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Title of doctoral dissertation:  

One Particle Filter Based Algorithm of Tracking of a Moving Object in the Sequence of Images  
Abstract: 
There are a continuously increasing number of applications where moving objects should be 

tracked in a video sequence. This research work has been directed to and focused on video sequence 
monitoring and following up of automobiles in artificial and real-world traffic scenarios. Bearing in 
mind the rapidly growing scope of applications in the areas of automatic monitoring of traffic 
situations on the roads, as well as on the control of autonomous vehicles in traffic, the attention was 
focused on the problem of moving vehicle video tracking as the starting phase of many of the tasks 
of this type. The concept of “Particle Filter” has been adopted as the basis for our approach in the 
estimation of an object's position in an image, because of its verified abilities in solving the tracking 
problems in complex situations regarding motion dynamics, as well as from the aspect of 
disturbance nature. As in the cases already existing in the literature, we have based our approach on 
the choice of appropriate image features that should be used as the object’s appearance model. 
Algorithms supported by Particle Filter (PF) are more and more frequently used for these functions. 
The suggested tracking algorithm here is based on the implementation of PF using three 
independent features of the image at the same time. (color contents/histogram, objects’ contour 
extracted by the usage of the image gradient, and texture defined by Grey Level Co-occurrence 
Matrix). All three features are represented by appropriate histograms that are associated with the 
contents of a rectangular window that contains both the vehicle that is tracked and the surrounding 
area. 

 Based on individual estimates produced by every single feature, the final estimate is made by 
their weighted average. It’s been adopted the mechanism of adaptation of weighting coefficients for 
particular image features, including the cases that some of them should be excluded from the 
calculation if their level of confidence is below some specified threshold. The quality of a specific 
feature is determined by calculating average similarities between the reference window and the 
collection of windows on particles' locations, and according to that, the weighting coefficients 
modify adaptively. The tracking accuracies of single-feature and three-features based filters were 
tested utilizing a variety of artificial and real-world traffic sequence scenarios that enclose different 
common perturbations (shadows, variable background, partial and full occlusions, maneuvering, 
etc.). 

Using the three-feature-based filter demonstrated the improvement of tracking accuracy in 
comparison to any of single-feature based ones using video sequences illustrating typical traffic 
scenarios. 

 

Keywords: Object tracking, particle filter, image features, color histogram, texture, Grey Level Co-
occurrence Matrix, image gradient, histogram of oriented gradients. 

Scientific area: Computer vision 

Narrow scientific area: Moving object monitoring and tracking 
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Наслов докторске дисертације:  

Алгоритам праћења покретних објеката у секвенци слика применом честичног филтра 

 

   Апстракт: 
У савременом свету континуално расте број примена у којима треба пратити покретне 

објекте у видео секвенци. Овај истраживачки рад је усмерен на праћење аутомобила у видео 
секвенцама које су рачунарски синтетизоване или потичу из реалних саобраћајних сценарија. 
Имајући у виду све већи обим примене у областима аутоматског надзора саобраћајне 
ситуације на путевима, као и управљања аутономним возилима у саобраћају, пажњa је 
усмерена на проблем видео праћења покретних возила, као на почетну фазу многих задатака 
овог типа. Концепт „честичног филтра” (angl. “Particle Filter”) усвојен је као основа за 
приступ у процени положаја објекта на слици, због његових проверених способности у 
решавању проблема праћења у сложеним ситуацијама у погледу динамике кретања, као и са 
аспекта природе поремећаја. Као и у већ постојећим случајевима у литератури, предложени 
приступ се заснова на избору одговарајућих карактеристика слике које треба користити као 
модел репрезентације објекта. Алгоритми на бази честичног филтра (ПФ) се све чешће 
користе за ове намене. Овде предложени алгоритам праћења је заснован на имплементацији 
ПФ-а истовремено користећи три независне карактеристике слике (садржај боје/хистограм, 
контуре објеката издвојене употребом градијента слике и текстуру описану матрицом 
узајамног појављивања нивоа сивог). Све три карактеристике су једнобразно представљене 
одговарајућим хистограмима који се односе на садржај правоугаоног прозора који обухвата 
праћено возило и његову локалну околину. 

