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Abstract

This work presents the study of classical and quantum properties of the four-wave mixing
(FWM) process in hot potassium vapour. FWM is a third order nonlinear process in which
interaction of two photons, in a nonlinear medium, produce two new photons at different
frequencies. Or in terms of usual terminology associated with FWM: two pump photons are
converted into probe and conjugate photons. There are different nonlinear media, and different
schemes for FWM. Here, the process of FWM is generated on a double-lambda scheme on D; line
of potassium isotope *K.

We have studied - in both theoretical and experimental manner - the response of FWM
process to various FWM parameters - one-photon pump detuning, two-photon pump-probe
detuning, atomic density, and powers of the laser beams. Numerical nonperturbative model, based
on Maxwell-Bloch system of equations, has been adopted to the special case of potassium atom and
used for calculating a classical property of FWM, the parametric gains of probe and conjugate. It
has been demonstrated that FWM in K can result in a higher amplification of the newly generated
beams than with any other alkali atom. Both experimental and theoretical results show a strong
dependence of the probe and conjugate gains on the FWM parameters.

Studding the probe and conjugate gain was important since it is already established, in Rb
and Cs, that the generation of quantum correlation between probe and conjugate, i.e., the twin
beams, and the amplitude squeezed light depend on values of gains of the new beams. In that
context, the first part of the study of FWM as an amplifier was a prelude to the research work that
followed. In the second part of the thesis, the study of FWM as a source of the correlated/entangled
beams is presented. We have demonstrated that for the adequate set of experimental parameters this
system can produce noise reduction in the difference signal between the correlated probe and
conjugate, below the standard quantum limit. We have discussed how various experimental
parameters affect the results, and compared the values we have measured with the ones predicted by
the models. In the theoretical study of squeezing we have employed phenomenological models, as it
was done previously for other alkali species. In addition, we have developed a microscopic model
for hot atoms based on Heisenberg-Langevin equations, that enables us to predict both gains and
squeezing by FWM that could be obtained in K, as a function of different system parameters. This
is the first such study with this alkali atom as FWM medium.

Strong quantum correlations and entanglement between twin beams has been in the focus of
interest of many research groups because of important applications: improvements of resolution and
sensitivity of different measurement techniques, and for many emerging quantum technologies.
Hence, learning about and getting more insights in the way we can efficiently generate and control
quantum properties of light have a strong implication on a future of global research and
development.

Key words: four-wave mixing, potassium, relative-intensity squeezed light
Scientific field: Technical physics

Scientific subfield: Quantum and nonlinear optics



Caxkerak

OBaj pajx mpenacTaBiba CTYIH]y KIACHYHUX M KBAaHTHUX OCOOMHA TpoIleca YeTBOPOCTPYKOT
MelIama Tajiaca y 3arpejanoj napu kanujyma. OBo je HenmHeapHu mporiec Tpeher pema TokoM Kora
MHTEpaKiyja aBa (poToHa, y HEIMHEAPHO] CPEAMHHU, TCHEPHIIE JBa HOBA (POTOHA HA PA3NUUYUTUM
¢dbpekBennjama. Minu, yKoIMKo yrnoTpeOHMMO yoOH4YajeHy TEPMHUHOJIOTH]Y Kaja je oBaj edekar y
nuTamy, 1Ba (OTOHA MyMIle ce KOHBEpTYjy y (oToH mpode u kxonjyroBanu ¢otoHn. Iloctoje
pasnuunTe HEIMHEAapHE CpPEJMHE M pPAasIUYUTe IIeMe 3a TeHepucame oBor edekrta. OBue ce
quBOpOg%HaCHO MelIamke peain3yje Ha JABOCTPYKO] JamOaa memu Ha J[1 JUHUjU KaaujyMoBOT
n3orona - K.

[Ipoy4aBanu cMo0, Kako Ha TEOPHjCKU TaKO U HAa EKCIIEPUMEHTAIaH Hau4WH, OJTrOBOP MpoLeca
Melllamka Ha IPOMEHY Pa3IMYUTUX HapaMeTapa, jeTHO(GOTOHCKOT (PEeKBEHIN]CKOT ITeMepaja myMIIe,
IBO(OTOHCKOT (PpeKBEHIM]CKOT ToMepaja mpode, TYCTUHE aTOMa W CHAare JIaCepCKUX CHOIOBA.
Hymepuukn HemepTypOaTHBHM Mopend, 3acHOBaH Ha MakcBen-bonT3mMaHoBuM jenHaunHama, je
NPUMEHEH Ha Cy4aj aToMa KaldjymMa ¥ KOpPHIINEeH NpU padyHamy KIACHYHUX OCOOHMHA Koje
KapaKTepHIIly YeTBOPOTAJAaHO MEIIame. Tj. I0jayama Mpode 1 KOHjyroBaHor cHoma. [loka3aHo je aa
YEeTBOPOTAJIACHO MEIIAkE y MApU KalHjyMa MOKE JIOBECTH J0 BUCOKOT M0jayarma HOBOT€HEPHUCAHUX
CHOMOBa. / eKCempuMEHTAIHU U TEOPUjCKH PE3YNTaTH IOKa3yjy CHaXHY 3aBHCHOCT I10jadarsa
po0e ¥ KOHjYTMBAaHOT CHOMA Yy (YHIIMjU MapaMeTapa cucTema.

Crynuja mojadama Owiia je O]l BEXKHOCTH jep je paHuje YyTBpheHO, Kaia Cy y NHTaBmY
pyOuaMjyM U 11e31jyM, J1a TeHepHCcamhe KBaTHUX Kopenaiyja usmely npode u KOHjyroBaHoOT CHOIIA,
OJHOCHO CHOIOBa OJiM3aHalla, W AaMIUIMTYICKHA CTHCHYTE CBETJIOCTH 3aBHCE O] BPEIHOCTH
nojayama. Y TOM KOHCTEKCTY, TNPBH €0 CTYAHMj€ YETBOPOTAJICHOI Mellama OHO je YBOA Y
HCTPKUBAYKHU PaJ KOjU je ycieauo. Y JAPyrom Aelly paja MpuKa3aHa je CTyauja Y4eTBOPOTAIACHOT
Melama Kao M3BOpa KOpENMCAHUX/yBe3aHMX CHONOBA, [lokasamy cMo &a 3a aJeKBaTaH CKYIl
EKECTIPUMEHTAINX TIapaMeTapa OBaj CHCTEM MOYKE IMPOM3BECTH CMAbCHE IIIyMa y CUTHAIY Pa3jiuKe
n3Mely mpo0Oe W KOHjyroBaHOT, KOjU he ce CIyCTUTH HCIOJ BpPEAHOCTU CTaHJIapJHE KBaHTE
rpanuie. M3Bpmmimm cMo JUCKYCHjy Ha TEMY YTHIIaja Pa3InYUTHX eKCIIEPIMEHTATHUX IapaMeTrapa
Ha pe3ysTaTe M yHOpeann BPEJHOCTH KOje CMO U3MEPWIM ca BpEIHOCTUMA MoJiena. Y TEOpH]jCKOj
CTyIMju KopuillheHu cy (HEHOMEHOJIONIKH MOJIEH, Kao CTO je paHuje oapaleHo 3a JApyre ajkaiHe
Bpcre. [lopexn Tora, pa3BUiIM MO MHKPOCKOIICKM MOJieN 3a Bpyhe aroMme 3acHOBaH Ha Xaj3eHOepr-
Jlan)keBMHOBUM jelHaYMHaMa, KOJU HaM OMoOryhaBa Ja MNpeABHAMMO I0jadyamka U CTHUCKAHkE
CBETJIOCTH Y (YHKLHMJU pa3IMUUTHX Mapamerapa cucrema. OBO je mpBa TakBa CTyAHja Ca OBUM
aJIKaJTHUM aTOMOM Ka0 aKTHBHO CPEIUHOM.

CHaxkHe KBaHTHE KOpelaluje Koje Cy yO4YeHe Yy CHOMoOBHMa Onu3aHiuma cy y (okycy
MHTEpECOBaba MHOIMX HCTPOKMBAUKMX TIpyla jep Ce MOIy HCKOPUCTUTH 3a MO0OOJbIIAHke
OCETJFMBOCTH M PE30JyIHje pa3HUX MEPHUX TEXHHKA, KA0 U MHOT€ HOBE KBAaHTHE TEXHOJIOTH]E.
Jlakie, yuyeme O M CTHIAbl€ YBHJA Y HAa4MH Ha KOJU MOXeMO e(UKCHO TeHepucaTH u
KOHTPOJIMCATH OBE KOpesallje uMa CHa)KHE MMIUIMKaluje 3a 0yayhHoCT riio0amHOr HCTpakuBamba
U pa3Boja.

Ki/byuHe peun: 4eTBOPOCTPYKO MEIIame Tajaca, KalujyM, PeJaTMBHO MHTEH3UTETCKU CTHCHYTA
CBETJIOCT

Hayuna o0aacrt: Texnuuka pusuka

Yika Hay4Ha 00,1aCT: KBAaHTHA U HEJIMHEApHA ONTUKA
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1. Introduction

Research and developments at the frontier of science are constantly and unequivocally
changing and reshaping the way we perceive the world around us, so as the our everyday living. We
have been exploiting the developments in optical science in all aspect of our lives. Nowadays,
research teams at universities and companies are striving and making big steps towards
implementing developments from realm of quantum science to practical applications. These
attempts are foundation and building blocks of a new quantum revolution [1]. Once exotic and
mysterious, now topics in quantum science have become an essential part of research and
fabrication of new technological platforms.

Quantum science is a field of physics studies that is built on quantum mechanical principles.
Its beginning originates at the beginning of the 20™ century with an efforts to explain the nature of
light, departing from the classical framework. It was Albert Einstein’s quantum theory of light [2]
that struck the foundation of a non-classical understanding of light and matter interaction. In his
paper that was based on the Max Planck’s work on black body radiation [3], we are for the first time
introduced with the existence of light quanta [4], later called photon. These works pawed the way to
the still on-going discoveries and research developments in the area of quantum science, and we
referred to them as the first quantum revolution. However, it was only with the development of the
laser [5], in 1960’s, when this research area started rapidly advancing and booming. Invention of
lasers turned out to be an invaluable tool in proving the new concepts and theorems of quantum
mechanics, so as in the realization of new experiments that unravelled mysteries of quantum world.
Within this era of studying fundamental effects that led the first quantum revolution, scientists
discovered new ways of generation and control of photons and atomic states. The relevance of these
successes, with the nowadays obtainable precision in control and manipulation over the
experimental settings, has become even more obvious and dominant when we entered the time of
the second quantum revolution [6]. The knowledge gained and understanding of the quantum
optical world is paving the way to the realization of quantum-inspired devices, which can
potentially find application in various areas of both research and everyday life. Quantum based set-
ups that, up to recently, were only operational and studied in our laboratory conditions, have
become to integrate in every aspect of on-going technological development. With this in mind, we
cannot be surprised by the fact that huge sums of money are being invested in the development of
this research discipline. There is a world-wide effort and competition between many research
institutions and companies in reaching new milestones and breakthroughs.

So, what the tools obtained within the framework of quantum science can offer? Firstly and
probably the most obvious, is the aspect of miniaturization, with a constant demand for smaller
scale devices for technical applications. Secondly, from a practical perspective, with known
properties of light, especially the fact that photons weakly interact with the environment, photon has
become a perfect carrier of information over long distances. New concepts relying on the
engineering of non-classical photon states and interactions between photons have been proposed for
all-optical quantum computation [7] and quantum communication protocols [8,9], and find
applications in developments of quantum memory [10-12], quantum metrology [13], quantum
sensing [14], and quantum repeaters [15].

Some of the most intriguing topics in quantum optics are probably quantum entanglement
and squeezing. Importance of discoveries of non-classical properties of light led to the last year
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Nobel Prize award for the work on the experiments demonstrating and investigating quantum
entanglement [16,17]. These works present pioneering step in further development of quantum
science. Entanglement can be generated in various degrees of freedom. Hence, we can discuss
entanglement in time and energy [18], position [19], momentum [20], polarization [21]. These
possibilities make entangle photons advantageous over classical light for applications in imaging
[22,23], spectroscopy [24], lithography [25], microscopy [26]. Microscopic imaging of biological
systems with quantum states of light has shown improvements in precision of phase and absorption
measurements [27]. Recently, quantum microscopes based on entangled heralded photons have
been demonstrated, with improved sensitivity and signal-to-noise ratio (SNR) [28]. Some of the
todays burning topics, like data privacy and internet security advancements are also relying on the
practical implementation of quantum generated states of light in communication channels.

Squeezed states have also gained a considerable interest when it comes to their application
for increasing precision of measurements [29], quantum interferometry [30], but also in quantum
teleportation [31-33], and quantum information [34]. Quantum noise reduction by the means of
squeezed light sources has become an integral part of a new class of sensors [35]. When classical
noise is sufficiently suppressed, measurements precision becomes quantum noise limited. This
quantum noise is known as the shot noise, often referred as the standard quantum limit (SQL),
arising from the discrete nature of photons. Continuous research and attempts to overcome this limit
are motivated by a growing number of experiments and applications requiring enhancement in
sensitivity, resolution and improved signal-to-noise ratio (SNR). The solution was found in
definition of Heisenberg uncertainty principle. The Heisenberg uncertainty relation presented in
1927. [36], defining the limitation on the accuracy of particle position and momentum detection,
has been one of the most important baselines when it comes to the development of modern quantum
science. It imposes a limit on the precision of simultaneous determination of light amplitude and
phase, but it doesn’t limit them individually. This can be translated in the possibility of minimizing
the amplitude noise fluctuations, on the expense of increasing phase uncertainty. This is basically
an explanation of what the squeezing is.

Following proposed solution, squeezes states found their role in enhancement of
measurements precision in various areas. One example includes application which depends on
amplitude modulation such as absorption measurement, where the signal-to-noise ratio is boosted
by decreasing the amplitude noise [37,38]. Polzik et al. demonstrated that squeezed light could be
utilized for the improvement of a wide range of atomic spectroscopy measurements [39]. Squeezed
light with reduced uncertainty in the detected quadrature was used to improve the sensitivity of
optical magnetometers [40-41]. We now have demonstrations of plasmonic sensors [42],
micromechanical sensors [43], atomic magnetometers [44], LIGO interferometers [45], all of them
showing improvements compared to previous class of sensors (their classical predecessor), just by
exploiting squeezed light sources. Squeezed light has also been used to improve the sensitivity in
photo-sensitive measurements of biological samples [46] and in Raman spectroscopy for probing
molecular bonds [47].

Development of one more branch of optics was crucial in order to obtain all of the necessary
tools for the generation and study of mentioned quantum light sources. Namely, controlling
properties of a medium is a kind of precursor to control of properties of light. Hence, study of so
called nonlinear effects [48] has become one of the pillars of the quantum science development
during past few decades. For sufficiently strong light field incident on a medium, optical response
becomes nonlinear. This response is directly related to the optical susceptibility, which
characterizes the properties of a medium. With a development of the lasers, the necessary power
levels of light radiation were easily obtained and different nonlinear effects of second and third
order, described with second and third order of optical susceptibility, were demonstrated. Of a
special interest in our line of studies are wave mixing processes, most commonly obtained in
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nonlinear crystals and atomic vapours. In nonlinear crystals, second order nonlinear polarization,
induced by the pump field, due to the interaction with incident light can generate new photons at
output frequencies. Through the spontaneous parametric down conversion (SPDC) in nonlinear
crystal two correlated twin beams can be generated [49,50] . This method is a common tool in
generation of previously mentioned entangled states. However, conversion efficiency of this
process is rather low and the bandwidth of generated photons is large, which is not always desirable
when it comes to particular applications. Also, frequencies of generated pair of photons are
typically far from atomic transitions, thus limiting application in atomic optics, for quantum state
engineering.

Nonlinear effect which is in the focus of our study is generated through the nonlinear
interaction with alkali atoms. What sets alkali apart from other elements is their unique energy
structure. Their macroscopic properties are very easily controlled [51-53], while their energy
structure is sensitive to externally applied electric [54] and magnetic fields [55]. This makes alkali
really desirable as an active medium for different spectroscopic applications. Specially, when
optical field is tuned close to the atomic resonance, susceptibility of a system highly increases [48].
There is a wide range of nonlinear and quantum effects that were already successfully demonstrated
in this type of medium, some of them being electromagnetically induced transparency (EIT) [56],
electromagnetically induced absorption (EIA) [57], coherent population trapping (CPT) [58]....
These effects had been realized on different atomic schemes, ranging from simpler two [59] and
three level [60] systems employing only ground and first exited states, to the ones employing highly
exited Rydberg states, in different configurations [61,62]. Nowadays, alkali cells can be
miniaturized [63], hence future set-ups can be made more compact. There have already been
examples where vapour cells are integrated with semiconductor based quantum dots in order to
generate new states of light [64].

In our study, we have utilized Four Wave Mixing (FWM) process. It is nonlinear
phenomenon based on optical susceptibility of third order, that presents coherent interaction of four
modes of electromagnetic field [48]. It was demonstrated and studied in different types of mediums,
ranging from atomical [65-68] to solid ones, like optical fibers [69]. FWM in atomic system has
already demonstrated the ability to slow [70,71] and stop light pulses [72] in different alkali
elements, such as Rb [71-73], Na [74], and K[70]. It was subject of studies as phase-sensitive [75]
and phase-insentive amplification system [76], and as a source of optical nonreciprocity [77]. It
was also studied in pump-probe counter-propagating scheme [78]. Multiple applications of FWM
have already been demonstrated. But, most relevant for our line of research is the fact that it is
useful and promising tool for production of squeezed and entangled photons [79-82]. In a
configuration typical for alkali atoms, strong pump and weak probe seed mix to produce pairs of
correlated photons so-called twin beams. Due to strong nonlinearity of FWM media, intense
parametric amplification of generated twin photons and large squeezing could be obtained in a
single pass of the pump beam through atomic vapour. Same as for SPDC, there have been
demonstrations of polarization [83,88] and orbital angular momentum [84-86] entangled photon
states, and time [81,82,87] and space [89-91] correlated twin-photon pairs.

Squeezing was firstly demonstrated by Schuler [92]. It was generated in sodium (Na) by
means of FWM. From then on, different systems have been proposed and tested as a source of
squeezed light. The best squeezing by the second harmonic generation reached level of -3 dB in a
doubly resonant system [93]. Experiments on pulsed fibre squeezing using the Kerr effect are
presented in [94], and eventually have brought the squeezing levels to around -7 dB [95]. Up to
date, the best squeezing levels have been obtained with parametric processes in nonlinear crystals,
with a -12.3 dB of noise suppression at a wavelength of 1550 nm and —12.7 dB at 1064 nm [96]. In
general, squeezing can be generated in a wide range of wavelengths, spanning from 500 nm to 1550
nm. When it comes to atomic based systems, both cold and hot alkali ensembles have been used as
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a medium for generation of squeezing. In cold rubidium -3.5 dB of squeezing level was measured
[97], while in cold Cs only -1.8 dB was obtained [98]. However, the simplicity of the hot vapour
set-ups, with no need for cooling and trapping of atoms and additional cavities, has prevailed as an
advantage and experiments utilizing cold mediums moved out of the focus of researches. Light
beams in both CW [81,99,100] and pulsed regime have been successfully squeezed in Rb vapour.

Nonlinear Kerr effect, based on the change of effective index of refraction, was also shown
to be able to produce squeezed light in atomic vapour, however, with a lower efficiency. Another,
alternative way to squeeze light in atomic mediums is thought polarization self-rotation effect. First
experimental implementation of this effect for generation of squeezed vacuum was in solid media
[101]. Successful demonstration in Rb vapour followed [102], and — 3 dB of squeezing level was
eventually reported [103].

With respect to number of squeezed quadratures, we can distinguish two cases — single- and
two-mode squeezes states [104]. Different FWM configuration can be used in order to generate
either of the mentioned quantum states of light. It is important to distinguish these two possibilities
when discussing possible applications. Single-mode (vacuum) squeezed light have been often used
in sensing and interferometry [105]. However, multimode and multidimensional squeezed light
[106,107] could even have more advantage when it comes to the use in quantum networks systems,
guantum computing, imaging, and microscopy.

Renewed interest in a FWM as a source of two-mode squeezing source followed
McCormick et al. publication in 2008 [81]. In this work, FWM in Rb vapour was used to generate
two-mode squeezing in a joint quadrature of correlated probe and conjugate fields, or intensity
difference squeezing (IDS). Large intensity squeezing obtained by phase-insensitive FWM in Rb of
-9.2 dB [82] is close to the highest level of squeezing produced by any method for generating
squeezed light [108]. This result made FWM in hot alkali vapours widespread method for testing
limits of FWM with different gases, and different atomic schemes [99,100,109-112]. Several groups
tried different approaches to enhance IDS, by modulating internal energy level with additional laser
[113], or by conical pump beam [114]. With FWM based two-beam phase sensitive amplifier, IDS
above -10 dB was obtained in Rb vapour [82]. The strongest IDS obtained in hot Cs vapour was -
6.5 dB [111]. The difficulty in getting higher quantum correlation in Cs is believed to be due to
larger hyperfine splitting (hfs) of the ground state in Cs [110]. Recently, study of IDS based on
FWM on double lambda scheme was extended with the use of two pump beams [115,116],
generating multi-beam quantum correlation and with integration of FWM system with optical
parametric amplifier [117]. Also, multipartite quantum squeezing was demonstrated with cascaded
FWM system [118]. These studies could pave the way to expanding the range of the possible
applications of IDS based on FWM in atomic vapour. However, not much has been done with
potassium [112].

It is obvious that there is a variety of quantum squeeze states that today state-of-art
experiments enable us to study. However, each of the mentioned methods of generation has its own
advantages and rooms for improvement, which is confirmed by the still present interest of research
community into tackling the existing problems and downsides of every method, while trying to
push the boundaries of achieved results even further.

