраживањима је разматрана употреба локације доминантних сингуларитета и расположивост "чистог" сигнала, што није случај у прaksi. Предложен модел омогућава да се редукција шума обави и у случају када клинички релевантни сингуларитети нису доминантни, што до сада није разматрано.

То је показано на примеру клиник-налаза код педијатријских пацијената, који садрже овакве сингуларитете, па је развијен нови приступ за детекцију оваквих сигнала. Проступ који разматрају разликовање записа на нивоу дијагностике има веома мало и сваки сличан допринос се може сматрати веома важним у прaksi. Постојеће технике за анализу фонокардиограма се обично заснивају на употреби анвелопа, спектралних и спектрограмских приступа. Предложен модел показује одличне резултате у односу на постојеће приступе и омогућава самосталну анализу фонокардиограма (без снимања синхронизованог електрокардиограма, што је у расположивој литературе најчешће случај).

Предложен модел је прилагођен раду са педијатријским фонокардиографским записима. С обзиром да је рајено на великим броју сигнала из праксе, може се очекивати да предложен модел има значајну практичну примену. Будућим истраживањем може се проширити новим сазнањима о фонокардиограмима и дијагностици, али и прилагодити у односу на разматрани кардиосигнал у циљу квалитетне анализе.

4.3. Верификација научних доприноса

Кандидат је објавио већи број научних радова у вези са темом докторске дисертације, чији су резултати директно ушли у дисертацију или су тесно везани са истраживањем у њој.

Радови у научним часописима са SCI листе

Међународни и домаћи часописи

Радови на међународним научним скуповима

Зборници са домаћих конференција

Књига, уџбеник

5. ЗАКЉУЧАК И ПРЕДЛОГ
Докторска дисертација кандидата Ане Гавровске даје значајан допринос у сагледавању могућности анализе кардиосигнала и фонокардиограма као репрезентативног примера који се употребљава у примарној нези пацијената. У многим случајевима, посебно код педијатријских пацијената, аускултација и фонокардиографија дају бољи увид у потенцијалну патофизиолошку од других кардио сигнала. Посебну пажњу Ана Гавровска је посветила детекцији основних срчаних догађаја (главних срчаних тонова S1/S2 без ЕКГ сигнала као референс) који су у домену ниских фреквенција, уз задржавање релевантних компоненти из домена високих фреквенција, које могу указати на аномалност, као што је клин-синдром. У ту сврху је предложила нови приступ базиран на здруженом временско-фрееквенцијском репрезентацији и мултифракталној анализи. Предложена метода је верификована на великом броју реалних сигнала педијатријских пацијената из домаће клиничке праксе. Метода обезбеђује аутоматску анализу кардио сигнала и може послужити као помоћна при дијагностике педијатријских пацијената, посебно при детекцији клин-синдрома, што има утицај на унапређење здравствене заштите.

На основу изложеног констатујемо да докторска дисертација кандидата Ане Гавровске садржи оригиналан допринос у виду анализе кардиосигнала у временском домену. Резултати истраживања из ове дисертације су верификовани публиковањем у међународном часопису са SCI листе и часописима националног значаја, као и на међународним и домаћим конференцијама.

С обзиром на постигнуте резултате, као и мултидисциплинарност, актуелност и сложеност образљене теме, докторска дисертација кандидата задовољава постављене критеријуме у складу са постављеним хипотезама. Доприноси кандидата представљен у дисертацији, као и њени радови и добијене награде показују способност Ане Гавровске за самосталан научно истраживачки рад.

На основу претходног, Комисија констатује да је кандидат Ана Гавровска, дипломирани инжењер електroteхнике, испунила све услове предвиђене Законом о високом образовању Републике Србије, Статутом и Правилником о докторским студијама Електротехничког факултета Универзитета у Београду. Комисија са посебним задовољством предложе Наставно-научном већу Електротехничког факултета Универзитета у Београду да се докторска дисертација под називом „АНАЛИЗА Кардиосигнала помоћу других генерације таласиба“ кандидата Ане Гавровске прихвати, а затим упути Већу научних области техничких наука Универзитета у Београду на коначно усвајање, као и давање одобрења кандидату да приступи усменој одбрани.

У Београду, 07.11.2013.

ЧЛАНОВИ КОМИСИЈЕ

др Ирини Рељин, редовни професор
Универзитет у Београду – Електротехнички факултет

др Драгана Шумарац-Павловић, ванредни професор
Универзитет у Београду – Електротехнички факултет

др Девањка Радуновић, ванредни професор
Универзитет у Београду – Математички факултет

др Мирјана Поповић, редовни професор
Универзитет у Београду – Електротехнички факултет

др Миодраг Поповић, редовни професор
Универзитет у Београду – Електротехнички факултет