 На основу засебних процена које производи свака појединачна карактеристика, коначна 
процена се прави на основу њиховог пондерисаног усредњавања. Усвојен је механизам 
прилагођавања тежинских коефицијената за одређене карактеристике слике, укључујући 
случајеве да неке од њих треба потпуно искључити из прорачуна ако је њихов ниво поверења 
испод одређеног прага. Квалитет специфичног обележја се утврђује израчунавањем 
просечних сличности између референтног прозора и скупа прозора на локацијама честица, па 
се према томе адаптивно мењају тежински коефицијенти при усредњавању. Тачност праћења 
филтера на бази појединачне карактеристике и на бази симултаног коришћења све три, 
тестирана је коришћењем различитих саобраћајних сценарија (синтетичке и реалне секвенце) 
које обухватају различите типичне поремећаје (сенке, променљива позадина, делимичне и 
потпуна заклоњеност, маневрисање, итд.). 

Примена филтера заснованог на истовремном коришћењу три карактеристике слике 
показала је побољшање тачности праћења у поређењу са било којим од филтера заснованих 
на појединачној особини, на свим анализираним видео секвенцама које илуструју типичне 
саобраћајне сценарије. 

Кључне речи: Праћење објеката, честични филтер, карактеристике слике, хистограм боја, 
текстура, матрица ко-појављивања нивоа сивог, градијент слике, хистограм оријентисаних 
градијената. 

Научно област:  Рачунарска визија 

Уже научно област:  Надзор и праћење покретних објеката 
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1 Introduction 

1.1 Concept of visual object tracking (VOT) in computer vision 

Visual object tracking is one of the most substantial missions in computer vision, aiming at the 
estimation of kinematic parameters (position, velocity, the direction of motion, etc.) and other 
relevant information, that is describing the moving object in a set of image sequences captured by 
a camera [1]. Object tracking in computer vision is an approach of automatic determining or 
estimating an object's trajectory (location) within subsequent video image sequences based on 
previous scene information. Therefore, the general objective is to segment the specified object 
from the scene and keep track of it or follow its states from frame to frame over time, to extract 
useful information and recognize the object’s behavior using some algorithms. Objects in the scene 
might be moving vehicles on the ground, air, sea, walking people, or animals moving in the natural 
environment, etc. [2], [3], [4]. 

Tracking moving objects in the domain of computer vision is the required and essential part of 
many applications, such as object tracking, traffic monitoring systems, video surveillance systems, 
sports reporting, security-related tasks, medical imaging, and so on. Most of these tasks are based 
on the processing and analysis of video image sequences, which is the source of information [5]. In 
this context, vehicle tracking serves as the foundation for higher-level missions such as traffic 
control, event detection, information and data extraction from traffic flow, etc. [6], [7], [8]. Typical 
problems for reliable vehicle tracking in these circumstances are variable background and shadows, 
variable existence of other close objects (moving or stationary), partial or even full occlusions by 
elements of the scene, variable size of an object during the sequence, etc. [9], [10], [11]. Moreover, 
visual tracking is usually affected by the problems of camera vibration caused by the wind, large 
lighting changes, and other similar technical factors. 

Tracking methods are usually categorized as generative and discriminative ones [12]. 
Generative tracking approaches typically are used to search for the image region with minimal 
reconstruction error, whilst discriminative tracking is dependent on the separation of the target from 
the background. One generative method is adopted, assuming that the window (sub-image) of 
interest consists of a tracked vehicle and surrounding local background. Features characterizing this 
window form the mathematical representation of it.  

 
This thesis proposes a novel method and algorithm for tracking a moving vehicle on the road 

using the video images captured by a video camera. The objective is to create a detecting and 
tracking approach for vehicles utilizing multiple features. The tracking approach is generally 
divided into four parts:  

• Target initialization (specifying the initial state); 
• Appearance modeling (extracting the visual features);  
• Prediction (estimation of target motion), and  
• Updating (determining the target position). 
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An ideal object tracking algorithm should satisfy the following requirements [13]: 
 
• Detection of the tracked object in the first frame of image sequences should be done 

(manually or automatically), 
• It must work in the presence of various disturbances such as background clutters, shadows, 

scale changes, or when the tracked object is hidden or departs outside the video frame 
borders, etc. 