Within this thesis, results of a study of FWM in potassium vapour are presented. We
conducted both experimental and theoretical study of FWM in co-propagating pump-probe
configuration, realized on double-lambda atomic scheme on D1 line in K. We have gained a new
insight into the advantages of a studied system as a phase-insensitive amplifier. We have also tested
FWM in Potassium as a source of relative intensity squeezing. We aimed to show that K is
competitive with other alkali elements. The initial idea presented in [81] was followed, and a set-up
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for a squeezing on a far detuned scheme was developed, first time demonstrated in K. We have
explored different parameters that can increase the squeezing level and attempt to find to ones for
maximal noise reduction. Alongside to the experimental work, we have developed the first
microscopic quantum model for calculation of squeezing and gain produced by FWM in hot atomic
vapour, while taking into account all of decoherence effects, Doppler broadening and transit time of
the atoms through the interaction area. The model has been tested in several regimes of interest and
results presented in this thesis.

Of a special interest in our research group is a possibility of implementing this type of light
sources for enhanced optical microscopy and spectroscopy. Getting the more insights and detailed
knowledge into the processes occurring at the atomic and molecular level of biological system is
definitely one of the reasons for conducting the research presented in this thesis. Our developed set-
up, with the obtained results, has a potential of being a tool for nondestructive and noninvasive
imaging of biological system by the means of entangled two-photon absorption (ETPA), since
efficient generation of time correlated photons has been confirmed.



Part |

Study of classical properties of Four Wave Mixing in
Potassium vapour



2. Light — alkali atoms interaction

In our study, we are interested in the interaction of the light radiation and atomic medium.
Hence, in this chapter we give an introductory overview over the basic concepts of atom-light
interactions on which the process of FWM is based. Description of the main tools is given, starting
with atomic specie that was used as an active medium in our work. Then, we introduce a two level
system driven by an incident light, and its theoretical description, as the simplest approximation of
the studied schemes. The more complex modelling of three-level A system follows. In this part of
the thesis we use a semi-classical theoretical approach. In this manner, we characterize and describe
the atomic medium as a quantum system, while the light filed is presented classically. The content
of this chapter is based on the references [51,119-122].

2.1. Alkali atoms - Potassium

Atomic mediums interacting with the light radiation have been shown to be a rich source of
interesting phenomena, as pointed out in the introduction. One of the steps in successful
understanding, generation and control of this interaction is becoming familiar with the active
medium being in use. Experiments based on the atomic vapours have been extensively studied for
the past few decades. When the light field frequencies are close to the atomic transitions, strong
nonlinear response could be expected, under certain conditions. Alkali metal group elements (RDb,
Cs, K, Na, Li) has been attracting special interest. Although characteristics and properties of these
elements have been well-documented and number of experiments in quantum and nonlinear physics
already carried out, weather in thermal or laser-cooled atoms, the interest in these mediums is still
not waning. Their electronic structure, with a one valence electron, makes them similar to a
hydrogen atom, hence, relatively easy for theoretical simulations. This characteristic also leads to
strong interactions with external magnetic and electrical fields, making them useful in quantum
atomic experiments and applicable for precise sensing elements, like, for example, atomic clocks
[123]. In addition, nowadays, there are plenty of available and affordable laser sources at
frequencies for probing atomic transitions of interest in alkali metals. Specially, thermal alkali
vapours have shown to be a key part of a number of experiments in quantum and nonlinear physics.
When it comes to the advantages of hot vapour system compared to the use of cold active medium,
one of the most important is considerably lower price of the experimental set-up, its simplification
and miniaturization. On the other hand, a wide number of effects could still be realized and
demonstrated.

In this manuscript, we present a study performed with a cell filled with *K atoms. Rubidium
and Caesium have been popular choice in experiments exploring nonlinear light-matter integration,
and effects producing new, quantum sources of light. However, there were only few studies on
these topics employing Potassium. The first study done by our group, with potassium [124], gave us
a hint that this element could compete with the rubidium and caesium, and be successfully used in
quantum optics experiments, and formed the starting point for the further work.

There are three isotopes of potassium - *K, “°K and K, of which *°K is radioactive. For the
purpose of using potassium in experimental conditions, it is stored in glass cells, which can be of
different shapes and sizes. In the following sections, some of the most important properties of
potassium are listed and summarized, which consequently dictate the requirements of the system for
FWM in potassium for both classical and quantum studies. More detailed review is presented in
[51,122].



2.2.1. Atomic structure — fine and hyperfine structure

Now, we take a look and the energy structure of atom of our choice. On the Figure 2.1,
partial potassium energy structure is presented, including only transitions of interest. Namely, we
can observe so-called doublet or fine structure of potassium atom. It is a result of spin-orbit
coupling, i.e. the interaction between the electron spin angular momentum S and its orbital angular
momentum L. The total angular momentum J is defined with:

J=L+S. (2.1)

The associated magnitudes of angular momentums are described with quantum numbers S, L and J,
that present the eigenstates of the operators S2, L? and J2. Here, J has to satisfy:

IL-S|<J<L+S, (2.2)

and can take a value of integer or half integer. For potassium, S = 1/2, value of L is zero or
positive integer. Hence, for a ground state of *°K, 45, since L = 0, J can only take a value of
J = 1/2. For the first excited state, 4P, we have L = 1, hence two possible values for J: ] = 1/2
and J = 3/2. This leads to the doublet structure of Potassium, and the two presented D-lines, one of
which, D,, couples the ground state 4S; /, to the excited state 4P, ,,, and other, D,, that couples the
ground state 45, /, to the excited state 4P3 /,, as presented on Figure 1.

Next, there is a coupling between the total angular momentum J and the total nuclear angular spin
momentum |, from which hyperfine structure arises. It is described with total atomic angular
momentum F, defined with:

F=J]+1I (2.3)

Similarly, magnitude F can take values from the following range:
|J—I|<F<]+1 (2.4)

Value of quantum number I is different for each potassium isotope. For a *K, nuclear spin I = 3/2
[122]. The hyperfine splitting of the ground state gives two sublevels with F, =1 and F; = 2,
while the excited 4P/, splits into two sublevels with F, =1 and F, = 2, and 4P3,, into four
sublevels with F, = 0, F, = 1, F, = 2 and F, = 3. In our research, our focus is on the D; transition,
with four mentioned transitions, around 770 nm.

The energy split of the ground state can be calculated according to [122]:

SKUK+1) - 200+ 1)J( +1)
4121 — D) (2] — D
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Figure 2.1 *K doublet D-level structure.

Here, the magnetic dipole is characterized by A, B is the electronic quadrupole constant, while
K=F(F+1)—-I(I—-1)—J({J —1). The main differences, between potassium and commonly
used elements, like rubidium and caesium, are the smaller fine and hyperfine splittings. Specially
the value of the hyperfine splitting of the ground state in *°K, of 462 MHz, makes it really
intriguing and promising as a medium for some of the mentioned studies.

In addition, hyperfine energy levels can be split into Zeeman sublevel, when atoms are
exposed to the weak external magnetic field. This splitting is a consequence of the interaction of the
magnetic dipole moment of the electron with a magnetic field. As a result, each hyperfine sublevel
is further split into m; states, where my is a projection of F onto a quantization axis defined by
magnetic field. It is integer, and takes values from - F to +F. This splitting widens the spectra of
possible interesting application of these atomic medium due to its specific energy structure.



2.2.2. Physical and optical properties of potassium

In this section, we review particular properties of potassium vapours. As it was already
mentioned, there are three natural isotopes of potassium. These isotopes slightly differ by the
atomic mass, have different nuclear spins and the transition frequencies, as noted in the Table 2.1.

Table 2.1 The main properties of different potassium isotopes (data taken from [51,122])

Mass number A Neutrons N Abundance (%)

39 20 03.2581(44) 38.96370668(20) stable 3/2
40 21 0.0117(1) 39.96399848(21) 1.28 = 10%y 4
41 22 6.7302(44)  40.96182576(21) stable 3/2

Atomic density

When it comes to the potassium, as is the case with other alkaline elements, there is a
possibility for a relatively simple manipulation of some parameters of the atomic medium, in order
to target its desired characteristics, which makes it really appealing for the use in previously
mentioned experiments. One of the most important features, when using hot alkali vapours, is the
option to change the density of atoms only by changing the temperature.

We operate our medium at thermal equilibrium. In that state, the behaviour of the gas can be
described by an ideal gas law, in the limit of low pressure:

PV = nkgT. (2.6)
Here, P is the vapour pressure, V is the occupied volume, T is the gas temperature, n the number of

atoms, and kg is the Boltzmann constant. On the other hand, the vapour pressure can be
approximated by corrected Boyle law [125] in the following way:

b
P =10%T, (2.7)
where, for the potassium vapour, coefficients a and b have the following values:

a=79667,b=4646K, 289 <T < Tp,
a=7.4077,b = 4453 K, T, < T < 600, (2.8)

for T,, being the temperature of melting. Finally, from the equations (2.6) and (2.7), we can
calculate the expected atomic density of potassium as a function of temperature:

N

<|=

(2.9)

P
kT

Expected relation is presented on Figure 2.2.
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Figure 2.2 Atomic density of potassium as a function of temperature.

Doppler Effect (averaging)

At the experimental operational temperatures, atoms move at the mean velocity:

_ [8kpT 210
v = — (2.10)

Due to this motion, we have to take into consideration an effect of Doppler broadening. Namely,
atoms moving at different velocities are subjected to the different frequencies of light due to the
Doppler effect. As a result, an incident laser frequency w; seen by the atom is w = w;, — kv.
Hence, we have to take into account, when discussing this system, a shift of an atomic transition
frequencies by:

Ap= —kv = +kv,. (2.11)

Here, k is a wave vector of the incident light, assumed to be propagating in z-direction, and v, is
the velocity projection on the propagation axis. The atoms will have a distribution of velocities
described by the Maxwell-Boltzmann function:

M) = — v 2.11
(v)—mexp<ﬁz>- 211

The atomic motion significantly modifies the line shape around the resonance. In a warm atomic
vapour this effect is crucial to understand the dynamics of the system, as Doppler broadening can be
much greater than the natural linewidth I". For an atom of a mass m at temperature T the Doppler
linewidth I}, is given by:

8In(2)kgT
FD =w T, (212)

where m and w are the mass of an atom and frequency of the transition, respectively. On the Figure
2.3, Doppler broadening of D1 line of **K is presented as a function of temperature. One can notice,

11



that at the temperatures above 100°C, which are of interest in our experiments, broadening of the
line is way above the natural linewidth of I' = 6 MHz. Even at the room temperature this
broadening exceeds the value of hyperfine splitting of the ground state of potassium, making it
impossible to distinguish respective transitions from these sublevels to the same excited state. This
leads us to the conclusion that energy levels of interest will be masked by the Doppler broadened
line and not observable. In order to resolve them, different experimental techniques have been
developed. One of them, employed in our experiment will be described in the following chapter.

When modelling the behaviour of a hot vapour system, and its response to interaction with light
radiation, one has to consider performing Doppler averaging over the velocity classes.

950

900

850

Doppler linewidth [MHz]

800 |

750 1 1 1 1 | 1 1
20 40 60 80 100 120 140 160
Temperature [°C]

Figure 2.3 Doppler linewidth of potassium D1 line as a function of temperature.

Optical depth

The density of alkali vapour significantly affects the optical depth of the cell medium,
atomic polarization, and atomic relaxation rate. As a function of the density, absorption of the light
propagating through the atomic medium is defined with:

a = noy, (2.12)
where g, is the cross section of the optical transition. The optical depth, OD = «aL, can be measured
according to the changes in the light intensity passing the atomic cloud. Based on the Lambert-Beer
law of absorption for the beam of initial intensity /,, we have:

I =Ilyexp(—al), (2.13)

where L is the length of atomic medium. Optical depth quantifies the absorption on the resonance,
hence, it is an important parameter in calculations of the system response.

12



Saturation intensity

Besides the optical absorption, we should consider optical saturation, parameter that also
depends on choice of an atomic species. Previously defined cross section of a transition applies for
low intensity light fields. However, higher intensities can modify the medium behaviour, in
accordance with which we can define the saturation intensity, I;,;. The saturation intensity is
defined, such that, if a laser beam is resonant with an atomic transition and has an intensity I, the
atom will spend one quarter of its time in the excited state (the intensity at which the resonant
scattering rate is half that of its maximum possible value). In this case, the cross section reduces
compared to its initial value g,, and we can write [126]:

- % (2.14)
T '
In terms of atomic parameters, I, can be calculated in a following way:
whel'  hel hwdT
= = = (2.15)

Loge = = = .
sat ™ 323 7 310, 12mc?

Often, in our experiments, we are detuned with the laser frequencies from the resonant transitions,
and it is useful to introduce the proper calculation of described medium parameters for particular
case. If the light is detuned by 4 = w — w,, we have:

Isat(A) =1+ 4(A/F)2)Isat(0)' (2.16)
and

Op
14+44/T)% + 1)1

o(4) = (2.17)

2.2. Theory of light-matter interaction

2.2.1. Maxwell’s equations and wave propagation equation

For the description of light propagation through the medium we utilize a propagation
equation. In order to derive it, we start with the well-known set of Maxwell’s equations for
description of creation and propagation of electro-magnetic field:

vxE=_28 (2.18)
ot '
oD
VXH:]'-FE, (219)
V-D=p, (2.20)
V-B=0. (2.21)

Here, E is electric field, H magnetic field, D is electric flux density, while B is magnetic flux. A
total current density and free charge density are denoted with j and p, respectively.
The relationship between the electric displacement and electric field is described by:

13



D = gyE + P, (2.22)

where P is polarization, and ¢, free space electric permittivity. Similarly, we have
B = puoH + M, (2.23)
with u, as magnetic permeability of a free space, and magnetization M. In our case, non-magnetic

medium is of interest, hence we can neglect magnetic polarization. In addition, there are no free
charges or currents. Taking this into account, Maxwell’s equations obtain following form:

vxE =28 (2.24)
- ot '
oD
VXxXB =ﬂ0§, (225)
V-D =0, (2.26)
V-B=0. (2.27)

Taking the curl of the equation (2.24) , and combining it with a time derivative of (2.25), we get

\7><(|7><E)—|7><< aB)— 0°D (2.28)
a at) = Mgz '
With the use of vector identity
Vx(VXE)=V({V-E)—-V2E, (2.29)
one can obtain following:
5 a%D
V(V-E) - V2% = ~Ho 55 (2.30)

Assuming that the plane wave is transverse and infinite, meaning V - E = 0, we can write:

0°D
V2E = puy—. 2.31

Finally, we obtain wave propagation equation for the electric field:

o L 9°E _ 9°P 232)
2oz Mg '

where ¢ is defined with ¢ =

1
v Soﬂo.

2.2.2. Density matrix approach

For a description of a medium, density matrix formalism is used. As it was already
mentioned, within the semi-classical theoretical approach, atomic medium is treated quantum
mechanically. Namely, all information about the closed system of interest are contained within the
state vector, noted as ).

14



Time evolution of the system is described with the time-dependent Schrodinger equation:

a[y) i
where Hamiltonian is given by:
H = Hy + Hyy. (2.34)

Here, H, is unperturbed Hamiltonian, which, in the absence of the external field or any dissipation
effects, is described with:

Hy = ) &lixil (2.35)

E; = hw; is the energy eigenvalue for a corresponding eigenstate |i). H;,; describes the interaction
of an atom with an electrical field E. This is perturbation energy, related to the projection of an
electric dipole d onto the electric field:

Hipe = —d - E(1,1). (2.36)

Since, usually, the size of the atom is small compared to the light wavelength, we can apply electric
dipole approximation and assume that the field is spatially constant E = E(t).

The Schrodinger equation is useful for describing an evolution of a pure state. However, for
a description of a mixed state and effects that cannot be described statistically, it is more
convenient, and sometimes even necessary to switch to a different notation, i.e. density formalism.
Hence, we introduce density matrix operator, as an outer product of the wavefunction and its
conjugate:

p = )l (2.37)

The expectation value of an operator A is calculated in a following way:

(4) = Tr(pA). (2.38)

For a state of an atomic ensemble, i.e. mixed state, we write the density matrix operator as:
p= Piliil, (2:39)
i

where P; is the probability amplitude for a state |i).

If we disregard the spontaneous emission, the time evolution of a density operator is described with
generalized Schrodinger equation, so-called von Neumann equation:

dp i

—=——|H,p]. 2.40

5% -~ [H,p] (2.40)
The master equation above gives us the population dynamics of a quantum state of atomic
ensemble. Obtained diagonal elements of the density matrix will contain the information on the
populations of the states, while off-diagonal elements characterises the coherence between the
states.
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As already mentioned, the equation (2.40) only consider absorption and stimulated emission. For
the realistic description of the studied systems, one also has to include decay and relaxation terms.
These decoherence processes are accounted by the Lindblad operator:

L= (26Ci" - (pCi'Ci + G Gup)) /2, (241)
iLj

with Cj; = ¢;;y/T;1j)(il and Z]-|cﬁ|2 = 1, where I} is decay rate of an excited state, which is anti-
proportional to the state lifetime. The first term in Lindblad operator is diagonal and gives
information on the repopulation due to spontaneous decay. The second part describes dephasing
effects and other mechanisms of the repopulation.

Finally, we have Lindblad maser equation:

dp [
Friniais [H,p] + L. (2.42)

2.2.3. Two-level system
First, we consider simple system of two levels, schematically presented on the Figure 2.4.
We start with a pure states of an atom, with ground state |g) and an excited state |e), with w, and
w, as their angular frequencies, respectively. States have the energies Aw, and Aw,, Which results
in the transition energy of:
E =h(we — wy) = hwgg. (2.43)
State of the system is described with a wavefunction:

Y(r,t) = cy(rlg)e ot + co(rle)e wet, (2.44)

where c, and c, are coupling coefficients.

|E}, m’e

AP

Ef},ﬂ.}

|9)- W g

Figure 2.4 Energy scheme of two-level system.

In order to characterize the system we have to define the Hamiltonian of an atom driven with a time
dependent light radiation, that induces a dipole. Atomic Hamiltonian of unperturbed system is:
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Hy = hwglg)gl + hw.|e)el. (2.45)
Assuming that iw, = 0, we get:
Hy = hwegle)el. (2.46)

Light-atom interaction is described with interaction Hamiltonian, as a response to oscillating
electrical field E(t):

E(t) = Ejecos(wt) = Ege(e'®t + e~i@t) /2, (2.47)

Here, E, is an amplitude of electric field, and e is the orientation of field polarization. The dipole
transition operator describes the measure of the interaction strength and has a following form:

d=d.leXgl +dglg) (2.48)
with d., = dg,. Dipole operator contains only off-diagonal elements, as it is non-zero only for

states of opposite parity [127]. We assume that the light induced dipoles are aligned to the field
polarization, hence:

Hine = —Ed(lgXel + leXgl). (2.49)
Next, we introduce Rabi frequency:
Eo,d
Q=- "hge, (2.50)

which describes a strength of the coupling between the states. Usually, we model the light as a
Gaussian beam, so we can write:

4P

2 )
CEGTTW

E, (2.51)

where P is the power, w beam waist, and €, the vacuum permittivity. Then Rabi frequency can be
calculated as:

O= doe |_4P (2.52)
 h |cegmw?’ '
Now, we can solve a Schrodinger equation (2.33) for the total Hamiltonian that is given by:
H = Ho + Hpne =
= cge et g)gl +coeT e |e)el = (et + e ") g)el =5 (e + e )|l
(2.53)

One can notice that Hamiltonian is time dependent. However, we can get rid of this dependence.
Having in mind that |g){e|~e~'“es and |e){g|~e*'®est, we obtain the following set of differential
equations:
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acg %( i(@-0eg)t 1 gmilwtwe)t)c (2.54)
ace _ 9( “ilo-teg)t 4 gilarang)t)e, (2.55)
2

The rotating wave approximation (RWA) allows us to neglect the fast oscillating terms, i.e.
el@*weglt since they will average to zero over the time period of interest. If we define a detuning
A = w — wey, set of equations (2.54) — (2.55) can be rewritten in the next form:

dc Q .
g _ ;" LiAt

aat Lée Cg) (2.56)
Ce .30 _int

Fra i > e .. (2.57)

If we substitute c,e ™A and c.e*2" with &, and ¢,, respectively, we get the following matrix form
for the previous set of equations:

Sl2]=50a Al (259)

With this we can fully describe a behavior of the system with pure states. In the case of a resonant
transition A = 0, for a system with initial conditions ¢,(t = 0) = 1 and ¢,(t = 0) = 0, with all the
population in the ground state, the result of the equation (2.58) is:

3 Ot
Cq(t) = cos (7), (2.59)
Qt
&,(t) = isin (7) . (2.60)
The state populations can then be calculated:
Qt
Pyg |cg(t)| = cos (2 ) (2.61)
Qt
pee = 16O = sin” (). (2:62)

However, as it was already mentioned, if we want to include random events in our calculation, we
have to apply density matrix formalism.

_ [ Cgce*] _ [Pag Pge
p= [cecg* CeCe™]  LPeg Pee]' (2.63)
Elements of the Lindblad operator can be introduced easily and intuitively. We define decay rate
from the excited state as I'. Population decaying from the excited level will repopulate the ground
level of an atom. Other decoherence mechanisms are included as presented in [128]:

r
I‘pee - Epge
L = r . (2.64)
- Epeg —I'pee
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From the master equation (2.42) we obtain set of coupled differential equations governing the

evolution of the system, so-called optical Bloch equations (OBES):

d i, B
apgg = (pge - peg) + I'pee,
d i, N
apee = _7 (pge - peg) —Ipee,
d iQ r . \._
Epeg = _7(pgg - pee) - (E - lA) Peg,

d i r\._
Epge = 7(.05]9 - Pee) - (E + lA) Pge-

(2.65)
(2.66)
(2.67)

(2.68)

With pge = pgee ™™t and f,; = pege AL, The energy is conserved through the condition p,, +
pee = 1. In addition, off-diagonal elements of a density matrix are complex conjugate p., = pge.
OBEs present one of the most commonly used tools in modelling the behaviour of optical quantum

systems.

On the Figure 2.5 solutions of the OBEs are presented. The populations of the ground and
excited states, and coherence are calculated for a Rabi frequency of Q = 2m MHz, a detuning A =
0. We can observe oscillatory behaviour due to Rabi oscillation at frequency Q. As a result of
decay, eventually, density matrix elements reach so-called steady-state. Looking at the Figure 2.5,
we can also come to the conclusion that transmission of the coupling light, described by the

imaginary part of the coherence element, oscillates with Rabi frequency.

1 Population of a ground state
Population of a excited state
08| Coherence

P

t[us]

Figure 2.5 Transient solution for the states populations and the coherence, as a function of time.

In the simple cases, as this one, one can derive analytical solutions for the states populations and

. . d
respective coherences making d—‘; =0:

_ )
Pgg = 02 2

2 4 2%
A+2+4

2 2
Q—+4(F—+A2)

19

(2.69)



QZ

pee = ;;2 FZ ) (270)
2 - 4
A+ 5+
r2 2
Peg = i = (2.71)

(5 +ia) (92 +o+ ZAZ).

On the Figure 2.6 the results for imaginary and real part of the p,, for a steady state solution are
presented. Imaginary part gives us information on the absorption/transmission and we can notice it
has a Lorentzian shape as a result of a homogeneous decay. Real part of the coherence is dispersion.

Im[p,,]

1.5} Refp,, 1| -
!
G,
° /
2 05F
@
(8]
-
[=] 0r
Q

-0.5

-l I i \

-50 -25 0 25 50

A [MHz]
Figure 2.6 Real and imaginary part of the coherence as a function of detuning.

2.2.4. Three-level A system

Characteristic energy structure of alkali atoms enables the researches to realize experiments
on different atomic scheme. For decades, special intention was directed to three-level schemes, like
lambda, ladder and V type energy structures. Probably, the mostly studied is A scheme. In this
section, a short overview of such type of scheme is given. Extensively studied effect of
electromagnetically induced transparency in alkali vapour is often realized on the three-level A
scheme, such as one presented on the Figure 2.7. Again, we go back to the master equation (2.42).
Now we have two electrical fields, coupling and probe, that interact with the atomic medium:

E.(t) = E pecos(w,t), (2.72)
E,(t) = E,gecos(wyt), (2.73)

where coupling beam is acting between the levels |2) — |3), while probe beam couples levels
|1) — |3) as depicted on the Figure 2.7.

For this system, density matrix operator has a following form:
P11 P12 P13
p = |P21 P22 P23]|. (2.74)
P31 P32 P33
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As in the previous case, with two-level system, we need to define Hamiltonian H of the system, and

Lindblad operator L. The process is analogous to the one performed for the two-level system. The
atomic Hamiltonian is:

Hy = how1|1)(1] + hw,|2)(2] + hw3|3)(3]. (2.75)

|1)r wq

Figure 2.7 Energy scheme of a three-level A system.

while interaction Hamiltonian has the next form:

h . .
Hipe = —E(Qp|3)(1|em1t + Q.]3)(2]et42t). (2.76)
Epdys Ecdy3
Here, Al = (l)p — W3 + W1, AZ = W, — W3 + Wy, Qp = —T and ‘Q‘C = —T The tOta|
Hamiltonian is then given by:
0 0 Q,
h
H=-3 0 2(0,-9,) Q. (2.77)
Q, Q. 20,

As a next step, we want to define the elements of the Lindblad operator, in order to include decay
and dephasing effects. From the excited states, we have radiative, spontaneous decay I' to two lower
levels. In the radiative decay limit, nonradiative decoherences y;; are equal to the half of radiative

decays from respective state, y;; = %(yi + ¥;). They also include the dephasing rates due to the
collisions.

Finally, one can obtain set of OBEs for A system:

dff =I5p22 + I3p33 + éﬂp (P21 — p12), (2.78)

chz: = —T2p22 — %Qc(l)u — P12)s (2.79)

2t = TsPas 50023 — p32), (2.80)

dcfl);z - _%Qcﬁm + %Qpﬁ” o (}/21 — (A, - A1))ﬁ12' (2.81)
dc[l);3 - %Qp(ﬁgﬁ — P11 - %Qcﬁlz — (Y31 + i81)Ps3, (2.82)
d§;3 = %Qc(ﬁ% — Pa22) — %Qpﬁu — (Y32 + i82)Pa3. (2.83)
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If we make an assumption of a strong coupling beam (weak-probe regime), atoms will be trapped in

the state |1). Along this statement, we can write:

P11 = 1, Py = P33 = 0.

Previous set of the equations can be further simplified to:

dp i ) ~
d;z = _E‘Q‘C,D13 - (V21 —i(4; - Al))plz'
dp [ i AN~
d;3 = —E.Qp - E.Qcplz - (V31 + lAl)pIS'
dp i . ~
d;3 = —Eﬂppm — (Y32 +1A3)P3.

For a steady state, we can obtain simple analytical solutions:

- Q.

P12 = — ; .
4(iyy + Ay — A (=iys +Ap) + ch

~ 2()’21 —i(A; — A1))Qp

P13

- 4(ysy + 10 (=iya — Ay + Ay) — Q%

(2.84)
(2.85)

(2.86)

(2.87)

(2.88)

In Figure 2.8 we have plotted the absorption and the dispersion of the probe, as a function of a
probe detuning A, for A, =0, y,; =0, y3; = 3 MHz and Q. = 10 MHz. On the Figure 2.6, we
have seen how these profiles look when only probe is applied, with Lorentzian profile of the
absorption. However, when the coupling beam is introduced, a sharp dip in the absorption profile

appears. This is a distinctive feature of EIT effect.
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Figure 2.8 Absorption and dispersion a probe beam in EIT three-level A scheme.
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3. Four-Wave Mixing as a Phase-Insensitive Amplifier —
experiment and semi-classical description

In this chapter we present both experimental and theoretical study of nonlinear effects of
Four Wave Mixing (FWM) in hot potassium vapour. We have demonstrated and studied the
conditions of the system, when it behaves as a phase-insensitive amplifier.

We start by introducing nonlinear effects as a basis for understanding the special photon-
light interaction when strong pump and weak (seed) probe beams interact with alkali atoms
contained in alkali vapour. A description of a FWM effect on a double lambda scheme in K follows.
In the next section, we have modified the set of optical Bloch equations, derived in the previous
chapter for a three-level lambda scheme, by adding one more level, for the better description of a
new system behaviour. This was a backbone of the theoretical study that followed. Non-perturbative
numerical calculations of optical Maxwell-Bloch equations have been performed for a double-
lambda system in potassium, in order to derive the atomic polarization and then amplitudes of
electric fields of propagating electromagnetic waves, the pump and the twin beams - probe and
conjugate, as the products of FWM. To the best of our knowledge this is the first and only fully
numerical model developed and implemented for this type of the study. We have focused special
intention to the discussion of a relevance (and inclusion) of Doppler effect on the obtained results.

Another section of this chapter is dedicated to the description of experimental setup, used
for this study. Description of important instrumentation and optical elements, and their roles in the
experiment, are given.

Finally, we presented the obtained experimental and theoretical results, compare them and
discuss their agreement. In order to get a deeper insight into the studied effect, we performed
comprehensive study of the results of gains of twin beams under a large span of FWM parameter.
This highlighted the complexity of the studied system, but also gave us a basis and motivation to
extend our study to the usage of FWM in K as a potential source of relative intensity squeezed light.

3.1. Nonlinear optics

An optical field, incident on a dielectric medium, induces a dipole moment and polarizes the
material. In that case we can define the induced polarization of a system as a dipole moment per
unit volume. Usually, for the isotropic mediums, it is linear, and can be calculated from [48]:

P = gyxE, (3.1
where €, 1s a permitivity of a free space, and E is the applied electric field. y is the property of the
dielectric medium, called the susceptibility. This induced polarization results in the newly generated

light that, in addition, can interfere with the incident light. This interaction is described by the Eq.
(2.32), derived in the Chapter 2, that describes the behaviour of electromagnetic field.
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The first order susceptibility is related to the index of refraction of a medium and its absorption as:

=41+ Re(y), (3.2)

a=1Im(y). (3.3)

However, in research work, we are mainly interested in the nonlinear effects. They are a
result of the higher order terms in the Taylor expansion of the optical polarization. For certain
materials, and for sufficiently strong optical fields, the higher orders of optical susceptibility, i.e.
polarization, appears and become relevant, and we can write [48]:

P=g[x® +xPE+ y®FE2 + - |E = egxy WE + [egx PE? + goyPE3| = P+ Py,  (34)

where y™ is the dielectric susceptibility tensor of n-th order. It is dimensionless and dependent on
the material parameters. The nonlinear components of the polarization contribute to a variety of
nonlinear processes, generating light at new frequencies.

In general, for a majority of media, the susceptibility becomes increasingly small with
increasing order, and, hence, negligible at low and moderate amplitude (intensity) of interacting
fields. In order for these higher orders to be comparable to the first order nonlinearity, as already
mentioned, high field intensities are necessary. In some cases, in crystals that are lacking inversion
symmetry, second order nonlinearity, y® becomes relevant and second order polarization
component becomes:

PNL = on(z)EZ. (35)

Let us consider the interaction with a second order nonlinear material with the total electrical field
presented with:

E - El COS(klz - (Ult + (pl) + Ez COS(kzz - (l)zt + (pz) (36)

Substituting Eq. (3.6) in Eq. (3.5), we can obtain the following term describing the nonlinear
polarization [48]:
Py, = £y @ E? e (E1 cos?(k,z — wit + @1) + E,2cos?(kyz — wot + ¢,) )
+2E,E,cos(kiz — w it + @1) cos(kyz — wyt + @y)

1
=gy @ (E E? cos((klz —w t+ (pl))

1
+ EEZZ COS((kzz - a)zt + gﬂz))

+ ElEzcos((kl +ky)z— (w; + wy)t + (o + (pz))
+ E1E2COS((k1 - kz)Z - ((1)1 - (,l)z)t

+ (o1 — ‘Pz)))- (3.7)

From Eq. (3.7), it is evident that new frequency components can be generated. With the newly
obtained oscillating term at the sum of the frequencies, we are taking about the effect of the sum-
frequency generation (SFG). On the other side, the process called difference-frequency generation
(DFG) implies that the new frequency is generated at the difference of the input fields frequencies.
There is also an additional field component, oscillating at 2w. These media are said to support
second order nonlinear effects (SHG), like parametric down conversion and frequency doubling
effect [48]. Nonlinear crystals were common choice as a source for a generation of photon pairs,
which found a wide range of applications, as we were introduced to in Chapter 1.
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On the other hand, in the mediums which are centro-symmetric, like atomic vapour of
interest in our work, even order susceptibility is zero . The generation of nonlinear effects is result
of third-order nonlinearity, i.e. third-order polarization:

PNL ES 80X(3)E3. (3-8)

These effects are often called wave mixing processes. Some of the examples are — third harmonic
generation, the intensity dependent index of refraction (Kerr effect), self-phase modulation and
cross-phase modulation [48]. One of the alternative approaches to generate previously mentioned
photon pairs is third-order nonlinear effect, four-wave mixing. It can be generated in different
mediums, like alkali atoms, silicon waveguides, and photonic crystal fibres.

In Figure 3.1, some of the nonlinear effects that are mostly used in research are schematically
presented.

&
&

SFG, y'% DFG, x%
Wz W+ w, W2 W1~ Wy
(a) (b)
.~
Wy — Wy
o SFG, y% — Wy TFG, x3
1 b v 2{"-':'1 Wy 3'::"-"1
(c) (d)
Wy Kerr effect, Wy
Wy ') W TFG, x3
W4 n.,x W, W3 Wy = Wy+W,- Wy

(e) (f)

Figure 3.1 Schematic diagrams for second and third order nonlinear effects. (a) SFG; (b) DFG; (c) SHG;
(d) THG; (e) Kerr effect; (f) FWM.

3.2. Four wave mixing in potassium vapour

Within this thesis, we are focused on the third order nonlinear effect called four-wave
mixing in alkali atomic medium. This effect presents the interaction of three light fields within
nonlinear medium, described with third order susceptibility, y®). Characteristic of FWM is the
interaction of two pump photons and a probe photon, carefully tuned to atomic transitions of alkali
atom, that produces new photons at the frequency of the probe laser, and new photons at the new
frequency. This fourth beam involved in the FWM is commonly called conjugate. Evidently, for the
process to be efficient the pump beam ought to be very strong, The probe, also called seed beam, is
week, orders of magnitude below the pump intensity. In addition to the generation of the beam at a
new frequency, amplification of the probe and conjugate beams is also distinctive for this process.
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This feature makes FWM specially interesting and perspective when it comes to its possible
applications.

In general, there are two types of FWM processes — spontaneous and stimulated. When we
discuss the spontaneous FWM, we consider the case when two pump photons produce two time
correlated photons, probe and conjugate (or signal and idler) [129]. When there is a third,
seed/probe beam at the input of the atomic medium, the process is considered to be stimulated,
Figure 3.2. The latter one is in the focus of our study.

Pump, w
' d Atomic cloud,

X(S)

(a) (b)

Figure 3.2 Schematic presentation of (a) spontaneous and (b) stimulated four-wave mixing process.

Four Wave mixing in Potassium

We study FWM that is realized on the D1 line of 3K [122], as presented in the Figure 3.3.
The process involves four levels in a double A configuration, both hyperfine sublevels of the ground
state and the sublevel of the excited state. Hyperfine levels in alkali atoms. of 4S;,,, F =1and
F = 2 are noted as levels |1) and |2), respectively, while level |3) is 4Py /,, while with level |4) we

define virtual detuned state, for the easier explanation and modelling of FWM. The hyperfine
structure of the excited level is neglected compared to the ground state splitting.

1)

Figure 3.3 Four wave mixing using a double A scheme at D, line of potassium. HFS — hyperfine
splitting, A — one-photon pump detuning, § — two-photon probe detuning.

The lower lambda scheme consists of the pump photon that couples the level |1) to the level |3),
with the one photon pump detuning A. The other leg of the first A scheme is the probe photon that
stimulates Stokes scattering from the level |3) to the level |2), with two-photon probe detuning §.
The pump is sufficiently strong to drive the off-resonant transition |2) — |4) in the upper A
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scheme. By the way of stimulating anti-Stokes scattering, the conjugate photon closes the upper
scheme. The total detuning of the level |4) is (de - a)p) — (w4 — w1), where w, — w; is angular
frequency of the transition [4) — |1), while w; and w, are pump and probe frequencies,

respectively. We introduce level |4), which is degenerate to the level |3), and like level |3), is
weakly coupled to both level |1) and level |2) because of a large detuning.

Phase-matching condition

FWM is known to be a parametric process, which means that its final state, after the
interaction, is the same as the initial one, before the process occurred. Alongside with this statement
goes the following one - the energy and momentum have to be conserved.

Conservation of energy, that requires that energy of incident pump photons must be equal to
the energy of output photons, probe and conjugate, (can be written in terms of pump, probe and
conjugate frequencies as:) follows from:

204 = wp + W, (3.9)
where wg, w, and w, are pump, probe and conjugate frequencies, respectively.

The momentum conservation is fulfilled through the phase matching condition [130,], described by:
2ky; = ky, + k.. (3.10)

Here, ky,k, and k. are the wave vectors of the respective beams inside the medium. When
propagation of the beams is collinear, as in Figure 3.4(a), this condition is fulfilled. However,
spatial directions of the beams in the experimental conditions are usually as presented in Figure
3.4(b) and (c). When this is the case, as it was already noted by the others [131], a change of the
refractive index for the probe beam has to be included, and the modification of a phase-matching
condition is required, since, as demonstrated in Figure 3.4(b):

As it will be demonstrated in the following section, angle 6 is one of the parameters of the system
that has to be considered and adjusted for the optimal efficiency of the FWM process.

As a result of a described wave mixing inside the alkali vapour, when the strong pump beam
and weaker probe are sent through the heated atomic cloud, in co-propagating direction with an
angle 6 relative to each other, we will observe amplified probe and newly generated conjugate beam
on the opposite side, travelling at angle 26 with respect to each other, Figure 3.5.
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(a) (b) (c)

Figure 3.4 (a) Phase-matching condition in collinear beams configuration, (b) Phase mismatch -
when probe is at angle 6 relative to the pump direction, (3) Phase-matching condition is satisfied when the
change of the index of refraction seen by the probe, n,, is included.

Analytical description of FWM process by the means of x® tensor elements

Full analytical description of this process through calculations of respective susceptibilities,
together with the use of propagation equations for predicting probe and conjugate behaviour, was
previously developed [131] and implemented in the study of a different alkali specie. We have
employed this approach for initial calculations and predictions, when we considered potassium as a
potential medium for the efficient four wave mixing source.

The process of FWM is described with a system of equations [131,132]:

0 ik, i
&Ep = Z—EOPp((l)p)e pT (312)
d _ ikC —ikyr
55 B = Z—EOPC(wc)e (3.13)
with
Py(wp) = €ox,, (wp)Ep + eoxpc(wp)EIeiAk'r (3.14)
Pe(@c) = €0X oo (W)Ec + €0X o (o) EpetakT. (3.15)

Here E, and E_. are probe and conjugate fields, respectively. Susceptibilities y,, and y.. are
effective linear responses of the atomic medium to the probe and conjugate beams. As previously
noted, they are related to the absorption and dispersion. Susceptibilities y,,. and y, are called cross
terms, and are responsible for the cross-coupling FWM process. Assuming that the pump is
undepleted in the vapour, and slowly varying electric field envelopes one can obtain following set:

d ik  inke
57 Ep = TP(pr(wp)Ep +)(pc(wp)ECelAk r), (3.16)
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Figure 3.5 Simplified schematic of the FWM process for co-propragating pump and probe seed beams,
crossing at the angle 6 inside the alkali cell.

d ik ¥ ink
- Ee = 5 (X @B + Xy (@) Epei®kT). (3.17)
Susceptibilities are calculated by:
iN|dy31%Ya1 (V21 Va3 Y21+ Vaz | 4V21Va3
S Y R ST S - + , 3.18
pr thD* :2 0-2,4- ;1 0-1,3 y:]_ |Q|2 2,3 ( )
iN|d14|*Y32 (Va3 V21 Y21 +Vaz | 4Y21Va3
_ Yar , 3.19
Aee €ohD Yaz T2a ¥ Y31 13 Y32 * |2] 14 ( )
iNd14d230%Y51 (V21 Yi3 Y21+ Va3
= O3+ —0y, +|——— , 3.20
Ape €ohD*|Q|? V31 %13 Va2 924 Ya1 T ( )
iINd14d230%Y3; (Va3 Y21 Y21+ Va3
= — + — +|— , 3.21
Aep €ohD|Q|? Y31 1.3 Va2 24 Va2 724 ( )

where N is the atomic density, d;; is atomic dipole moment for the transition j — i, o;; is the
population difference between the levels i and j, obtained by [131]:

|}’31|2
O12 = O0q4 = , 3.22
13 = 914 = 102 1 [yas 2 722 (3:22)
|V4»2|2
Oyz3 = 0y4 = , 3.23
23 = 924 =100 ¥ [y P + Iyaal? (3:23)
and
. 4Y21Y43Ya1Y32
D=1 +Vaz3) Va1 t¥32) + ——5—— (3.24)

|22

In the previous equations () is the pump Rabi, y;; are complex decay rates, which are for potassium
D1 line, such on Figure 3.3, defined as:

Va3 = IHFS —, (3.25)
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Yaz = i(HSF + A — 8) —y/2, (3.26)

Yar = ((HFS + ) —v/2, (3.27)
Y32 = i(A—68) —v/2, (3.28)
Y31 =i —vY/2, (3.29)

Y21 =16 — 7. (3.30)

with the spontaneous decay rate y and ground state decoherence ..

Finally, we are interested in the effectiveness of the FWM process, described by the
amplification of the probe and conjugate beams. In order to determine the gain due to FWM
process, one has to solve the propagation equations (3.12 — 3.13). With the assumptions of weak
probe beam at the input of the interaction medium, E,, o, and no conjugate, E; o, = 0, one can obtain
following solutions [131]:

E,(L) = E,gett (cosh({L) + ?sinh((L)), (3.31)
Bcp
Ex(L) = EploeALYSinh((L). (3.32)

Here, L is the medium length, and

By — Bee + ilk

A= , 3.33
- (333)
B,, — B.. — iAk

B = PP cc , (3.34)
2

{ = _chBcp + BZ: (335)

ixpik ]

ixsik
BCi - Xczl Cl l = p; (o (337)
with

Ak = 2kq —nyky, cos 8 — k. sin 6, (3.38)

which follows from the geometric configuration as presented on the Figure 3.4(a), for n, =

fl + Re()(pp).

Now, gains of the probe and conjugate can be calculated by:
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. B[

= , (3.39)
14 Eg,O
E.(L)|?
G _ EWI . (3.40)
c Ez
p,0

3.3. Maxwell-Bloch equations for double-A system

Theoretical study, complementary with the experiment, gives us an additional tool for
gaining deeper understanding of phenomena of interest. In addition, when studying effect like four-
wave mixing, where there are multiple parameters whose values can be varied in a wide span of
values, theoretical model could significantly ease the search for optimal system parameters.
Following the theoretical descriptions of two- and three- level system in Chapter 2, we now turn to
the analysis and discussions of a atomic system that employs four energy levels in double-A
configuration, as the on described in previous section.