• After the termination of occlusion, it should be able to pick up the object that has been lost 
during occlusion or in-between frames, 

•    Work in real-time – according to the dynamics of target motion in the scene. 
 

Object tracking is a hard mission and challenging for any visual tracking algorithm in the 
existence of many disturbances, but many ways can be used to improve the object tracker.  In this 
thesis, a novel algorithm is created to overcome the problems of background clutter, illumination 
change, or occlusion. This algorithm was used to track objects in the created synthetic image 
sequence as well as in the sequences of real video frames. 
 

Regarding the chosen tracking algorithm concept, we have been motivated by the fact that a 
Particle Filter (PF) is extremely robust for nonlinear and non-Gaussian dynamic state estimation 
and works well where clutter, noisiness, and occlusions are present.  

Using the PF approach, physical system dynamics could be modeled rightly if the elements of 
non-linearity and non-Gaussian type disturbances are included. The work presented in [14] is 
usually referenced as an origin in this particular area. Particle Filters are consecutive Monte Carlo 
methods that rely on point mass representations of probability densities that could be used in any 
state model [11].  

In the status of tracking a moving target, the state model includes the target's location 
(coordinates of the image) and the rate of its change (velocity), while the size of the object also 
could be added as an additional part of the model. In the context of the processing of a series of 
images, probability density functions consist of histograms representing the distributions of 
particular image features [15]. 

The very first image feature used for these purposes was the histogram of colors (in RGB or 
HSV space). Though color-based trackers are robust in cases of partial occlusion, object 
deformations, rotation, and size invariance, the practice has shown that PF based solely on this 
feature is ineffective in many cases, where the tracked window's content is subjected to changes in 
some conditions, such as strong shadows, luminance variations, or if the background and the 
tracked object have similar colors [9]. Other features such as gradients and texture are used in some 
approaches. All of these features have shown their sensitivity and none could be suggested as the 
universal candidate. Gradient-based cues are sensitive to the existence of other “non-target” objects 
within the window, while their calculations might require an enormous computational effort. The 
texture-based cues are relatively less susceptible to changes in illumination, but they are extremely 
sensitive to cluttered backgrounds [16]. 

The reasonable next step is the merging of multiple cues to adjust to their sensitivities. There are 
many approaches of this type, mostly combining the color feature with some representation of the 
object’s edge [9], [17], [18] or, color and texture [5], [19]. Because the PF algorithm is commonly a 
time-consuming algorithm, one should define appropriately and properly the parameters of the 
integrated algorithm, in addition to finding the compromise and fulfillment of a balance between the 
number of calculations (which increases as new features are added) and the amount of time it takes, 
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and therefore achieving the tracking accuracy. In the algorithm shown here, the fusion is made by 
weighted averaging of estimates, supported by the usage of the three features (color, texture, and 
edge descriptors). Using a relatively small number of particles, the results obtained by this “Multi-
Feature Particle Filter” (MFPF) have shown advantages compared with all separate “Single-Feature 
Particle Filter” (SFPF) algorithms and were still acceptable from the total computing time aspect of 
view.   

1.2 Visual object tracking’s applications 
 
Visual object tracking is a significant sub-domain in computer vision. It has many applications 

that have been used with fixed cameras or movable ones, and it has been seen as an essential aspect 
of security and surveillance systems. 

 
Nowadays, visual tracking has used in an enormous range of fields, like industrial production, 
military establishments, planning in civil engineering, multimedia, etc. Some of its important 
applications are given below and shown in Fig.1.1:  

(1) Automated video surveillance and security: It is used to find out, recognize and track objects 
in a succession of images. It is designed for security and monitoring the movements in an area 
(streets, crowded gathering places, railway stations, car parks, shopping centers, etc.), 
specifying the moving objects and recording any suspicious event. The system needs to 
differentiate between existing things that request a good visual tracking system [2].   
 

(2) Traffic monitoring: it could be described as a means used to managing, monitoring traffic, 
security, and safety on roads or highways using cameras. As an example, detection of traffic 
accidents, monitoring of traffic flow, or if a vehicle breaks the traffic laws; so it could be 
tracked easily if the street is supplied with a surveillance system that is supported by a 
tracking system  [2]. 
 

(3) Robotic vision: It could be used in the guidance and control system of robots (industrial and 
humanoid). The guidance system of the robot requires identifying different obstacles in its 
route to avoid a collision. If the obstacles are movable objects, then it requires a visual 
tracking system [2], [20]. 
 