There are different theoretical studies on FWM that were published, for degenerate and
counter-propagating beams [133], as well for non-degenerate in co-propagating configuration
[131,132]. In the later, nonlinear parametric processes in FWM were studied in a double A
configuration, either with resonant (larger contribution from CPT and EIT phenomena) [132] or off-
resonant pump frequency [132], in hot gas vapours or in cold atoms [133]. There are different
approaches to model complex processes in FWM. They depend on the intended applications of the
system, which can be parametric gain, quantum-correlations of twin beams, squeezing and
entanglement, slow and stored light, i.e. whether classical or quantum properties are of interest. For
work presented in this part of the thesis, most relevant are models that analyse CW regime and
calculate gains of twin beams. In most models, the treatment is based on analytical solutions, after
perturbation theory and number of approximations being applied [133,134]. In the seminal paper
[132], pump and probe are resonant with atomic transitions with conditions for EIT, while cross
susceptibilities are enhanced by coherence in the ground hyperfine levels. Within our work, we
have developed nonperturbative, numerical model based on optical Maxwell-Bloch equations [65].
With the use of optical Bloch equations, we were able to calculate atomic polarization, and then
applied the obtained results in the propagation equations to get the results for the amplitudes of the
propagating fields of pump, probe and conjugate.
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Figure 3.6 Calculated cross-susceptibilities for FWM process in Potassium. (a) (a),(b) N = 3 x 102 cm*®
(120 °C) and Figure 3.6 (c),(d) N = 1 x 103 cm™ (140 °C). (a),(c) A= 0.7 GHz and (b),(d) A= 1 GHz.
y =6 MHz,y. = 1.2 MHz

We follow the same procedure, as described in Chapter 2, to arrive to the desired set of
equations. We want to solve wave propagating Equation (2.32).

72K 1 0%E _ a%p 341
2oz Mgz (341)

Atoms are simultaneously illuminated by the pump, probe and conjugate. Hence, they experience
total electrical field that can be approximated as a sum of three monochromatic fields:

E= z e, EMeiwtrikir 4 ¢ (3.42)
i=d,p,c

Here, e; is polarizing vector, El.(” are slowly varying approximations of the fields amplitudes, with
positive frequencies. We can also define a polarization in a similar form:

P =epMeiwtrikir 4 ¢ ¢ (3.43)
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with the assumption of SVA, we have:

)
OE!
|k EC| > ——. (3.44)
)
OE!
| E| > —= (3.45)

After substituting (3.42) and (3.43) into Equation (3.41), we obtain the following form for the
equation of propagation:

aEl.(+)+1aEi(+) _ K 246
0z ¢ Ot _lZEOi ' (3.46)

Next, we define the total Hamiltonian of the system presented on the Figure 3.3 as:

4
H=Hy+ Hyy = 2 hali)i] —d - E(r, ©). (3.47)

=1

Again, H, is unperturbed Hamiltonian of the system, H;,, is the interaction Hamiltonian, hw; is
the energy of level |i), and d is electric atomic dipole moment, with off-diagonal elements equal to
zero for the forbidden dipole transitions.

Dynamics of the atoms is described with density matrix:

P11 P12 P13 Pia
P21 P22 P23 P2a

P=1ps1 P32 Pz Paal (3.48)
Pa1 Paz P43 Paa
Its behavior is governed by the set of optical Bloch equations:
B _limp+L=-L[A,51+5E+R 3.49
ot~ pLUPITEETRULP ' (3.49)

where the Lindblad operator is presented as the sum of two terms, of which the first SE denotes the
spontaneous emission from the excited states, and second R is the relaxation due to atom transit
time induces losses and collisional dephasing. Their matrix forms are defined as follows:

SE
[ I3+ 153 Lia+To,
13033 + 11,4044 0 - TP13 - TP14
L3+ 13 Lia+T04
0 [53033 + 154044 - T.Ozs - TPM
T T3 +Tys I3+ 153 L3+ +T,+10
- TP& - szz —I13p33 + I3 3033 - 2 P34
[14+ T, Liat+Tos L3+ s+, +1h,
- TPM - TFMZ - > Pa3 —T1 4044 — 12 4P44

(3.50)
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~ . _ 11 . _
R=-y [p — diag (EIE' 0'0)] - ydeph[p - dlag(pn' Py P33 p44)]' (351)

Here, T; ; is the decay rate from level |) to level |i), with T; =T} ; + I3 ,. v is spontaneous decay
from the excited state and y 4,5, is dephasing decay rate.

After substituting Equation (3.47) into Equation (3.49), we obtain fast oscillating terms in p;;, due
to fast oscillating terms in laser fields description. Then, we can make a substitution:

pij = pije” @ut~kym), (3.52)

where w;; are angular frequencies defined as: wq3 = Wy = Wg, W23 = Wy, W14 = W¢, W1y =
W13 — Wy3, W34 = W14 — Wq3, aNd w;; = —wj;. k;; are sums and differences of respective wave
vectors: ki3 = kyy = kg, k3 = ky, kig = ke, kiz = ki3 — K33, K3s = kiy — kq3 and k;; =
—k;j;. In order to simplify the obtained equations, one can apply rotating wave approximation to get
rid of the terms that oscillate at the sum of the frequencies. Resulting system of Bloch equations are
now time-independent, with some spatially dependent terms oscillating with e*2¥? where Ak =
2kg —k, — k..

Now, we get the set of OBEs for double A system:

dp11 1 i * *
Y (E - ,011) + I 3033 + 154044 + E(E(gﬂ dpss — E§+)d.013 + Ec(+) dpsr — Ec(+)d,014).
dp2, 1 L (s ) (+) +)
i 14 (E — Pzz) + 123033 + 154044 + %(Ed dps; —E; "dpys + E; 7 dps, — E; dP24)’
0% o g+ Typss + i(E(J’)d — E{dpay + BV dpys — ESY dps, )
dt VP33 3P33 7 \Fd P13 d P31 p 4P23 p P32 )
Was o Tipee + i(E(+)d —E®"dp,, + EMdp,, — ES'd )
dt Y P44 4P44 7 \Fe P14 c P41 d aP24 d P42 ),
dp12 . l * i i *
dt = _(V + Vdepn + 15),012 + 7 (EC(1+) dps; — elAkZEc(z+)dpl4 + elAkZEc(+) dpsy — E;(;+)d,013);
dpis I . L () (+)+ ()
FTEi <Y + YVdepn + > + lA) P13t E(Ed dpss —E; " dpyy + Ec7 dpas — Ep dp12);
dpi4 L, .
PL— (1 + Yaepn + 5+ (GHFS + 1)) prs
i * i * * *
+ 7 (E§+) dpss — e lA""ZEé” dpz + Ec(+) dpas — Ec(+) dp11),
dpzs3 I3
- (y tVaepn + 5 + lA)ng
i * * —i * *
+ %(E;(;H dpss — Eéﬂ dpy1 t+e lA"ZEé” dpys — Ec(+) dpzz).
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dpa4 2
o —<]/+]/deph+?+l(HFS+A) P24
+ ﬁ(Eéﬂ dpss — Eéﬂ dp,, + elAszzg+) dpss — elAkZEC(+) dpll)’
dp L I,
P _(y+ydeph to o l(HF5+A—5)>P34

i . . . X
+ 7 (Eéﬂdp“ - e_lAszéﬂ dps; + elAkZE;gﬂdpm - Ec(+) dp31),

(3.53) — (3.62)

We are interested in the ratio between the intensity of the probe we send to the medium and
the intensity of the one leaving it, i.e. gain. In order to obtain this value, we calculate the
propagation along the z axis and temporal evolution of the beams interacting inside the vapor by the
set of nonlinear equations for the slowly varying envelopes of these three fields:

((’)+1a)15(+)—'kNd(~ + Pa1) 3.63
9z " coz) " —1260 Paz T P31), (3.63)
(a+la)E(+)—'kNd~ 3.64
0z cadz) P _l260 P32 (3.64)
(a+1a)5(+)—'kNd~ 3.65
9z " caz) e T loe, P (3.65)

where N is the atom density.

Our numerical model is without approximations needed for instance for analytical solutions,
but its accuracy, i.e., agreement with the experiment depends on carefully chosen parameters, like
the ones describing the dephasing mechanisms, types and corresponding values. In comparison with
previous models for alkali atoms [131], we have included Doppler averaging and additional term
that corresponds to the dephasing mechanisms that could be due to the atoms collisions or transit
through the cross beam section. These additions make our model more appropriate for modelling
hot atomic system and give us an additional tool to study influence of Doppler effect in such
systems. In order to deal with Doppler averaging, we divide atoms in n groups, with each having
different z component of the velocity v,, for which Maxwell distribution is given by:

mv,>

e 2kgT, (3.66)

f,) = kT

Due to the Doppler effect, each of these groups differ by the effective detuning. For the group of
atoms with the velocity v,, observed angular frequency is:

1-p
1+8

Wo =

ws, (3.67)
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where w, is the angular frequency of the source, and B8 = v,/c. The frequency shift alters one
photon detuning, A = A + Ap, which is consequently defined individually for each group of atoms,
where Doppler shift is Ap= w, — ws. Two photon detuning remains the same, since the pump and
probe are nearly copropagating. Since density matrix is dependent on v,, in order to obtain the
solutions, we have to solve n sets of Bloch equations. In addition, propagation equations are also
modified in the following way:

(8+16)E(+)_.kdzN (~ (0.) + Bus( )) s
0z coz) ¢ _1260 (V2)(Paz (V) + P31 (v,)), (3.68)
Vz
(a+1a)E(+)_'kdzN z 3.69
dz cdz) P 1260 (vz)p32(vz)' ( } )
Vz
Jd 10 kd
a2\ ~
(aZ+ CaZ) E; lZEOZN(Uz)p41(Uz)- (369)
Vz

Finally, we are able to calculate the gains of the probe and the conjugate from the ratio of the beams
amplitudes at the exit from the vapour to the probe amplitude at the cell entrance.

3.4. Experimental set-up

In this section we describe our experimental setup, and give an overview of the main parts
of the experiment and the components. A schematic of an experiment, we used in the study of
FWM, is presented on the Figure 3.7. This setup was also used in previous research with potassium,
done by our team [124]. As a light source, we use single high power, narrow line Ti:Sapphire laser
(Coherent, MBR 110 [135]). In the experiment, it is split in two by a 90:10 beam splitter. Stronger
beam is used as the pump, while the weaker fraction is acting as the probe beam. Probe is sent
through two AOMs for the probe frequency detuning with respect to the pump frequency, summing
two frequency offsets to the total that is close to HFS of the K ground state. To keep probe spatially
stable during fine detuning, the second AOM had to be in a double pass. Thus, we vary two-photon
detuning by changing the probe frequency. With the use of the AOMs, we are able to shift the
frequency of the beam, but still preserve these two interacting beams coherently in phase. On the
other hand, one-photon pump detuning is changed by tuning the pump, i.e. laser frequency. The
pump beam is sent through a set of lenses, to obtain the pump diameter of 1.1 mm. The probe waist
is set to be 0.75 mm inside the cell. Two beams are orthogonally polarized by the use of the lambda-
half waveplates, and recombined on the polarizing beam cube before entering the cell. They enter
the cell at the small angle 6, which can be adjusted by changing the probe and pump directions with
the two entrance steering mirrors, placed before the combining cube. With the pump beam
redirected with another polarizing beam splitter behind the cell, two beams emerge - probe and the
frequency up-shifted beam (conjugate). Both beams are detected with the pair of photodetectors. We
get the gains of the probe and the conjugate from the ratios of measured powers of probe and
conjugate beams behind the cell to the probe beam input power. Radius and shape of beams behind
the cell are monitored with a CCD camera.
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Figure 3.7 Scheme of the experimental setup for FWM, M - Mirror, L - Lens, PBS - Polarization beam
splitter, AOM - Acousto-Optical Modulator, AP - Aperture, PD — Photodetector.

Light source

Single-frequency Ti:Sa MBR laser can be commonly found as a part of the experiments in
quantum atomic physics in the laboratories all around the world. Depending on the power of the
pump laser, it can produce up to the 1500 mW of the output power. Together with this high
obtainable power, its broad tuning range, from 700 nm to 1000 nm, makes it a powerful
experimental tool, especially compared to the diode lasers, which are often used. The schematic of
the MBR, and its cavity are presented on the Figure 3.8. The active medium is a Titanium:Saphire
crystal placed inside the ring bow-tie cavity, with Brewster cut front and back to minimise the
reflection and support horizontally polarized light inside the cavity. The crystal holder is water
cooled. The working wavelength is selected by rotating birefringent Lyot filter and intracavity thin
etalon, which are indicated in the Figure 3.8. The etalon is mounted on a piezo controlled
galvanometer that can be controlled by the MBR electronic box, being an additional way of
stabilizing laser frequency and locking it to the desired one. As presented on the Figure, MBR
comes with the external reference Fabry-Perot cavity. MBR design enables us to lock the laser
cavity to this external stabilized reference cavity by feeding back to the signal to the tweeter mirror
M3. In the described experimental setup, we have used VERDI V-5, as the pump source, which
provide us with 5.5 W at 532 nm. With this pump, we were able to obtain a total of ~550 mW @
770 nm.

Frequency stabilization — laser locking

As already stated in the Chapter 2, due to the Doppler broadening, hyperfine transitions at D1 line
of K are not resolvable, even at the room temperature. However, there are different techniques that
have been developed in order to overcome this issue. In our study we employ method called
saturation absorption spectroscopy (SAS). Schematic of the setup we use for SAS is shown on a
Figure 3.9(a). Two counter-propagating beams overlapping inside the cell are used. A small portion
of the output laser power is sent to the cell as a pump beam. From the opposite direction, trough the
cell is sent the another attenuated beam, called probe, which is used to measure the atomic
saturation. The probe intensity is recorded by the photodetector. In this configuration, a standing
wave is formed by the probe and pump, in which potassium atoms are moving. When the frequency
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of the pump is resonant to one of the transitions, pump is being absorbed and it saturates the
transition. As a result, the absorption of the probe is reduced in a narrow frequency range, which
leads to the appearance of so called Lamb dips. In this manner, upon subtracting the Doppler
background, we can obtain the saturation absorption spectrum as one shown on the Figure 3.9(b).
With the resolved transitions, we are able to lock the laser to the desired one, providing frequency
stabilization necessary for performing the further experimental studies. As one can observe, besides
hyperfine transitions, other lines are presented in the measured spectrum. Namely, for the atoms
with the zero velocity hyperfine transitions are obtained. However, due to other velocity groups,
more dips appear. These are called cross-over resonances.

Pump Lenses n M1 Ti:S Crystal

Py

Laser Output

]
M3 1
Piezo-mounted Etalon Brewster Plates Output Coupler Beamsplitter
Mirror m Mirror

¥ Mirror

(b)

Figure 3.8. (a) Optics schematic of the MBR-110 Ti:Sapphire laser, and (b) the image of its optical cavity,
with main components labelled: 1 — stable and robust monolithic resonator, 2 — piezo-mounted mirror that
ensures a tight lock corresponding to a very narrow linewidth, 3 - miniature optical diode ensures
unidirectional operation, 4 — thin etalon than ensured single-mode operation using servo-lock to eliminate
mode-hops, 5 — high-finesse, temperature-controlled and sealed reference cavity used for the laser locking,
achieving relative linewidths as low as 10 kHz, 6 — galvanometer-mounted tilting twin Brewster plates —
enables scanning in excess of 40 GHz, 7 — Ti:Sapphire crystal provides a wide tuning range from 700 nm to
1000 nm, 8 — birefringent filter as a combination of three birefingent plates (Lyot filter) enables smooth
tuning over a broad range, 9 — mirrors, 10 — output coupler. (Figures and data are provided by Coherent

[135])
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Figure 3.9. (a) Experimental schematic of SAS setup. (b) Measured transmission spectrum of the probe
beam.

Control of the probe detuning

It was mention above that we use an AOM for control of the probe frequency. The acousto-
optical modulators are devices which can be used for frequency, amplitude and phase light
modulation. Its operation is based on diffraction of light passing through the crystal [136]. AOM
consists of a crystal and a piezo electric transducer, as shown on a Figure 3.10(a). Its operation is
based on the modulation induced by the change of the refractive index due to sound wave traveling
through the crystal, created by the transducer. These changes in refractive index appear to form a
kind of a Bragg grating. Hence, when light is passing through the crystal, it diffracts, with the m™
order described by:
mA
2N

sinf = (3.70)

Here, 0 is the angle of diffraction, A is the wavelength of the light, and A is the wavelength of the
sound. The frequency shift, that we are interested in, is defined by:

Wy = Wy + ml, (3.71)

where () is the frequency of the sound wave.
AOM is often use in a double-pass configuration [136], Figure 3.10(b). Special convenience of this
arrangement is that beam propagation direction is not altered after passing twice through the AOM,
compared to the beam we sent to the modulator. Hence, there is no need for the realignment of the
setup after we change the probe frequency.
Cell and the vapour heating system

One of the most essential elements in the atomic physics experiments is the cell with a
desired element. In this experiment we have used the vacuum K cell with natural abundance of

isotopes, with no buffer gas. It is a cylindrical glass cell, 5 cm long, 25 mm in diameter, with
Brewster’s angled windows, shown in Figure 3.11
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Figure 3.10 (a) Acousto-optical modulator used in the experiment. (b) Schematic of the AOM in double pass.

Figure 3.11. Potassium vapour cell used in the experiment studying classical gain of FWM.

The efficiency of four wave mixing process is highly dependent on the density of the atoms.
Hence, it was necessary to build a stable heating system that could enable us to reach the desired
operating temperatures of 100 — 150 °C. We used home-made heating system, whose schematic is
presented on the Figure 3.12(a). The cell is placed inside the aluminium cylinder, which is heated
by the hot air. As can be seen in Figure 3.12(b) heated air is circulating through the cavities drilled
inside the cylinder, and heats the aluminum in the process. Due to the heat transfer between the
holder and the glass, with time our vapor is being vaporized. Two platinum resistance thermistors
have been integrated in this system. One pt1000 sensor measures the temperature of the air right
after the heater, and is used for the control of the current that is being sent to the heater, by the PID
controller. Another pt1000 is glued with the thermal paste next to the cell. We have assumed that the
temperature read at this spot is equal to the temperature of the vapor after a reasonable period of
time. For the better thermal insulation, the aluminum block is placed inside the Teflon holder. With
this heating system, we could heat up the cell up to 150 °C, which corresponded to the vapour
density of 1.75 - 10'3cm™. More details on this system one can find in [137].
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Figure 3.12 (a) Home-built heating system. (Picture taken from [137]) (b) Aluminum cell holder/heater,
back-side view.

3.5. Results

Since experimental work previously done with the Rb [81] and Cs [110], on the topic of
squeezing by FWM, together with the phenomenological theoretical model for two-mode relative
intensity squeezing, as will be presented in Part II of this theses, indicated direct relation between
the gain and the expected/measured squeezing, the step towards estimating FWM parameters for
maximum squeezing was to first characterize our FWM system in terms of possible amplification of
the probe and conjugate beams. In this section both theoretical and experimental results of the gains
of the probe and conjugate are presented and discussed. We study dependence of FWM gain on
different parameters of the system — the angle between the pump and the probe intersecting in the
vapour cell, the cell temperature, the one-photon A, and the two-photon detuning 6, and the probe
power. We also calculate how Doppler effect, and the transmission of the probe, which also
important for the squeezing [81], affect FWM gain. .

The following results of the model are obtained with a few assumptions. One of which is
that the pump and the probe are fully overlapped. Since, in the experiment, we use a cell which is 5
cm long, and the beams usually intersect at an angle of few mrad, they are only overlapped in the
part of the cell. For this reason, when using the model, we set the interaction region length to be 1
cm. The value of the atom density, one- and two-photon detuning are the same as in the experiment.
However, in the model, we also have some fitting parameters, like relaxation and dephasing rates, y
and ygepn- These mostly affect the amplitude of the gain profile, and, since they can’t be determined
experimentally, we choose their values from the range of values typically used in similar
calculations [131] to obtain the best agreement with the experimentally measured gains. Rabi
frequencies of the pump and the probe are calculated with the equation (2.52). One can notice the
difference in the pump power set in the experiment, and the power, i.e. pump Rabi for which the
calculated results in the following section are obtained. This discrepancy lies in the fact that the
model assumes flat-top profile of the pump intensity, while in the experiment it is Gaussian. In
order to mimic the experimental condition more accurately, we lower down the pump intensity i.e.
pump Rabi value in the model.
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Dependence of the probe and conjugate gain with Doppler effect included

As it was already mentioned, our motivation for this study of parametric gains by FWM in
Potassium was a notion found in earlier papers on relation between gain, a classical property, and
squeezing, a quantum property of FWM (as presented in the next Chapter. Also, it was found both
experimentally and theoretically, in Rb and Cs [81,110], that for a good levels of squeezing it is
necessary to reduce the probe absorption in the vapour cell and have similar and modest gains of
both probe and conjugate.

It was found in works in Rb and Cs that relative intensity squeezing has maximum at the
same value of the pump detuning where the probe gain has its maximum [81,110]. However, too
large gain can result in amplification of probe seed noise noise. It was demonstrated for Rb and Cs,
that typically the strongest squeezing is for A near the edge of the Doppler broaden line, when gains
are at a maximum, and probe transmission at about 90% [81]. Hence, while exploring the
parameters space for the optimal values, while testing our model, we were focused on obtaining
such results for gains and probe transmission.

@ | | 0!

Gain

0.5 1 15 2 0.5 1 15 2
A [GHZ] A [GHZ]

Figure 3.13 Calculated gains of the probe and conjugate as a function of one-photon detuning for

different Doppler averaging. (a) n = 3, Ap =0, Ap,= —0.25 GHz, Ap 3= 0.25 GHz, N; = %NC,

N2 = N3 = %NC’ (b) n = 7, AD,1= 0, AD,2= —-0.1 GHZ, AD,3= 0.1 GHZ, AD,4= —-0.2 GHZ, AD,5=

0.2 GHz, Ape=—0.3 GHz,Aps= 0.3 GHz, N; = =N, Ny = N; = =N, Ny = Ng = "2 N, Ng = N, =

%ZSNC. Other parameters in the calculus are A = 1 GHz, § = —0.5 MHz, N = 1 x 102 cm™, Q; = 1.95
GHz, O, = 22.5MHz,y = 5 x 10° Hz.

In our model, we have included the Doppler effect. However, inclusion of Doppler requires
significant computational power for the modeling to be carried out. So, when making a choice on a
number of atom velocity groups n, one has to find a compromise in order not to lose on the
accuracy with a too low n, on the one hand, and making calculus too complicated with n that is too
high, on the other. Also, adjusting the frequency detuning between the different groups of the atoms,
so as the atomic densities in respective atom groups, have to be carried out carefully. We have spent
considerable amount of time testing our model with respect to these statements. Also, we were
interested in which way the inclusion of Doppler will change the gains and probe transmission that
our model predicts, compared to the ones when Doppler effect is neglected. At this stage of our
study, we have tried to simplify the calculation with a smaller number n, while still obtaining good
enough accuracy. On the Figure 3.13 we present the results for calculated probe and conjugate gains
as a function of one-photon detuning, for different Doppler averaging, i.e. different number of atom
groups. The results are obtained for (a) n = 3, with Doppler shifts Ap ;= 0, Ap,= —0.25 GHz,
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Ap 3= 0.25 GHz, and respective atom densities N; = %NC, N, = N3 = %NC, (byn=7,Ap,=0,
Ap,=—-0.1 GHz, Ap3=0.1 GHz, Ap,=—0.2GHz, Aps= 0.2 GHz, Ap¢= —0.3 GHz,Aps=
0.3 GHz, Ny = =N, Ny = N3 = =N, N, = Ng =
differences in the obtained gain profiles are only slight.
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Figure 3.14 Calculated gains of the probe (blue dashed line) and the conjugate (blue thick line) and
probe transmission versus one-photon detuning: (a),(c) without Doppler averaging; (b),(d) with Doppler
averaging. (a),(c) § = —0.5 MHz, N = 1 x 102 cm™, # = 2.8 mrad, y = 10° Hz, Yaepn = 0. (b),(d)
8§ =—0.5MHz, N = 1x 102 cm”, 6 = 1.8 mrad, y = 10° Hz, Yaepnh = 0. Qg = 1.95GHz, Q, =

22.5 MHz.

In the context of the previously mentioned experimental conditions desirable for obtaining
squeezed light, we have performed thorough analysis in the search of system parameters that will
give such gains and probe transmission in potassium. In Figure 3.14, results of the gains and
transmission calculated for the two sets of parameters values, with and without Doppler averaging,
are presented. In the first example, Figure 3.14 (a), § = —0.5 MHz, N = 1 x 102 cm™, § = 2.8
mrad, y = 10° Hz, Yaepn = 0. Results in Figure 3.14 (b) are obtained for different & = 1.8 mrad,
and y = 103 Hz. From these results, we gain an important insight into the requirements of the
model that we employ to mimic the behavior of the FWM in potassium correctly. Namely, one can
observe that in the case when Doppler broadening is neglected, the desired transmission of the
probe is obtained even for the low A, at 250 MHz in case (a) and even lower 150 MHz in case (b).
However, if one includes Doppler averaging, the transmission of 90% are obtained at higher one-
photon detuning, above 500 MHz. Hence, when we turn to the quantum study of the light and
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modeling of FWM in the context of the squeezing, we will have to go back to discussing and
inclusion of the Doppler broadening in the modeling. At the point, since we are only interested in
the gain profile, we choose to neglect the Doppler in the results to follow.

In the published works with both Rb [81] and Cs [110], good level of squeezing are often
measured for positive values of two-photon probe detuning and temperatures around 110 °C. With
our model we were able to confirm that moderate and similar levels of the gains of the probe and
conjugate can be obtained for atom density N = 1.5 x 10*2 cm™ (110 °C) and § = 2 MHz. According
to these predictions, it should be possible to generate squeezed light in potassium for A= 0.7 GHz,
for this set of experimental parameters. This gives us a starting point for the further studies.
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Figure 3.15 Calculated gains of the probe (blue dashed line) and the conjugate (blue thick line) and
probe transmission versus one-photon detuning: (a) without Doppler averaging; (b) with Doppler averaging.
§ =2MHz, N = 1.5 x 102 cm”, 6 = 6 mrad, y = 10° Hz, y4epn = 0, Q4 = 1.95 GHz, Q,, =
22.5 MHz.

Dependence of gains on the angle between the pump and the probe

The importance of the phase-matching was already pointed out. It is directly related to the
angle between the pump and the probe, 6. The angle that satisfies the phase-matching condition
defers depending on the values of the other parameters of the system. This has been demonstrated
on the Figure 3.16 and Figure 3.17. Gains of the probe and the conjugate are calculated as a
function of angle 6. These gain profiles are influenced by the index of refraction at the probe
frequency, which is determined by the pump power, atom density and laser detuning. In the
following, we only show the results for the conjugate, because the model gives very similar
behaviour of gains of the probe and the conjugate.

In Figure 3.16, results obtained for different pump Rabi frequencies (), are presented. They
demonstrate that the FWM will result in different gain profiles at high and low pump power Rabi
frequencies (1;. Shown results are calculated obtained for A = 1 GHz, and 6 = —9.5 MHz, probe
Rabi frequency Q,, = 22.5 MHz, and atom density N = 1 X 1012 cm™. In (a) Q4 = 3.25 GHz (400
mW) and in (b) Q4 = 1.95 GHz (240 mW). Similar behaviour of the FWM gains as a function of
angle we observe with the change of the temperature, i.e. atom density, Fig.ure 3.17. Results in
Figure 3.17 are obtained for the same detunings, A and 9, as the ones in the previous figure, the
pump Rabi frequency was kept at ; = 3.25 GHz, while the atom density was changed from (a)
N =1x10"cm™to (b) N =1 x 102 cm™. As one can notice, for both higher density and higher
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Qg4, FWM gains can be obtained in a narrow range of phase-matching angles 6, and a gain
maximum is away from the zero value of the angle. When the gain versus angle is a narrow peak as
in Fig. 3.16(a), then Ak, varies for more than 2m over the propagated distance. When gain
monotonically changes, as the angle increases from zero, Ak, changes only a little, less than m/4.
Our model also predicts that when we lower the temperature or (), the gain profile moves towards
the smaller angles, with the gain maximum at the zero angle. This result, of a near zero optimal
angle value, leads us to the conclusion that changes of the index of the refraction at the probe
frequency are negligible. However, our model does not predict such changes of the pump during
propagation through the atomic medium under FWM conditions. Due to the length of the
intersection region of the pump and the probe of a few cm, so as the fact the both of the beams have
finite cross section profiles, the phase matching condition can be satisfied in a wider range of the
angles.
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Figure 3.16 Calculated gain of the conjugate as a function of the angle 0, for two pump powers: (a) ; =
3.25 GHz (400 mW), (b) Q4 = 1.95 GHz (240 mW), for N = 1 x 10'? cm”, A = 1 GHz, § = —9.5 MHz,
O, =225MHz,y = 10%Hz, and Ydeph = 3 X 10*Hz.
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Figure 3.17 Calculated gain of the conjugate beam as a function of the angle 8, for two values of the
potassium density: (a) N = 1 X 10" ecm™ and (b) N = 1 x 10'2 ecm”, for Q, = 6.47 GHz (800 mW),
A=1GHz,§ = -9.5MHz, Q, = 225 MHz, y = 10°Hz, and Yaepn = 0 Hz.
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In Figure 3.18, experimental results of the probe and conjugate are shown. They are
measured at the cell temperature of 130 °C (N = 5.5 x 10'2 cm™), and are in agreement with the
theoretical predictions, Figure 3.16(b). The smallest value of the angle between the pump and the
probe we needed to well separate the probe and the conjugate behind the cell and infront of the
balanced detector, was 8 = 1.5 mrad. One photon detuning was set to A = 0.96 GHz and two-
photon detuning was § = —3.7 MHz. Pump and probe powers were 370 mW and 25 um,
respectively.
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Figure 3.18 Experimental results of gains of the probe (blue pluses) and the conjugate (red stars) for A = 1
GHz, § = —3.7 MHz, N = 5.5 x 10'2 cm™ (130 °C), P; = 370 mW, and B, =25 uW.

Dependence of gains on two-photon detuning

Next, we investigate how the two-photon detuning affects the gain profiles. It has been
already mention that in the model we have multiple fitting parameters. In Figure 3.19 is shown how
relaxation rate to y changes the calculated results, for the same set of FWM parameters, (1; = 1.94
GHz, O, = 22.6 MHz, § = 6 mrad, N = 5.5 X 10"2 cm” and A= 1 GHz. It is interesting to note
that it changes both the gains, and the width of the gain profiles. We have chosen the value of y for
which the gain of the conjugate compares the best to the measured one.

We have made a comparison of the calculated and measured gains of the probe and
conjugate as a function of §, for two different values od one-photon detuning, Figure 3.20. Shown
results are for A= 1 GHz, Figure 3.20 (a) and (b) and A= 1.35 GHz, Figure 3.20 (c) and (d). For all
the presented results the atom density was N = 5.5 x 102 cm™. In the experiment, the angle
between the pump and the probe was 6,,,, = 5.5 mrad, and pump and probe powers were 360 mW
and 25 uW, respectively. In the model, we set the angle to be 8,,, = 6 mrad, relaxation rate to
y = 10°® Hz, while pump and probe Rabi frequencies were 1.94 GHz and 22.6 MHz, respectively.
One can notice that typical profiles representing gains of the probe and conjugate as a function of 6,
both theoretical and experimental, are not symmetric around the gain maximum. The cause of this
asymmetric shape of the lines could be found in the inhomogeneous differential Stark shift, since
atoms in different areas of Gaussian beams experience different laser fields, and thus have a
different AC Stark shift. The larger difference in the gain of the probe and the conjugate in the
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experimental results, compared to the calculated, is probably due to the absorption of the probe
photon, obtained by FWM, while is propagating towards the cell.
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Figure 3.19 Calculated gain of the probe and the conjugate as a function of two-photon detuning, for
different values of the relaxation rate (a) y = 10°, (b) y = 2 X 10° and (c) ¥y = 5 x 10°. The pump and
probe Rabi frequencies are 1.94 GHz and 22.6 MHz, respectively. . Density N = 5.5 x 102 ¢cm™ (130 °C),
A= 1GHz and 6 = 6 mrad.
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Figure 3.20 Gains of the probe and the conjugate as a function of two-photon detuning. (a), (c) Experimental
results for the probe (blue pluses), and the conjugate (red stars). Pump and probe are 360 mW and 25 uW,
respectively. (c),(d) Calculations of the probe (blue pluses) and conjugate (red stars) gains. The pump and

probe Rabi frequencies are 1.94 GHz and 22.6 MHz, respectively. (a),(b) A = 1GHz, (c),(d) A = 1.35 GHz.
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Density N = 5.5 x 102 cm™ (130 °C), 6,5, = 5.5 mrad in the experiment and 6., = 6 mrad in the model.
Calculations are done for y = 10° Hz.

Since, our main goal in this part of the study was to gain the knowledge of how FWM gain
changes with several system parameters, we performed the measurements at different cell
temperatures, and for different angles between the pump and the probe. In Figure 3.20, measured
gains versus §, for different one-photon detunings are shown. Maximums of gains are at §,,,
different from zero and therefore shifted from two-photon resonance. However, it is evident from
both Figures 3.20 and 3.21 that this optimal value of the two-photon detuning moves toward the
resonance, § = 0, as we go further from the one-photon laser resonance. The results predicted by
our model, in Figure 3.20(b) and (d) are in accordance with this conclusion. This shift is mainly due
to differential Stark shift, 8¢, because of the off-resonant pump. Hence, in the case when the
A= 0.67 GHz, as in Figure 3.21(a), we got §,, ® —10 MHz, while for A= 1.45 GHz, as in Figure
3.21(c), the gain maximum was shifted considerably to &§,, ® —2.5 MHz. For results in both
Figures 3.20 and 3.21, N = 5.5 x 102 cm™ (130 °C), 8 = 4 mrad, and pump and probe powers are
360 mW and 25 uW, respectively. The maximum of the gain curve may not coincide with the
FWM resonance because of Raman absorption at the resonance. We have also investigated how &,,
varies with cell temperature, when A was kept fixed. In Figure 3.22 this was shown for cell
temperatures from 110 °C to 150 °C, (1.54 x 10? - 1.75 x 103 cm™), for & = 3 mrad. Pump and
probe intensities were as in the previous case. Evidently, §,, remains the same for different atom
densities. As commented before, at the higher temperature for which we had FWM, the probe
absorption is even more dominant, which gives rise to the difference between the gain of the probe
and conjugate. Comparing with the results in Figure 3.22, we can notice that there is also an optimal
temperature for obtaining maximal gain, for a fixed set of other experimental parameters. In this
example, temperature of ~130 °C has shown to be the best choice.
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Figure 3.21 Measured gain of the probe and conjugate versus & for three values of one-photon detuning. (a)
A= 670 MHz, (b) A= 890 MHz and (c) A= 1450 MHz. N = 5.5 x 102 cm™ (130 °C), 6 = 4 mrad,
Py = 360 mW, and P, = 25 uW.

Dependence of gains on one-photon pump detuning

What makes Potassium atom specific, compared to all other alkali metals, it is the largest
Doppler broadening and the smallest HFS. Width of the Doppler broadening is important
information to consider since in a hot alkali vapours it determines the range of one-photon pump
detuning A for which we can obtain effective four-wave mixing. In the work with Rb and Cs, it has
been demonstrated that, usually, laser frequency has to be detuned to the edges of Doppler profile in
order to obtain high gains needed for good levels of squeezing [81,110,138].
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Figure 3.22 Experimental results of gains of the probe and the conjugate for five K cell temperatures (a) 110
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In Figure 3.23, we present calculated and measured results for the probe and conjugate gains
as a function of A, for different value of §. Presented results are for the vapour density N = 5.5 X
1012 cm™ (130 °C). As in the case when we studied dependence on &8, change of A resulted in
asymmetric gain profiles. The most important information we gained from these plots is the fact
that optimal value of one-photon detuning, A,,, for which maximal gain is obtained, shifts towards
the lower values as we move away from the two-photon resonance. This is evident from both
experimental and theoretical results. Also, as expected, for the higher gains, the pump laser has to
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be detuned beyond the Doppler broadening, in order for absorption to be minimised. The broader
gain profiles in the experiment, compared to the calculated ones, can be explained by the fact that
the model does not consider hyperfine splitting of the excited level. Since we operate with the hot
medium, where Doppler shift is present, there will be atoms resonant with all allowed hyperfine
transitions between ground and excited levels, contributing the FWM process. We also observed
how the results of our experiment will change with the change of the angle 8, Figure 3.24. Gains at
the three different 6 are shown in Figure 3.24, (a) 6 = 0 MHz, (b) § = —4 MHz, (c) § = —8 MHz.
Optimal A,, remains the same when we changed the angle from 5.5 mrad to 4 mrad. However, the
shift in the frequency for a different & is still present, even more pronounced compared to the case
when 6 = 5.5 mrad.
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Figure 3.23 Gains of the probe and the conjugate as a function of one-photon detuning. (a), (b) Experimental
results for the probe (blue pluses), and the conjugate (red stars). (a) § = 0 MHz, (b) § = —8 MHz. 0y, =
5.5 mrad, N = 5.5 x 102 cm™ (130 °C). Pump and probe are 360 mW and 25 uW, respectively. (c),(d)
Calculations of the probe (blue pluses) and conjugate (red stars) gains. (¢) § = —4 MHz, (b) § = —10 MHz.
The pump and probe Rabi frequencies are 1.94 GHz and 22.6 MHz, respectively. Calculations are done for
Yy = 10° Hz, 0,4 = 6 mrad, N = 5 x 102 cm”.
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Figure 3.24 Experimental results of gains of the probe and the conjugate for three different two-photon
detunings. (a) § = —8 MHz, (b) § = —4 MHz, (¢) § = 0 MHz. N = 5.5 x 102 cm” (130 °C), 6 = 4 mrad,
Py =360 mW, and P, = 25 uW.

Dependence of gains on the probe power

In order to minimize the noise and obtain good squeezing level, it is also essential to
minimize the power of seed laser. Note that FWM is possible, under all other parameters optimized,
even without the seed, the vacuum filed was sufficient. Hence, we examined how the probe power
affects the efficiency of the FWM process in potassium vapor. As demonstrated by both
experimental and theoretical results in Figure 3.25, the lower the probe seed power, the higher the
gain of the beams. This is in accordance with the previously stated fact that a strong pump can
generate side modes or twin photons, even without the probe seed at the input, [129]. In the
experiment, gains as high as 558 and 325 for the conjugate and probe respectively, were measured.
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Figure 3.25 Gains of the probe and the conjugate as a function of the probe power. (a) Experimental results
for A=1GHz, § = —4 MHz. N = 5.5 x 10*? cm™ (130 °C), § = 3 mrad, P; = 360 mW, and P, =
25 uW. (b) Calculated results for A = 1.25 GHz, § = —4 MHz. N = 5 x 102 cm™, § = 3 mrad, Q; = 1.94
GHz, Q, = 22.6 MHz, y = 10°.

In summary, from theoretical and experimental results, performed for FWM in potassium,
we have obtained important information on behaviour of probe and conjugate gains and on various
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system parameters. Obtained knowledge is precious; since there are no similar investigations in this
alkali vapour, and it turns it is fundamental for optimal parameters for relative intensity squeezing,
presented in the next chapter.
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Part |1

Study of the relative intensity squeezing by Four Wave Mixing
in Potassium vapour
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4. Quantum states of light

In this part of the thesis we turn to the fully quantum study of four wave mixing in K. We
shift our focus to the generation of relative intensity squeezing by the means of FWM. Again, our
study of this topic is based on both theoretical and experimental approaches.

In this chapter we introduce the concept of quantum description of the light and new non-
classical state of optical field, called squeezed light. A brief explanation of the noise reduction due
to light squeezing is given. The simple description of a two-mode squeezing, relevant for our study,
is presented as a function of the obtained gain in the active medium.

4.1. Quantum description of the light field

For guantum-mechanical treatment it is useful to introduce bosonic creation and annihilation
operators for photons, @' and a [121]. These operators commutate, hence they obey the following
relation:

a,afl=aat—afa=1. 4.1
[

In this notation, Hamiltonian of an electromagnetic field EMF defined for n modes of the EMF is
given by:

_ 1
= z hao, (a,ﬁan + 5), (4.2)
n

where hw,, is the photon energy and hw,, /2 is the zero-energy of the vacuum state.

Analogous to the classical filed description, in quantum optics we can describe the field with an
operator [121]:

E(@) = gy(ae™t + atelot). (4.3)

It is convenient to present £ in terms of quadrature operators X and ¥, referred to as cosine and sine
components of signal with slowly varying envelope:

E(t) = 2&¢(X cos(wt) + ¥ sin(wt)). (4.4)

In the last equation, €, = \/hw/2¢,V, with w as the angular frequency of the field, V is the
volume, and €, is the permittivity of free space. Quadrature operators X and ¥ are real and
imaginary parts of the complex amplitude of the field, defined in terms of the creation and
annihilation operators @t and @ by:

A~

at+a
2 )
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X =

(4.5)



a—at

Y =
21

(4.6)

The importance of this description is the fact that these operators are Hermitian, hence, they are
physically observable quantities, and their eigenvalues are determined such that:

X1X) = X|X), (4.7)
YY) =Y|Y). (4.8)

They also obey commutation relation [)? 17] = % The variance of the quadrature operator is defined
as:

((A%)°) = (R2) — (R)2. (4.9)
Then, the standard deviation is
AX =+ AX2. (4.10)

By the Heisenberg uncertainty relation, uncertainties of the two defined variables must satisfy

(4.11)

N

AXAY >

When, in the last equation, equality holds and the uncertainty of both quadratures are equal,
AX =AY = % we say that the state of the light is at the quantum noise limit (QNL). With QNL, the
minimal noise level of classical system is defined.

4.2. States of the light

Fock state

The eigenstates for the Hamiltonian defined by Equation (4.2) are called Fock states or
number states [121]. What is characteristic for this state is that it describes the photon number state
without fluctuation. We can define the number operator as [121]:

fi = ata. (4.12)
Fock states are corresponding eigenstates and we can write:

Ailn) = ataln) = n|n). (4.13)

The Fock states are orthogonal, from which follows:

(nlm) = 6, (4.14)
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and their eigenstates form canonical basis for Hilbert space. Creation and annihilation operators
acting upon the number state lead to:

dln) = Vnln — 1), (4.15)
afln) = Vvn + 1jn + 1). (4.16)

Vacuum state

The term “vacuum state” has been already mentioned in the manuscript. This state is of
great interest when studying and explaining many effects in research area of quantum optics.

Denoted by |0), this is a state without photons, which, contra-intuitively, has a non-zero
energy hw/2. For this state, (X) = (¥) = 0, however, fluctuations are still present, i.e. noise. When
describing quantum states of light, it is convenient to present them on the phase diagrams, as is
commonly done in the literature [131]. The described vacuum state is schematically presented on
the Figure 4.1(a).

Cherent state

Phase diagram of coherent state is given in Figure 4.1(b). One can notice that it is actually
displaced vacuum state. It is often used as the quantum description analogous to the classical state.
In the close approximation, with the coherent state we describe the laser output light, that is usually
quantum noise limited, and obeys the Poissonian photon statistics [131]. Coherent state depicted by
|), with a complex amplitude a = |a|e? and phase angle ¢, Figure 4.1(b), is the eigenstate of
the annihilation operator, such that:

ala) = ala). (4.17)

Coherent state can also be described with:

la) = D|0) = eled’-a"d)|q), (4.18)

Here, D is a displacement operator [139], that satisfies D(—a) = D(a)~*, D"(@)ta@D(a) = 4 + «
and D"(a)TatD(a) = a’ + a*. Sometimes it is convenient to rewrite the coherent state in terms of

number states:
| o
la) = e TZ
n=1

When number operator 7 is applied to the coherent state, one can obtain the expectation value of the
number of photons in the respective state:

(4.19)

Ek

(alf|a) = (a|@td|a) = a*alala) = |a| (4.20)
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In addition, variance of the number of photon is defined as:
(An)? = (al|®|a) — (a|fi|a)? = |a|?. (4.21)

For the coherent state, uncertainties of quadrature operators satisfy the Heisenberg equality, i.e. the
minimum uncertainty relation, hence:

~ o~ 1

AXAY = 7. (4.22)

If we take a look at a phasor diagram on Figure 4.1(b), we can notice that the state uncertainty

presentation is circular, with the quadrature uncertainties AX = AY =%. The variances of the
operators that describe the noise in the system are then:

1

(a0)") = ((ar)") =5 (4.23)

This noise presents the classical limit that cannot be overcomed by any classical means.

7 = A
Y Y F 9 7 NK\ M
i
.
¥
“

lal /
/€
/A AX
S

(a) (b)

Figure 4.1 Phasor diagram presentation of (a) vacuum state, (b) coherent state of light. The grey arrow
presents the amplitude |a|. For the uncertainty area, Ala| and A¢ are defined as the amplitude and phase
uncertainties, respectively.

Squeezed state

The uncertainty area presented the Figure 4.1, cannot be reduced. However, there are ways
of reducing the uncertainty in one of the quadratures, by unequal uncertainty distribution, i.e.
reducing the uncertainty in one of the quadratures at the expense of its increment in the orthogonal
quadrature, as presented in Figure 4.2. These states, with the one of the quadratures uncertainties
smaller compared to that of the coherent state, are called squeezed states of light [121]. Heisenberg
uncertainty is still satisfied. However, now we have:

2o 1o 1
(A%)") < 2.4(a7)) > 2, (4.24)
or

2o 1o a1
(A%)") > 2. ((87)") < 5. (4.25)
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In quantum-mechanical formalism, squeezed state can be obtained when unitary squeezing operator
S acts on the coherent state:

la,¢) = S(Dla) = D(@)S(5)]0). (4.26)

Here, D(a) is previously defined displacement operator, squeezing operator is S({) =

e3(5°a2=3a") it { =se'®. s is a squeeze factor and @ is squeezing angle, as schematically
presented in Figure 4.2. It should be noted from the definition of squeezing operator, that this is a
two-photon process, we have annihilation (%) or creation (a*?) of two photons. Squeezing
operator satisfies $71(¢) = $1(¢). When it is applied to creation and annihilation operators, in the
Heisenberg picture, one obtains:

St(0)as(¢) = @coshs — a' e¥sinhs, (4.27)
$t(Q)at$(¢) = at coshs —ae ¥sinhs. (4.28)

The expectation value of the number of the photons in squeezed state is calculated by:
(a|SthAS|a) = (a|Statas|a) = |a|? + sinh?ss. (4.29)

If we compare Equation (4.29) to the Equation (4.20), describing the expectation value of the
photons number in the coherent state, we can notice an additional term that is dependent on the
squeeze factor.

Phase ¢ is defined with respect to the reference determined by our choice of coordinate system
frame. Hence, we can set X/Y quadrature frame such that ¢ = 0. In that case, reduction of the
noise in X and Y quadratures will be interpreted as a reduction of phase and amplitude noise,
respectively. When squeezing operator is applied to the field quadrature operators, we get:

oA at+a ate=19 4 ge'?

STOXS() = > coshs — fsinh s, (4.30)
A a—at ate=0 —gel®

STOYS()) = o coshs—z—ismhs. (4.31)

If, in addition, we assume that 6 = 0, for the quadrature variances that are modified by the
sgueezing operator, we can obtain:

(AR)") = e, (4.32)

(AP)%) = e?s. (4.33)

Thus, the phase noise decreases below the coherent state phase noise level (quantum noise limit),
while, on the other hand, amplitude noise increases. So far, there have been different experimental
demonstrations of squeezed vacuum states, and squeezed state in individual quadratures (amplitude
or phase squeezed light). These squeezed states of light are often referred to single-mode squeezed
light.
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Figure 4.2 Phasor presentation of (a) amplitude squeezed light, and (b) phase squeezed light.

4.3. Two-mode squeezed state

In this work, we are focused on so called two-mode squeezed states of light [104]. In this
case, the noise reduction that is explored occurs between two different modes of the
electromagnetic field. What is interesting with these states is that their individual quadratures are
not squeezed, but actually noisier. However, they exhibit squeezing in their sum or difference of
respective quadratures due to the correlations between the modes.

We introduce two modes of the EMF, described with their quadratures:
E (r,t) = 2€¢(X; cos(wt) + ¥ sin(wt)) (4.34)
E,(r,t) = 264(X, cos(wt) + Y, sin(wt)) (4.35)
Similarly, as for the single-mode squeezed light, we can define two-mode squeezing operator:
$,(¢) = (¢ ab—catph) (4.36)

Here, we have two modes a and b, with corresponding creation and annihilation operators defined
for each mode. Two-mode squeezed state is then described by:

1@,8,6) = $2Dla, B) = S2(OD@D(B)|0,0) = 2 WP~Fg(aa™a"a)g (85-5'D))0,0),
(4.37)
where the displacement operators D(a) and D () are applied on the vacuum state for each mode.
When squeezing operator acts on the annihilation operators, we obtain:
$1(9)as,(¢) = acoshs — bt esinhss, (4.38)

ST(0)bS,(7) = b coshs — at esinhss. (4.39)
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For this type of squeezing process, between the two fields modes, we define the so-called joint
quadratures:

=L (t-%), (4.40)
V2
X, = L (X1 + X3), (4.41)
V2
O B
Y= 7% (1, - 1), (4.42)
Y, = L (7, + 7). (4.43)
V2

For them, it applies that [X,, V.| = % and [X,, ¥£] = 0. In this description, joint quadratures can be

squeezed simultaneously. Now we have that (X, }Y,) =%. When one applies the two-mode

squeezing operator and assumes that for both modes ¢ = 0 and 8 = 0, for the joint operators’
variances, it is obtained:

((AR,)") = e*2s, (4.44)

((A7,)%) = e¥2s, (4.45)

Hence, we can obtain noise reduction in the joint quadratures, as presented schematically in Figure

4.3.
Yl * YZ ‘
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X1 4 Y a

w\ A * A
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Figure 4.3 Phasor diagram for two-mode squeezed state. (a) Quadratures of output mode @ and mode b. (b)
Joined quadratures demonstrating noise reduction.
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Ideal two-mode squeezer — the effect of the gain

FWM is convenient for the generation of two-mode squeezed state, as it was demonstrated
[81,82,110,111], since it simultaneously produces two correlated photons, probe and conjugate. In
the experimental study we obtain the information on the relative intensity squeezing level by
measuring the intensity difference between two detected modes. It is important to define the
measurable quantities in the theoretical picture, but also to relate the gain and the respective
squeezing level. The intensity and the noise of the measured signal can be compared to the
theoretically determined mean photon number and its variance. Hence, we define the expected
values of the number operators for two-mode states, 71, and 7, :

(fig) = |a|? cosh? s + sinh? s = |a|?G, (4.46)
(iy) = (Ja|? + 1) sinh? s = |a|?(G — 1). (4.47)

Here, fi, and 7, are number operators for the probe and conjugate, respectively. Since for the
conjugate we have vacuum field at the entrance to the K vapor, it was assumed that |8| = 0, while
for the bright seeded probe we have |a|? > 1. The gain coefficient is G = cosh? s.

Next, the variances, i.e. noise on the output probe and conjugate, are described by:
((Afiy)?) = |a|? cosh? s (cosh? s + sinh? s) + cosh? s sinh? s, (4.48)

((AfL)?) = |a|? sinh? s (cosh? s + sinh? s) + cosh? s sinh? s. (4.49)

With the assumption of the bright probe seed and previously defined gain, we get:
((A1,)?) = a|*G (26 - 1), (4.50)
((Af1p)?) = |al?(G — 1)(26 — 1). (4.51)
Now, we can calculate the noise of the signal difference:

(A — 71p)?) = ((Ag)?) + ((Af)?) — 2 cov(fiy, Aip) = ((AfG)?) + ((Afp)?) — 2((Aa )
— (g ){fip)). (4.52)

To quantify the squeezing level, we need to determine the noise ratio between the output FWM
state and that of the coherent one with the same power. The noise reduction factor (NRF) is given

by:
AR, - )Y 1

NRF = .
(R + fip) 26 — 1

(4.53)

Often, the results are reporter in the logarithmic units (dB), as a value of intensity difference
squeezing (IDS):

IDS = —1010g(2G — 1). (4.54)
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In the case of an ideal amplifier, in the absence of the absorption in the FWM medium, and
neglecting the beam losses in the detection, after the mixing process, expectation value of the IDS
can be modelled by the Equation (4.54). It is evident that it is directly associated with the gain in
the medium, and it show us that as the gain increases we can expect for the squeezing level to
increase due to the correlations in the fluctuations imparted on the probe and conjuate beams.
However, under the realistic conditions, increase of squeezing with parametric gain of FWM is
limited to gain values when probe absorption starts to overcome FWM mixing.

Squeezing [dB]

-15
Gain

Figure 4.4 Expected IDS of an ideal FWM amplifier as a function of the gain in the medium.
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5. Theoretical study of relative intensity squeezing by FWM
in K

Within this chapter we present a study of two-mode squeezing by FWM from the theoretical
perspective. This includes introducing and discussing different types of models that can be used for
description of relative intensity squeezing by four-wave mixing. First, two phenomenological
models, which are most commonly used in the work published so far, are described and explained.
One of them introduces losses that are present in the detection on the correlated beams, after the
mixing, while with the other model, we are able to include in the calculus the losses due to the
absorption in the medium too. The expected levels of squeezing utilizing these models are shown
and discussed. Although in some cases they have proven to be good enough for modelling and
predicting the squeezing levels in systems of interest [81,110], one cannot expect that the predicted
squeezing utilizing these models always match with what is expected, since, as it will be explained,
they treat system as an ideal two-mode squeezer, only with losses that couple in the vacuum.

In the atomic systems, there are other competing processes, beside gain and absorption, that
can lead to the excess noise, and should be included into the model to predict its behaviour
realistically. To that end, we have developed microscopic model based on the Heisenberg-Langevin
formalism, with more detailed description of light-atom interaction. With this model we are able to
predict the behaviour and evolution of both atomic medium and the beams traveling and interacting
along the active area, and calculate the gains and the squeezing. Such microscopic model has been
developed and described for the cold atoms [134], but, to the best of our knowledge, there is no
published work on this topic for hot atoms. We have extended the work from [134] to include the
Doppler broadening and frequency detuning due to the motion of the atoms, relaxation processes in
hot alkali and the transit time of the atoms through the interaction area. Also, since the model
doesn’t take into the account the angle between the pump and the probe, but assumes the complete
overlap of laterally flat intensity beams, the model’s pump Rabi frequency Q has to be adjusted
from values calculated from the formula relating laser intensity and its corresponding Q. The
predicted gains and squeezing are presented and analysed for a different sets of system parameters.

5.1. Phenomenological approach — model of operators

As mentioned, the phenomenological model includes losses and, under such conditions, predicts
level of squeezing as a function of the gain of the probe beam produced by FWM in the active
medium. Two improvements on the Equation (4.53) that relates the gain and squeezing are
presented in this section.

5.1.1. Beam-splitter model

As it has been explained, Equation (4.53) is only applicable for the modelling of an ideal
FWM process, when no losses are present in the system. This is not the case in the real systems.
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The first correction that is made is the inclusion of the effects of optical losses on the probe and
conjugate after the mixing process occurs. This is modelled by the action of the beam-splitter (BS),
as previously done in [81,138], schematically presented in the Figure 5.1. The direct detections of
the probe and the conjugate are replaced by an ideal quadrature detection with fictitious BS, with
probe/conjugate on the one port and the empty second input port. The vacuum modes on the empty
port contribute to the output of the BS, inducing the losses in the transmitted probe/conjugate beam.
For the resulting output modes of the beam splitter we can write:

a. = naain +1- naavac' (51)
Bt = \/%Bin +J1- 7']bzf)\vac- (5.2)

Here, n, and 7, are transmissions for the probe and conjugate, respectively, while @,,, and b, are
vacuum modes fluctuations coupled via the BS, inducing the losses, that are superimposed with the
probe and conjugate input modes. The transmission efficiencies are product of two terms that
quantify transmission losses and the efficiency of the photo-detector in the experiments, 1gp) =

Na),L X Na(b),0-

G Na a,
FWM avac (—)
bin 13 Et
L. _
‘ bvac

Figure 5.1 Schematic presentation of BS model implemented on the squeezing by FWM process.

State of the system with losses is described by:

|a! B) = O\BS,aéBS,bS\.a,b(Z)laﬂ ﬁ) = ga,b(()ﬁ(a)lo)al())b|0)a‘vaclo)b'vacf (53)

where we use the same mathematical description and notation as in Chapter 4.3. Og s,q and Op s are
the operators describing the action of a beam-splitter on the probe and conjugate modes, such that:

a\t = GBS,aamOBS,a' (54)

S~
by = Opspb, Ops,p. (5.5)
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Displacement and squeezing operators in Equation (5.3) are as previously defined for the ideal two-
mode system. Similarly, as in ideal case, photon numbers and variances can be calculated from

(flg)r1, = Nalfla), (5.6)

(Aip)r, = Np(Tip), (5.7)

(flafip) 71 = Nallp(fafip), (5-8)

(M) ?)r, = 12*{(Ae)?) + Mo (1 — Na){fa), (5.9)
(A7) )7 = M ((AT2p)?) + 1 (1 — 1) (), (5.10)

Index TL refers to the case when transmission losses are included. Relations are presented as a
function of respective photon numbers and variances, calculated when losses were neglected.

Finally, the noise on the signal difference is calculated by:
(A(fig — 1)) = ((Afg)?) + ((Afiy)?) — 2 cov(iig, ). (5.11)

With the same assumption, as in the previous Chapter, if only the seed is at the input (|| = 0 ) and
of a bright probe at the exit from cell (Ja|? > 1), and after some algebra, the following relation for
the relative noise figure can be obtained:

2(G — 1D)(G(ng — np)* — np
NRFp, =1+ ( )(G(Ma —1p) nb)_ (5.12)
GNa + (G — Dny
Previous equation indicates that in addition to the probe mixing gain, the balanced transmissions of
the probe and conjugate, from the cell to the detectors, are just as important for the effective noise
reduction. In Figure 5.2 the results for different values of losses, but equal on the probe and

conjugate n = 1, = 1y, are presented. In that case, Equation (5.12) can be simplified to:

Ui
26 -1

NRFr, =(1—1n) + (5.13)

The effect of unbalanced powers of the probe and conjugate at the detection point is
demonstrated on the Figure 5.3. Presented squeezing levels are calculated in the case when probe
and conjugate undergone various losses after the mixing process, changing probe transmission
1, for a fixed 1, = 0.85. It is evident that the bigger the difference in transmission, the smaller is
the expected squeezing. This can be understand by the increased amount of uncorrelated noise in
the probe and conjugate at the BS output, due to the randomness of the loss process. It is also
interesting to note, that the optimal conditions are obtained for a slight difference in the probe and
conjugate transmission, when 1, < 1. This is the result of a presence of the seeded probe photons
at the output of BS, with no corresponded correlated thin photon.
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Figure 5.2 Calculated squeezing as a function of probe gain for equal losses on the probe and conjugate
mode.
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Figure 5.3 Calculated squeezing as a function of probe gain for different probe losses, when 1, = 0.85.
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5.1.2. Intrinsic gain/loss model

In the studied systems, optical losses occur as a result of many different processes. In the
previous section, only those related to the detection were considered. However, there are other
effects, like absorption and spontaneous emission, happening inside the medium that impose limits
on the squeezing in the vapour cell. One of the models that include these processes has been
described in [138]. In this section, we resume the analytical interleaved gain/loss model developed
by Jasperse et al [138]. We give brief overview of the theoretical method, and present most relevant
steps and mathematical descriptions, necessary for its implementation in our study of squeezing by
FWM in K vapour.

One step further in making the BS model more realistic, is taking into the account the
competition between the gains and losses due to the absorption throughout the active medium. This
is done by introducing a large number of the interleaved stages onto which the medium was divided
along the paths of the twin beams. At every stage, besides the generated beam amplification, the
losses were introduced on both probe and conjugate, through the vacuum port, as previously, by the
action of a beam-splitter, Figure 5.4. For every stage the output operators are defined as follows:

Ani1 = ta(@, coshs + blsinh s) ++/1—t28pacnt1s (5.14)
bpi1 =ty (&n sinh s + Eicosh S) + ’1 — tlfls;rac'nﬂ. (5.15)
aﬂ Na l-Til &n . TNa &n+1 I-‘Ji?'n.i' _

Tavac,l Tavac,rwl (:‘

= c A
o m
) o
5 U} 31 bn > My Bn+; bN ]
T bua el T ba:ac,n+ 1

Figure 5.4 Schematic description of an interleaved gain/loss model.

Here, N is the number of the interleaved segments, s = S/N, where the overall squeezing parameter

is dependent on the intrinsic mixing gain by G = cosh?S, and t, = T; 2N and ty, = Tb1 2N as a
function of the probe and conjugate transmissions in the absence of squeezing, respectively. For the

input field operators, @, and by, output beams are described by:

1 — 24 .
taavac,L

A N 1

a a

L;ITV] — MV lBgl +ZMN—1 S , (5.16)
N 0 i=1 1’ 1- tp bvac,n+1
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with

_ [tacoshs t, sinh s]. (5.17)

"~ [ty sinhs t,coshs

After implying some statistical and mathematical identities, one can obtain an analytical expression
for the variance of the signal difference:

a
(A — 7)) = [ar —Bile™ +X}| g | (o), (5.18)
where
log T,
MO = logTb ’ (5.19)
2
ar1_1 071 .m[1
—ﬁl] = [0 _1] eMo [0]' (5.20)
and
1 N-1
_ i
X—NZMTM, (5.21)
i=1
. _[~logT, 0 o _ 1 1
with T = 0 —log Tb]' M simplified to the form M =1 + EMO + 0 (F) for the large N,

After adding the effect of the detection losses, after the mixing, Equation (5.18) transforms to:

B(g - )Y = [ =Rl + 0L+ A-DL[ 5 ]@0), (522
_[7a O
where L = 0 Ub]'

This model has drawn our attention especially for its possibility to relate the experimentally
measured gains of the probe and conjugate to the coefficients in the model:

_ <ﬁa) _ 2

Ga - (ﬁ0> =MNaq1, (523)
)

Gp = ) Mpa3, (5.24)

. . . : @
where G, and G, are measured/effective probe and conjugate gains, respectively, while [aﬂ =

eMo [(1)] For the sum of the photon numbers for the detected probe and conjugate one gets:

() + (Mp) = (aaf +Mpad){fo). (5.25)

The noise reduction factor is described by:
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25sinh?¢ Slog?(T,)sinh*¢
+10VTa 553 z .
¢ cosh(2¢ + y) 273 cosh(2¢ + yx)

NRF,=1-7 (5.26)

Here, { = %\/1652 + log?(T,) and tanhy = %. In the Equation (5.26), it was assumed

that T, = 1. The neglection of the conjugate absorption is supported by the fact the conjugate is far
detuned from the resonance.

In Figure 5.5 the expected level of squeezing are shown as a function of intrinsic mixing
gain G and probe transmission. For the larger gains and high probe transmission, large squeezing
levels are predicted. On the other hand, for the higher amplification of the gain present in the
medium, when probe absorption is dominant, squeezing level drops. Then, the optimal gain is at the
lower values.

11
0-

{2
-2

-3
-4 4

Squeezing [dB]

0.5

10 0.25
Gain 15 0 <o

Figure 5.5 Expected squeezing for different values of probe transmission and intrinsic probe gain, when
N ="1nq =1p = 0.85.

Both absorption and the strength of the mixing are characteristics of the FWM process in the
alkali vapours. Hence, with the last equation we should be able to estimate effects of the FWM
parameters on squeezing levels and tailor their values for the optimization. Also, assuming no
optical losses behind the active medium by setting n = n, = 1, = 1, one can estimate the ultimate
squeezing expected from the FWM for particular set of system parameters. In the following
Chapter, we will employ the described models to calculate the squeezing as a function of the
measured gains and losses, both inside the cell and the ones caused by the detection elements, and
compared obtained levels with the experimental ones.
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5.2. Microscopic Heisenberg-Langevin model for hot vapours

In this section we introduce a microscopic model that we have developed, which can give us
a more comprehensive picture of the behavior of the FWM system for two-mode squeezed light.
The model presented in this section is the extension of the work done for the cold atomic system
[134].

5.2.1. Heisenberg-Langevin model

The probe and conjugate fields, in terms of quantum operators of creation and annihilation,
are described with:

E (z,t) = €,(a(z, t)e'kaz=wal) 4 Gt (7, t)e~Kaz=wal), (5.27)
Ep(z,t) = €,(b(z, t)elkvz=wt) 4 bt (7 t)e~ilkpz-wpt) (5.28)
hwa(b)

where €, = are electric fields of the single photons in the respective beams with

frequencies wq(p), and V is the volume. For a double-A system from the Figure 5.6, we define the
interaction Hamiltonian, governing the light-atom interaction, by:

L
_ AN
Hint = _Tf(HFS + A + 6)5'44 + A533 + 5&22

0]

~ Q
+ (9480033 + 9,5 (2,041 +5 (31 + G2) + H.c. ) dz (5.29)
_ d32€a _ d41£b - - . -

Here, g, = - and g, = — - are coupling constants of the probe and conjugate with respective

atomic transitions, the pump Rabi frequency is Q = ZdTE, with interaction dipole d and the electric
filed E, and N is the number of the atoms in volume V. It is assumed that d,3 = d,, = d and that
there are no pump depletion, when traveling through the medium. As in the semiclassical
description, 6;; (i = 1,2,3,4) is the level population, while 6;; are coherences, in a slowly varying
approximation.

In the Heisenberg picture, the evolution of this atomic system is described by the set of Heisenber-
Langevin equations:

d A . "
(a + Vnm) Onm = g [Hint' O-nm] + Rym + Foms (5.30)
where the y,,,,, denotes sum of all of the dephasing rates, R,,,, is spontaneous emission and E,,, is
the Langevin operator, necessary for a quantum description of FWM process, that enables us to
introduce the fluctuations in the mathematical description of the system. In the approximation,
assuming that the probe power is much weaker than the pump, i.e. Q, < Q, = Q, we obtain the set

of coupled differential equations:
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Figure 5.6 Double A atomic level scheme with depicted dephasing and decay rates. I' — total
spontaneous emission from the excited states, I'; — transit rate, G;I'; — filling rate of the state |i),
y; — relaxation rates from the excited states.

] ) ~ e Q 5 r 5 5 -
aﬁll =1 <9bb041 - 9bb+0'14 + 5(0'31 - 0'13)) + 5(0'33 + G44) — (Vdeph + Ft)o'n + G + f1q
9 e r i ]
aazz = —i| gadd3; — gol' 0,3 + 5(042 — Gy) |+ 5(033 + G44) — (Vdeph + F1:)‘722 + G + [y
d _ N o Q B 5 -
3:033 = 7t{ 9a 023 — §al032 + > (613 — 631) | — (V3 + Yaepn + Tt)033 + f33

0

~ ~_ Q 5 5 ~
%044 =— (gszUM — gpbGaq + P (624 — U42)> — (Vs + Ydepn T [)Gas + faa

3 . 0 i r o
=031 = —i| 9a@'621 — gpb 034"‘ (611 — G33) —<§+1A+Vdeph+rt)031+f31

J _ A aorn At Q B r B -
97042 = 7L <gbb+012 — 9407643 + > (622 — U44)> - (E + i(A + HFS) + ygepn + Ft) Oaz + faz

(5.31) — (5.36)

and 6,4 = 1 — (611 + 6,2 + G33). We note that different relaxation and dephasing mechanisms are

included in the model. T is the spontaneous decay rate, yge,n IS @ dephasing rate due to the

collisions, y; = y, =T are relaxation rates from the excited levels. We also consider and include
the transit rate that limits the interaction time. For the beam with Gaussian intensity distribution it
can be expressed as a function of the beam radius and mean velocity. The mean distance that atom

pass, without colliding with another atom is calculated by [141]:

VW2 — x2dx = Tl’ . (5.37)

Wo/z

WO W0/2
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The transit rate is now defined by:

1 [8kgT
C wp .| mm

I

) (5.38)

Ul <

where m is the atomic mass of potassium. The filling rates of the ground sublevels are depicted

with G,T; and G, I}, where G; = p “‘i "g are the ground state degeneracies.
1 2

After some period of time, long enough compared to the occurring processes, system reaches the
steady-state. At that point %61- ; = 0 and we can easily obtain the steady state solution in analytical
form. Set of the Equation (5.31) — (5.36) can be transformed into the matrix form:

d
(101 5+ M1} 6] = [Ro] + ilFol, (5:39)
with
[M,]
+ 1T, 0 & 0 0
Tty 2 2
L iT, 0 0 0 2 2
lz I=+1 t —5 E
L Q Q
0 0 1F+1Ft E —E 0 0
Q . . .
= - 0 2 —A+lz+l)/deph+lrt 0 0 0
Q Q T . _
2 0 - 0 A+L§+1ydeph+lr‘t 0 0
Q Q r o .
3 ) -3 0 0 —A—HFS+lE+lydEph+lFt 0
Q Q r . )
7 Q o) 0 0 0 A+ HFS + LE + i¥Vaepn + LFti
. — fi1]
011 (il + 112G, T ~
(¥ il + 12G2Ft f;22
&33 0 f33
[So] = |31 [Ro] = 0 [Fol =1f31
6_ ~
13 OQ fi3
042 - f
~ 42
G p4 L Q ~
L f24]

The matrices [M,] and [R,] depend on decay rates, atomic level structure, pump Rabi frequency
and one-photon detuning, [S,] contains the atomic operators &;;, while elements of [F] are

Langevine noise terms, that satisfy:

(Eyn(z,6)) =0 (5.40)
(Fam (2 ) fum (2, 6)) = 2Dy 1 6 (6 — t)8(z — 2'). (5.41)
In the last relation D 1S the diffusion coefficient that can be calculated with the use of

nmn'm

generalized Einstein relation. In the steady-state, the level populations and coherences can be
calculated by:
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[Sol = [Mo] ™[R, ] (5.42)

In Figure 5.7 we can see in which way level populations in potassium are affected by the one-
photon detuning, (a), and pump Rabi frequency, (b).
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Figure 5.7 Population of the atomic states as a function of (a) one photon detuning for Q =
0.5GHz, (b)) A =1GHz. T'= 6 MHz, I, = 7.6 * 10° Hz, Y4¢p, = 0.5 * 10* Hz.

In the first approximation, the evolution of the coherences 6,3, 641, Ga3, 65, iS described by

d _ T 5 Q B N 5 .
3:023 = <5 —A- 1(5 + Ydepn + Ft)) 023 — 5(021 — G43) + 9aQ(G33 — G22) + if23

J _ (T B Q B e B s
0= <5 + A + HFS — 1(5 + Yaepn + Ft)) On1 =% (643 — 621) — GpbT(64a — G11) + ifan

J | o . .
301 = (5 + HFS — 1(F + Yaepn + Ft)) Oa3 =% (a1 — G23) — gpb"G13 + galbay + ifas

9]

. - Q - ax s 2
5021 = (5 —i(yiz + Ydeph + Ft))021 ) (623 — G41) — gbbTUZAL + 940631 +if21

(5.43) — (5.46)

Again, system of equations (5.43)-(5.46) can be presented in the simplified matrix form:

d ~
(111152 + M) 512,01 = gR 1[0, 0] + il 2, )), (5.47)

where
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[M,]

o 0 0
1<§+ydeph+rt>+A_6 0 —E E
r Q Q
_ 0 i(z+ydeph+Ft)—(A+6+HFS) > )
QO
-3 > i(T + Yaepn + T) — 6 — HFS 0
QO Q
> -5 0 (v + T + )’deph) 6
[523 (z, t)] G33 — 022 0
G41(2,t) 0 G11 — O44
S1(z,)] =~ R,] = ~ =
[ 1(Z )] 0'43(2, t)l [ 1] YY) 013
621(2,t) 931 ~ 024
|[f23(Z, t)—i
,t A a(z, t
[Fl(Z, t)] — |]EL1(Z )| [O(Z, t)] — flJr(Z )
| fa3(2,t) | b'(z,t)
e

For the simulation of the fields’ propagation through the medium and their temporal evolution, we
employ the following Maxwell-Langevin equations:

d 0
(at + Ca—> a(z,t) = igNG,5(z,t), (5.48)
0 d 5t B -
(at“a_z) (z,t) = —igNGy, (2, 0). (5.49)

Here, N is the atomic density. It has been assumed that the ideal phase-matching condition is
satisfied, Ak = 0, and g, = g, = g. If we define operator matrix:

~ @tz w)
[0(z,0)] = l bz, w) | (5.50)
equations (5.48)-(5.49) can be written in a matrix form as:
( aat + c—) [0(z,t)] = igNIT][S1(z 1], (5.51)

Where [T [0 _1 0 0

We are interested in finding a solution for a measurable quantity, the gain. In order to obtain it,
Equation (5.51) is solved in Fourier space. In addition, time derivative % can be neglected

compared to c:—z, under studied condition. If we define
[Mi(w)] = w[1] + [M,], (5.52)
and after substitution in Equation (5.47), we get:
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with a following solution:
[$1(2, @)] = g[M; ()] [R,1[0 (2, w)] + i[M ()] *[Fi (2, w)]. (5.54)

Fourier transformation of Equation (5.51) gets a form of linear non-homogenous differential
equation of the first order:

0~ A
=[0Gz @)] = M@N[0G w)] + Me1IF 2, 0)), (5.55)
with
g°’N
[M(@)] = 1T [T][M;@)] " [Ry], (5.56)
N
[Me(@)] = === [TI[M; (@)] (5.57)

We employ the variation of constants method to obtain the solution. First, we assume the solution
of the homogeneous part in a following form:

[0n(z, )] = Z% [C.] (5.58)
and obtain:
[On(z, 0))] = X0~ [M(w)) [Co] = eM@DI[C]. (5.59)

Next, after substituting (5.58) in Equation (5.55), one gets:

0 A
2 [0 )] = M@ [Gy] + M@ [£,] =
= [M(@)]eMI[C] + MF<w>][F1<z, )], (5.60)

From the last equation it follows:
52 [Co] = e MONMg ()][Fy (2, )] (5.61)
After the integration over the propagation distance:
N . L
[Cot] = [o(@] = [ e~ ] 1F, G w)ldz (5.62)
0

Finally, we obtain the equation for output fields, after the mixing process within active medium of
length L, as a function of the input fields operator:

[0(L, w)] = eM@ <[0(o w)|+L J e~ M@z p ()] [Fy(z, w)]dz). (5.63)

0
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Calculating FWM gains

Now, we are able to calculate the average values of the operators, needed for calculating the
gains of the probe and conjugate beams:

_@'@Waw) _ laoul®

“ @ 00D Tanl G
BB 1Boudl?
> =@ (0a0)  laml® (5.65)
For w = 0 we have:

[0, 00] = e @ [0 00 = [20) 5oy (O] (5.66)

Which, in combination with equations (5.64)-(5.65), leads to:
G = |A0)[?, (5.67)
G, = |C(0)|2 (5.68)

Calculating the squeezing level

The main objective of this part of our study is to develop a model that can give us estimation
of squeezing under a different system parameters. Hence, from the average values, we now shift our
attention to the fluctuations in mathematical description of the system. Probe operator, by the
linearization, can take the form of a sum:

a={(a)+éa. (5.69)

The photon noise spectrum is defined as the Fourier transform of the autocorrelation function [142]:
S/ (w) = f C(r)e'tdr. (5.70)

Autocorrelation function of the intensity is [142]:
C(t,t") = (IO = LK) = (61(£)8I(tN), (5.71)
for
6I(t) = 1(t) — (I(t)). (5.72)

In the stationary systems, noise is dependent on T =t — t'. For the further calculus it is useful to
use the dependence of the noise density on the Fourier transform of the intensity fluctuation. Hence,
we can write the following relation:

S/ (w)2md(w + w") = (61(w)SI(w")). (5.73)
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Now we can follow the approach described in details in [143], in order to determine the noise
spectral density of the individual beams coming out of the interaction area, described in terms of the
known system parameters. As previously stated, the spectrum of an operator can be calculated as a
Fourier transform of its autocorrelation function:

a(w) = f a(t)eitdt, (5.74)

at(w) = f at(t)e'wtde. (5.75)

Zx
Now, the noise spectrum of the probe beam can be defined as:

Sa,()2n8(w + w") = (6ng(w)n] (w)) = |a|2(6)?(p(a))8)?$(a))). (5.76)
Here, fluctuations of the photon number operator 71, are:

6A, = |a|sde™ + |a|sdTe™ = |a|6X,, (5.77)

where §X, = §ae™ + sate'?, and the complex field amplitude is described by |a|e'?, as in
Chapter 4.
Fluctuations on the output beams, by previously obtained result in Equation (5.63), are defined by:

da(L,w)] JA(w) B(w)

§b6t(L, )l ~ lc(w) D(w)] (18000, w)] + [FCL,w)]) (5.78)

[60(L, )] = [

sat(L, w)l A*(—w) B*(-w)

55(L, w) = ] ([607(0, )] + [FT(L, w)]). (5.79)

[80% (L, )] = [ =lc'Ceoy D*(-0)

For the first term on the right side we have:

A(w) B(@)]_ M@
[y by =™ (5.80)
while for Langevin noise terms is:
Pl = [ o] = 1 [ e e e ()] 17 o))z (581)
0
1
[FT(L, w)] = [Fé*((LLa‘:’))] =1L f e~ M oLz M (—w)] [F (2, w)]dz (5.82)

0

After the substitution in Equation (5.76), one can get an expression for the noise spectra in the beam
as a function of system parameters defined by atomic structure and interacting beams properties, on
the one hand, and Langevine terms, on the other:
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Sia ()28 (0 + @)
= lal? ({A(@)(3a(0, ) + Fu(L, 0))e™ + B(w) (857(0, w) + Fyp (L, w) ) e~
+ A*(—w) (6&*(0, w) + F (L, a))) e + B*(—w)(6b(0, w) + Fy(L, a)))e”’]
x [4*(=w") (8210, ") + F (L, ") € + B* (=) (85(0, ") + Fy (L, ") )
+ A(w") (580, w") + Fy(L, w"))e™ + B(w") (65*(0, ")+ Fyi(L, a)')) e‘ig]).
(5.83)

Implementing the symmetric order of the operator, and presenting the Langevine noise spectrum in
terms of the diffusion coefficients D,,,,, after some algebra the following simplified expression for
the signal noise spectrum can be obtained [143]:

S, (@) = i(|A( N (14 Dt (@,0)) + [AC@) 2 (14 D g1y (~0, ) )
+ 1B(@)I? (14 Dyry(@, @) + IB(~w)[? (1 + Dy (~o, —w))). (5.84)

Here, D, t+(w, w), D t,, Dytp, Dyt are Langevin diffusion terms, defined by [134]:

a'ra’

1 t * !
D t(w,—w") = [2[1 0] f (e M@z 0 ()] [D] Mz (—w)]e™ M E@NZg2y11 o
0
Dt (—w,0') = I2[1 0] f (eI COLz [y~ )][D] [Mp(@]e” ME@Mzg 11 ]
0
Dt (w,—w') = I2[0 1] f (e M@z ()][D] IME(—aD]e™ M CoMzg10 1]
0

1 ¢ ,
Dyt (—w, @) = I2[0 1| f (e~ M MLz [ M (—)][D] [Mp(w)]e” M@NZgzy 10 1]
0

(5.85) — (5.88)

with
[D] = [D1] + [D-] (5.89)
for
[D4]
T(T2 + 4A% + 202 + 8AHFS + 4HFS?) 0 iTQ(T + 2i(A + HFS)) 0
1 0 0 0 —irQ(T — 2i(A + HFS)) l
T 2d —iT'Q(T — 2i(A + HFS)) 0 ro? 0
[ 0 iyQ(T + 2i(A + HFS)) 0 T2 + 2y(I2 + 442 + 202 + 8AHFS + 4HFS?)]
0 0 0 —iyQ(T — 2iA)
)] - i[ 0 [(I2 + 442 +20%) iTQ(T + 2iA) 0 ]
2 dl —iTQ(T — 2iA) ro? 0 J
yQ(F + 2iA) 0 0 Q2 + 2y(I'? + 4A% + Q?)

78



d = 2I'? + 4Q0% + 4HFS? + 8A% + 8AHFS.

Following the same approach as for a single beam, it is simple to calculate relative intensity
difference noise by:

S, (0)216(w + w') = (§A_ ()57l (w")), (5.90)
where A_ = A, — 7, and 6A_(w) = |a|6X,, (@) — |B16Xp o (w).

Final expression for the difference intensity noise spectrum is:

1
2(14(0)1* + 14(0)1?)

Sn_(w) =

x (140" A@) = €O C@)I (1+ Doyt (@, )
+ 1AA(=w)* = C(0)C(=w) |2 (1 + Dyty(—w,—w))
+14(0)"B(@) = C(0)"D(@)[? (1 + Dy, (w, ) )

+ |A(0)B(~w)* — C(0)D(—w)*|? (1 + D, (—w, —cu))). (5.91)

Doppler effect on gain and squeezing by FWM

As in the semiclassical study presented in the Past I, we are interested in the effect of the
Doppler line broadening on the both gain and squeezing. As a consequence of the Doppler effect a
frequency shift in the laser frequencies will be present, as explained in Chapter 3. We follow the
similar procedure to include this effect in the quantum model. The atom are divided into groups
each having different effective one-photon detuning A—» A + A= A,,. The equation (5.63) we now
rewrite in the following form:

[0(L, )] = [0(0, w)]eZatomsM@aaNIL = [0 (0, w)]exp [* P(w)[M(w,A,)ILdv.  (5.92)

Where P(v) is the Maxwell-Boltzman distribution defined by Equation (2.11).

5.2.2. Results of the model — dependence of gains and squeezing on FWM parameters

Since this model takes into account different system parameter as variables, we can study
the system response to their changes.

Dependence on one-photon detuning 4 and Doppler averaging

The comparison has been made between the results of the model for the cold atoms
presented in [133], and the one in this thesis, and presented in Figure 5.8. Results published in [133]
for Rb vapour, suggested that their model can predict the behaviour of the hot system in relatively
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good manner. In this section we will question that and demonstrate that the effects of the model
correction we introduced — relaxation processes, transit time of the atoms through the interaction
area and Doppler effect. In Figure 5.8 (a),(b) we show the results of gains and squeezing obtained
by the model from [133], as a function of one-photon detuning, for § = 0 MHz, Q = 1.25 GHz,
N. = 10'® m™ and L = 10 mm. Differences in the gains and squeezing level between these results
and the ones obtained by our model, Figure 5.8 (c),(d), are evident. In addition, slight shift of the
optimal A, for the maximal gain and best squeezing, is noticed. Even though model from [133]
gives qualitatively sound results, our model is definitely a better choice if one wants to obtain more
realistic results and predictions of the squeezer behaviour.
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Figure 5.8 Calculated gains of the probe and conjugate (a),(c) and levels of squeezing (b),(d) as a function of
A. In the first row results are obtained by the model described in [133], while in the second row are the
results from our model.

In the Figure 5.9 we show the behaviour of the modelled system as a function of A for two
different values of the pump Rabi frequency. The gain profiles are consistent with the results
obtained by the semi-classical numerical model, shown in Part I, and remind us that there are
optimal value of the one-photon detuning, A,,, for the maximal gain. Note that for these FWM

parameters, the squeezing maxium also occurs at the same A,,. This value shifts away from the
resonance as we increase the pump Rabi frequency.
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Figure 5.9 Calculated gains of the probe and conjugate (a),(c) and predicted levels of squeezing (b),(d) as a
function of A. Results in (a) and (b) are for Q = 1.25 GHz, while the calculations presented in the bottom
row are for Q = 2 GHz. Other parameters values are: § = 4 MHz, N, = 3+ 108 cm™® L =10 mm, T = 6
MHZ, Ygepn = 3.15 * 10* Hz, Ty = 7.6 * 10° Hz.

Dependence on pump Rabi frequency 2

Next, we explore the system behaviour as a function of the pump Rabi frequency, for
different combinations of other FWM parameters. Results are presented in Figures 5.10 and 5.11. In
Figure 5.10 the results are shown for two different one-photon detuning. For larger value of the
laser detuning, higher Rabi frequencies, i.e. pump powers, are needed for the best efficiency of the
mixing process. Higher amplifications of the beams are followed by the better relative intensity
squeezing. If we compare the results from the Figure 5.10(a)(b) to the ones in the Figure 5.11(a)(b),
we can notice that both squeezing and gain levels slightly drop as we move away from the two-
photon resonance. Interesting are the results presented in the bottom row of Figure 5.11, for new,
higher value of the density of the atoms. Here, the mismatch between the optimal Rabi frequencies
for the maximal gain and best squeezing occurs. In all of the previously described cases, when these
values of Q,, for the gains and squeezing are aligned, probe gain is continuously higher than the
gain of the conjugate, G, — G, = 1, as we scan the values of A and Q. For the results presented in
Figure 5.11(c)(d), this is not the case. The imbalance in the noise on the correlated twin beams will
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shift the optimal values of, in this example, Rabi frequencies for the highest gain and squeezing
with respect to each other.
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Figure 5.10 Calculated gains of the probe and conjugate (a),(c) and levels of squeezing (b),(d) as a function
of Q. Results in the first row are for A = 1 GHz, while the calculations presented in the bottom row are for
A = 1.5 GHz. Other parameters values are: § = 4 MHz, N, = 1 * 10¥ cm® L = 10 mm, I' = 6 MHz,
Yaepn = 0.5 % 10* Hz, T, = 7.6 * 10° Hz.
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Figure 5.11 Calculated gains of the probe and conjugate (a),(c) and levels of squeezing (b),(d) as a function
of Q. Results in the first row are for § = 10 MHz, N, = 1 * 10*® cm3, y4,,, = 0.5 * 10*. For the second
row § = 10 MHz, N, = 3 * 108 cm3, ygepn, = 5 * 10°. Other parameters values are: A = 1 GHz, L =
10 mm, ' = 6 MHz, Hz, T, = 7.6 * 10° Hz.

Dependence on two-photon detuning &

During the classical study, we have learnt that two-photon probe detuning has great impact
on the gain profiles. Now, we are also interested in the response of our system in terms of the
obtainable squeezing levels. Calculated gains and squeezing as a function of § are shown in Figure
5.12. These calculations are performed for the fixed pump Rabi frequency Q = 1 GHz, while we
varied the one-photon detuning, for the first two rows A = 1.5 GHz, and for the results in the third
row it was A =1 GHz. For A = 1.5 GHz, we have changed the atom density from N, =1 *
108 cm™, Figure 5.12 (a)(b), to N, =310 Figure 5.12 (c)(d). At higher potassium
temperatures, higher gains, but also better squeezing levels, are obtained in the case when the probe
is detuned more from the two-photon resonance. For the two lower rows, when A = 1 GHz, and
N. = 3 =108, there is no change in the optimal & for the gain maximum. However, there is a
noticeable shift of the value of § for the most efficient squeezing with the change of the
temperature. Again, the squeezing is best in the region of § when probe gain is close or bigger than
that of the conjugate.
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Figure 5.12 Calculated gains of the twin beams and the respective squeezing values for (a)(b) A = 1.5 GHz,
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Dependence on the potassium density N,

With the change of the potassium temperature, there is a striking change of values of the
decay and dephasing mechanisms for agreement with experiment. In that context lies one of the
importance of the theoretical work we have performed, since we have included adequate decay and

dephasing rates in our model.
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In Figure 5.13, results for the gains and squeezing as a function of atom density are
presented. Interestingly, we can enhance the amplification process while rising up the temperature,
however, for the best squeezing there is an optimal atom density. The results indicate that when we
are detuned near the edges of the Doppler broadening of absorption line, the temperature has to be
lower for the best squeezing. Even at this lower one-photon detuning, Figure 5.13(c)(d), the model
suggests that good levels of squeezing can be obtained.

In summary, we have developed and tested new model for calculation of FMW gains and
squeezing in hot alkali vapours. It is evident that there are lot of variables in the system affecting its
behaviour and results of gains and squeezing, and that these relation are not always easy to predict
and understand. To that end, our model is of the great assistance when one is in the search for the
desired system response.
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6. Experimental demonstration of the intensity difference
squeezing by FWM in K

This chapter presents the results of the performed experimental study of two-mode relative
intensity squeezing generated by the FWM in potassium vapour. In the first part, the upgrades and
changes made on the experimental set-up employed in the classical study are described, followed by
the characterization of the system in terms of the limitations imposed by the classical noise and
ever-present losses in the detection. Finally, the obtained squeezing levels are shown and
characterized as the function of the system parameters.

6.1. Experimental methods

6.1.1. Experimental set-up

The schematic of the experimental setup used to generate and measure the squeezing by
FWM is shown in Figure 6.1. The first change we have made was in the laser system that we use.
We wanted to have as much power as possible at the disposal, since high pump powers are needed
to enhance the nonlinearity. Hence, we have changed the green pump laser employed for pumping
Ti:Sa crystal of MBR laser with a 12 W VERDI G12 model, also at 532 nm. We were able to obtain
up 750 mW of pump power, frequency stabilized at ~770 nm. The pump beam was sent through the
set of lenses to obtain the beam diameter of 0.8 mm inside the cell. The probe was send thorough
the single-mode polarization maintaining fibre in order to get better spatial profile and then with the
telescope slightly focused with the waist of 0.5 mm at the intersection with the pump at the center
of potassium cell. The probe and pump were orthogonally polarized, combined at Glan-Taylor (GT)
polarizer. The phase-matching angle was set to 4 mrad. Another GT polarizer, placed after the cell,
with the extinction ratio 10°: 1,, separates the beams, allowing only for the probe and the conjugate
to pass to the detector. After the cell, the probe and the conjugate are sent to the balanced
photodetector (Thorlabs PDB450A-AC), which subtract their respective photocurrents. It consists
of two low noise diodes and transimpedance amplifier, Figure 6.2 [144]. With the two outputs (+/-)
we can monitor the signals of the probe and conjugate individually. The gain of the amplification
stage can be varied, which consequently limits the RF output bandwidth. Presented results were
taken with the transimpedance gain of 10° V/A that limits the bandwidth to 4 MHz. The signal
difference is sent to the spectrum analyser (RSA607A Real-Time spectrum Analyser from
Tektronix). All of the signal spectrums were recorded with the resolution bandwidth set to 3 kHz
and video resolution of 30 Hz.

New cell and the heating system

The first squeezing was observed with the long uncoated Brewster cell, that was used in
the study described in the Chapter 3. However, the results, in general, were poor, mainly due to the
losses imposed on the beams in this system. Two problems with the potassium cell were realised,
uncoated cell window, and the Brewster angled windows which significantly reduced the pump
power. The measured gain profiles, Chapter 3, indicated a significant difference in the gain levels of
the probe compared to the conjugate. As suggested by our model, this can lead to the low squeezing
or no noise reduction at all. To address this problem, we replaced the cell in our experiment with the
shorter one, 30 mm long, with flat antireflection (AR) coated windows, Figure 6.3 (a).
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Figure 6.2 Functional block diagram of the balanced detector PDB450A-AC [144].

The initial measurements with the new cell revealed that the window transmission was
getting lower over time due to deposition of potassium on the windows while cooling down the cell.
Hence, we were in need of another design for the cell heating system. We kept the method of
heating by the hot air, but find another way of heat distribution around the cell, in order to introduce
different “cold point”, away from the cell windows. The picture of a new design is shown in Figure
6.3(b). This time, hot air is being sent through the copper pipes mounted around the edges of the
cell, making the middle of the wall the least heated spot during the cooling down process. The
whole construction is again placed inside the isolating holder made of teflon. One of the
thermistors, pt1000, is placed next the wall window, while the other is used to monitor the
temperature of the copper plate holding the cell. For the temperature in the cell we recorded the
mean value of the ones detected by these two thermistors.
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Figure 6.3 (a) Potassium cell with the flat AR coated windows. (b) New design of the cell heating.

6.1.2. Limitations of the system and SQL noise calibration

In order to determine the squeezing levels in our experiment, we have to compare the noise
level of the probe and conjugate signals difference with the standard quantum limit (SQL). This
reference noise level is defined by the shot noise of the coherent light source, the laser, used in the
experiment. SQL is measured by the balanced homodyne detection. The probe seed beam is evenly
split by A/2 waveplate and polarizing beam splitter, and the obtained beams are sent to the balanced
detector, as presented on the Figure 6.4(a). By balancing the powers of the beams reaching the
detector, in the measured difference of the photocurrents, technical background noise and classical
amplitude noise will cancel out. However, due to the quantum nature of the photons, quantum noise
is still present. These recorded values quantify the SQL. In Figure 6.4(b) the results of the SQL
calibration at 1.5 MHz, as a function of the total power, are presented. The electronic noise
measured separately is subtracted from the measured signal difference.
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Figure 6.4 (a) Schematic of the setup used for SQL measurements. (b) SQL calibration @1.5 MHz
as a function of total laser power, corrected for the electronic noise.

In Figure 6.5 the intensity noise spectrums of the probe seed, for the same seed power
and different power of the VERDI, detected by the photodiode of the balanced detector, are
presented. It can be noticed that the signal gets noisier at the frequencies below 1 MHz when we
increase the power of VERDI, the source of both pump beam and seed probe in the experiment.
This can be one of the limiting factors, if such operating conditions are needed, and one is focused
on the lower frequency range. Since we could not find the way around this issue, the results that
will be presented in this Chapter are measured at the frequencies above 1 MHz.

Important for reliable estimation of the level of relative intensity squeezing is the
determination of optical and detection losses and their values. As previously noted, even though the
losses induced by optical elements and by detection are unavoidable, it is vital that they are
minimized. The cell windows are, as already mention, AR coated, resulting in the probe
transmission of 0.98(5) per cell window. Losses of 0.08 are measured on the optics elements behind
the cell, the beam splitter, the mirrors and the lenses. From the responsivity of 0.53 A/W, quantum
efficiency of the balanced detector was estimated to be 0.85. This led to the total losses in detection
of ~0.24. This value was later used to calculate expected levels of squeezing, utilizing
phenomenological models explained in the previous chapter.

6.2. Results and discussion

In this section we present experimentally obtained results of the intensity difference
squeezing by the FWM process in hot potassium vapour. We have investigated mechanisms of the
noise reduction by considering dependence of squeezing on different FWM parameters, like one-
photon detuning, two-photon probe detuning and vapour density. In addition, we compared the
predicted levels of squeezing by the model of operators with the ones experimentally obtained.
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Figure 6.5 Measured noise intensity spectra of the probe seed for different powers of the VERDI.

The quantum correlation between the probe and conjugate beams is quantified by the
noise spectra of the intensity difference, like the one presented in Figure 6.6. Figure shows the
measured intensity noise of the individual beams, probe and conjugate, so as the intensity difference
signal which is below the SQL. The plotted noise spectras are corrected for the electronic
background noise and the pump leakage.

These results are obtained for A = 1.2 GHz, § =6 MHz, T = 123 °C, and pump and probe powers
of 750 and 6 uW, respectively. The measured gains of the probe and conjugate are 7.12 and 7,64,
respectively. For this set of experimental parameters, squeezing is obtained in the frequency range
between 0.9 MHz and 4.5 MHz, with the maximal value of -6.1 dB reached at 1.2 MHz. The
squeezing bandwidth is defined on the lower frequency side by the system classical noise, as
previously suggested, and on the high frequency by the RF output bandwidth of the detector,
dependent on the output conversion gain. The contribution of the fraction of the pump reaching the
detectors to the noise signal difference was determined by extrapolating SQL and probe-conjugate
signal difference to zero power, and subtracting the former from the later. Note that the amount of
the leaked pump noise is frequency dependent, and therefore it has to be evaluated at the frequency
at which the results were reported. For the measurement results that follow, the pump power was
kept at 700 mW, while the probe power was 6 uW. The values of squeezing are obtained from the
noise spectra at the analysing frequency of 1.5 MHz. As it was suggested by the theoretical results,
there is a strong mutual dependence of squeezing on all of the system parameters, hence, changing
value of the one, requires the adjustments of the others for the maximal possible squeezing.
Therefore, when investigating effects of experimental parameters, we change one at the time and
measure the noise spectra of the difference between the probe and the conjugate. We test our system
for a wide range of the variable parameters in order to obtain comprehensive and clearer picture of
how these parameters affect noise reduction by FWM in K.
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and the conjugate, corrected for the pump leakage, at 123 °C, for A= 1.2 GHz, § = 6 MHz,
Ppump = 750 MW, Py ppe = 6 W.

Dependence of gains and squeezing on one-photon pump detuning

Figure 6.7 shows the squeezing dependence on the one-photon pump detuning A,
measured at three different cell temperatures. The two-photon probe-pump detuning was kept at
6 = 0 MHz. This choice of value for § allowed the widest possible range of Aat different
temperatures for which the squeezing was observed. At 110 °C, and potassium density of 1.52 *
102 cm™, the best noise reduction is obtained at A = 0.75 GHz, Figure 6.7(a). As the temperature
increases to 114 °C, Figure 6.7(b), and then to 118 °C, Figure 6.7(c), the A for the maximum
squeezing shifts to 0.95 GHz and 1.25 GHz, respectively. As the density increases, one photon
detuning for the maximal squeezing has to be further detuned from the Doppler broaden absorption
line, to reduce the probe and the conjugate absorption and scattering. Too large A, on the other
hand, means lower nonlinearity and reduced squeezing.

In Figure 6.7 the measured gains of the probe and conjugate are also presented. At
lower temperature, of 110 °C, the gain maximum and the maximum of noise reduction are obtained
at the same value of the one-photon detuning. As temperature increases, maximum of squeezing
also shifted to higher A, and shifter therefore with respect to the gain maximum. These results are
consistent with the microscopic model predictions, as presented in previous chapter. The model
predicts the appearance of this frequency gap between the optimal parameter values for the gain and
squeezing, when conjugate gain exceeds the probe gain, as it is the case for the results shown in
Figure 6.7. One can also notice that for all vapour densities the maximal squeezing is at the similar
and modest values of gains, around 3. Through this low probe and conjugate gains, the FWM
system is, in fact, making the balance between too high absorption and associated noise
amplification, at the higher gains, and too high seed probe power at the lower gains.
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Figure 6.7 Gains of the probe and conjugate — top plots, and intensity difference squeezing — bottom plots, as
a function of A at different cell temperatures (a) 110°C, (b) 114°C, (c) 118°C, for § = 0 MHz, P,y = 700
mWw.

We were also interested in comparison of the behaviour of gains and squeezing levels
in respect to FWM parameters, to those obtained with other alkali elements. The alignment of the
gain and squeezing maximums observed in potassium at certain values of parameters was also
observed in Rb [81,138] and Cs vapours [110]. The analytical interleaved gain-loss [138] and
numerical [81] models also predicted quantum noise reduction with respect to the increase of gain.
These models correctly show that the pump detuning affects classical and quantum properties in the
same manner, when maximums for the gains and squeezing are at the same value of one-photon
detuning. They correctly predict corrections of measured noise reduction when losses in twin beams
transmission and detection are known. Then, squeezing resulted from FWM in the vapour can be
predicted when detection efficiency is assumed to be n = 1. We have used these models, introduced
in Chapter 5, in order to calculate squeezing as a function of one-photon detuning using the
measured transmission losses and calculated detection efficiency. We have also employed the
interleaved gain/loss model, as previously done by [81,82,110,138], to estimate the squeezing in an
ideal case, with no losses in detection. Results obtained using the models from the Chapter 5 are
presented in the Figure 6.8. The squeezing predicted by the model is stronger than our measured
values. A couple of explanations can be found for this discrepancy. As suggested in [138] this could
be due to the assumption in the model that the pump and the probe are fully overlapped in the entire
cell, i.e. both gain and FWM coupling are considered uniform throughout the cell, which is not the
case in the experiment. Also, losses on the probe and conjugate beams are similar at best, but are
not equal. This comparison suggests that much larger squeezing in K is possible after adequate
adjustments in the experiment, using different size of the cell and different phase matching angle
between the pump and the probe. Calculated maximum of squeezing in the the ideal case with no
losses in the transmission of twin beams after the cell and on the cell window, and for quantum
efficiency n = 1 of the balanced detector, is -10.29 dB. This value for the intrinsic source squeezing
is among the highest that this and similar models predicted for alkali atoms [81,82]. When gain and
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squeezing maximums are at different A, phenomenological models do not agree with the
experiment, not even qualitatively. Similarly, when maximum of noise reduction is shifted vis-a-vis
maximum of twin beam gain, no agreement between the experiment and phenomenological model
is found in [110].
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Figure 6.8 Squeezing vs one photon detuning - calculated results with detection losses and results for ideal
detection by gain/loss model (blue pluses), under experimental conditions, with absorption and losses in
detection (red circles), and with losses only in transmission by BS model (yellow circles), at 110°C,

§ = 0 MHz, Pyymp = 700 MW. Py0pe = 6 uW at 1.5 MHz. (b)

Dependence of gains and squeezing on two-photon probe detuning

FWM squeezing and gains of twin beams as a function of two-photon pump-probe
detuning &, for two values of A, at temperature 121 °C are presented in Figure 6.9. The two-photon
detuning for the maximum of squeezing is closer to the two-photon resonance, 6 = 0, if A is higher,
it is at ~10 MHz for A= 1.1 GHz, and at ~4 MHz when A= 1.3 GHz. Squeezing is only observed
at the positive values of &, but away from the maximum of corresponding gain. This system
behaviour agrees well with the model predictions, Figure 5.12. Also, note that for each A, the
highest squeezing level is at the two-photon detuning at which the gains of twin beams are at low
values, similar conclusion we draw from their dependences on one-photon detuning. Dependence
on &, as dependence on A, places the highest levels of squeezing in the narrow range of respective
detunings, where gains of twin beams are nearly equal and small.

The values for the highest level of measured squeezing vary both with the vapour

density and A, as it was suggested by our model, Figure 5.12. This was demonstrated in Figure 6.10.

Presented results are obtained at two different temperatures, 121 °C and 123 °C, for A= 0.85 GHz

and A= 1.2 GHz, respectively. For these sets of experimental parameters, measured gains of the

probe and conjugate are balanced and small where squeezing is at the maximum. It can be seen
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from the Figure 6.9 and Figure 6.10 that for lower atom density the optimal conditions for noise
reduction are obtained at smaller pump detuning. At higher temperatures it is necessary to detune
the pump further from the Doppler profile to keep gains in desired narrow interval.
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Figure 6.9 Gains of the probe and conjugate, and squeezing as a function of § for (a),(c) A= 1100 MHz, and
(b)(d) A= 1300 MHz, at 121°C, for Py, = 700 MW. Py, = 6 uW.
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Dependence of gains and squeezing on the potassium cell temperature

Dependence of squeezing on the temperature of potassium vapour is given in Figure
6.11. The results are for the range of temperatures from 110 °C to 125°C, corresponding to vapor
densities from ... to. Presented squeezing is for § =5 MHz, and two values of one-photon
detuning, A= 1.1 GHz and A= 1.2 GHz. We demonstrate a strong dependence of squeezing on the
cell temperature, and that for the different combination of A and &, there is different optimal value
of the density of potassium atoms needed for the best squeezing. Again, this result is in agreement
with the microscopic model predictions, Figure 6.11.

In summary, we have demonstrated in both theoretical and experimental manner that
FWM in K can be a source of strong relative intensity squeezing. The best squeezing in K, of — 6.1
dB, was obtained. In addition, we have studied the behaviour of the gains and squeezing as a
function of various system parameters, and obtained good qualitative agreement of the measured
results compared to our model predictions. The higher levels of the squeezing predicted by the
model indicates that there is still room for the improvements in our experimental set-up.
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Figure. 6.11 Measured squeezing as a function of the cell temperature for A= 1100 MHz and A= 1200
MHz, when § = 5 MHz, Byymp = 700 mW.
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7. Conclusion

In this thesis we have described and explained the nonlinear effect of non-degenerate four-
wave mixing in co-propagating beams configuration, realized in hot potassium vapour. We have
performed an extensive study of the gains of the probe and conjugate by FWM as a function of
system parameters and demonstrated that this system can act as a strong parametric amplifier with
the gains of several hundreds, lager than observed for other alkali species under comparable
conditions. This makes potassium competing element when it comes to the potential application in
which this accumulated gain is of interest. We have learnt that for the highest amplifications one-
photon detuning of the pump from 4S,,,, F =1 to 4P,;, has to be shifted outside the Doppler
broaden line. When it comes to the dependence on two-photon detuning, the optimal values lie in
the narrow range, usually between -10 — 0 MHz. A strong sensitivity on other variables in the
system, like atomic density, probe power and phase-matching condition, has also been
demonstrated.

Beside the experimental work on the topic of the gain, we have performed complementary
theoretical study. A semi-classical numerical model has been developed, and the results of the
calculus have been compared to the measured ones. Good agreement has been obtained. In addition,
by the use of the model, we were able to examine the effect of parameters whose values cannot be
determined experimentally, like the contribution of the different relaxation mechanism and their
effect on the results.

After we become familiar with the described FWM system in K, we were able to embark on
another challenge and try to generate relative intensity squeezed light by the means of this nonlinear
effect. We successfully demonstrated the noise reduction below standard quantum limit of -6.1 dB.
These are the first-time measurements and analysis of FWM in potassium vapour, under certain
atomic scheme that wasn’t used before for this alkali element, which led to the higher degree of
amplitude intensity squeezing. For a broad range of FWM parameters we have found that classical
and quantum phenomena, gain and squeezing, can be in/out of sync with each other. We have
discussed different analytical models in terms of qualitative and quantitative agreement with the
experiments, as previously done for other alkalis. We found useful to test these models for
potassium since it has quite different hyper-fine level splitting, much lower than Doppler
broadening. We discussed our results, when and why, model and experiment agree or not. Our
findings are complementary, but not always consistent with the ones reported experimentally and
theoretically in Rb and Cs. Since it is not surprising that the models of operators do not always
match with experiment as they are phenomenological, we have developed microscopic model based
on Heisenberg-Langevin equations that makes a comprehensive analysis of the system, in terms of
both gain and squeezing, possible. The relations between the gain and squeezing observed in the
experiment, were also reproduced by the model. It is apparent that extensive experimental
exploration of the whole parameter space is time consuming and demanding, hence, having a proper
theoretical model can ease the choice of parameters’ values, especially if some specific
requirements are desired (or needed) by the future application of described system. By studying the
system behaviour in response to the variation in the system parameters, we have acquired the
knowledge that will enable us to implement such a new bright quantum light source for enhanced
sensing and imaging.
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buorpagcku nogauu

Mapwuja hypuuh je pohena 12.08.1991. romune y KpameBy. M3abpana je 3a haka
reHepalyje HaKOH 3aBplLICHE OCHOBHE WIKoJIe. Ymucaina je MaremMaTHuKy THUMHA3ujy y
KpasseBy, kojy je 3aBpumnia Kkao Hocwiall BykoBe aumiome. Y OCHOBHO] U CPEAb0j HIKOIU
y4ecTBOBaJa j€ Ha PeIyOJMYKUM TaKMUYeHhUMa U3 MaTeMaTuke u ¢pusuke. EnekTpoTeXHuIKu
dakynret je ynucana 2010. rogune. unmomupana je Ha ojaceky 3a OU3NUKY €IEKTPOHUKY,
cMep HanoenekTpoHuka, ONTOCIEKTPOHUKA U Jlacepcka TexHuka, 2015. roguHe ca yKymHOM
npocedrHoM orieHoM 8.89, u orieHoM 10 Ha 3aBpimHOM paay Ha Temy "Kocumynanuja uzmely
Matlab-a u OptiSystem-a Ha npumMepy pedIeKCHOHUX TMOIYIPOBOJHHYKUAX ONTHUKUX
nojayaBava. JluruioMcke akajgeMcke — MacTep crynuje Ha EneKkTpoTexHuuKkoM (akynTeTy y
beorpany, Ha Momymy 3a HanoenexkTpoHuky u (oTOHHMKY ymucaina je y okroopy 2015.
rogune. Ilonoxwuna je cBe ucnute ca mpoceyHoM oueHoMm 10 u oxbpaHmia mactep paj,
onpahen y JlabopaTopuju 3a aToMCKy U KBaHTHY (u3uky Llentpa 3a ¢poronuky MucTuTyTa 32
¢usuky, Ha Temy "HenmHeapHa cCieKTpocKomnuja y mapu kanujyma'" ca oreaom 10.

Y okrobpy 2016. rogmHe 3amouumbe JOKTOpCKE CTyauje Ha EnekTporexHHYKOM
dakynrery y beorpany, Ha moxyny Hanoenexkrponuka u ¢oronuka. O HoBemOpa 2016. je
3anocnena y Llentpy 3a ¢oronuky MucTuTyTa 32 Qusuky y beorpany, a on 2020. U saBaspy
WCTa)XUBA4 CapaJHUK. TpEeHyTHO je aHra)koBaHa je Ha BHIIEe Mal)yHapOIHUX IpojeKaTa us
00JIaCTH ONTHYKE MarHeToMeTpuje W KBaHTHe Ouoporonuke. Koayrop je Ha Tpu paja
kareropuje M21 u jeqHoMm kareropuje M22.

Ha jaBHOj ycMeHnoj onOpanu oapxkanoj 10.10.2019. na Enekrporexuuukom axkynrery
y Beorpany ono6pena joj je Tema JOKTOpCKE JucepTalrje noj Ha3uBoM ,,[[ppuMena KBaHTHUX
U HeMHeapHUX (DeHOMEHa y MmapH KaldjyMa 3a KOHTPOJIY OCOOMHA JIaCepCKOT 3paderha’.
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