(4) Vehicle tracking: Visual object tracking could be applied to vehicle tracking using a fixed 
camera or movable one, such as tracking a vehicle on a road by a fixed camera beside the road 
or on the bridge or an unmanned aerial vehicle [20]. 
 

(5) Medical diagnostic systems: Computer vision has derived its importance in the medical area 
for diagnosis of different diseases, while observing the motion of naturally existing or 
artificially inserted particles/liquids. It can help doctors find some diseases, which result in 
fast therapy.   
 

(6) Military institutions or government: There are widespread government and military 
applications which face very different security issues. The security and protection of 
government and military sites may include a variety of tasks in various areas, such as 
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monitoring the surrounding environment and prohibited location entry such as military bases, 
airports, safe transportation processes, seaports, dams, bridges, tanker loading terminals, 
terrorist hazard prevention, and so on [2]. 

  
(7) Traditional ground-to-air and air-to-ground missile homing application are used in order to 

destroy the enemy’s objects. 
 

(8) Video games: Visual object tracking algorithm could be expanded to animation and video 
games [2], [20]. 

 
(9) Activity recognition: Visual object tracking might be used for activity recognition, e.g. indoor 

and outdoor monitoring, such as human activity recognition, e.g., monitoring human presence 
and traffic in and around buildings [20]. A very exemplary application is the monitoring of 
different parts of a commercial store for potential shoplifters. 
 

 
 

 

1.3 Difficulties and challenges 

Visual object tracking in video sequences captured by cameras faces various difficulties and 
challenges. Some of these problems that occur in the object tracking process are discussed below 
and shown in Fig.1.2. 

Visual Object 
Tracking    

Traffic 
monitoring    

Vehicle tracking 
monitoring    

Surveillance & 
Security systems 
ehicle tracking 

monitoring    

Medical 
diagnosis 
systems  

Robotic vision    Video games    

Military or 
government 

Activity 
recognaition    

Fig.1.1 Some visual object tracking applications 
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• Shadows and Illumination variation: the shadows produced by objects on or beside the road 
(buildings, trees, clouds, etc.), make the task of detecting and tracking objects more difficult. 
Also, one of the major challenges is that changes in outdoor lighting conditions for any reason 
can have an effect on the object's appearance and make it difficult to discriminate it because 
numerous features of the target that are noticeable in high light become ambiguous in lower 
illumination. Fig.1.3 shows a typical example of a shadow challenge. 
 

 

 
 

Fig.1.3 An example of shadow and illumination [21] 

 
• Complex motion and drifting problem: When the target abruptly changes its speed and direction, 

such as when a car is changing its motion or when people are slipping in the snow. In that case, 
the tracking process becomes a more difficult mission due to the inaccurate approximation of the 
movement type [20], [22].  

 
• Occlusion: in situations where the moving target vanishes and reappears in the scene, or is 

occluded partially or fully by another object for a while before reappearing at a different 
location, the tracking issue turns more difficult [23]. In partial occlusion, a few or several parts 
of the object might be hidden by other objects, and the target could be tracked, while in the 
case of complete occlusion, the object would completely disappear, which leads to difficulties 

Clutter 
background  

Complex motion 
Scale  

Variation 

 

Visual Object 
Difficlties    

Similar Objects  

Partial & Full 
Occlusion 

Shadows & 
Illumination 

changes 

Fig.1.2 Some visual object tracking difficulties 
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for the object tracking, since there is no particular technique to overcome it. As a consequence, 
the strategies are selected based on the kind of target, conditions, and surrounding environment. 
Common examples of complete occlusions in traffic are vehicles occluded by bridges, other 
vehicles, or trees beside the road, all of which are typical in traffic monitoring [24]. Fig.1.4 
shows the partial and full occlusions as an example.  

 
 

Fig.1.4 An example of partial and full occlusion illustration  

 

• Scale variation: when an object moves toward the camera, its size increases, while if it moves 
away from the camera, its size decreases, particularly for a fixed camera. Therefore, the change 
in the target's size in the image should be addressed by the tracking strategies [2], [20]. Fig.1.5 
displays an example of the size decreasing of the moving vehicle. 
 

 
  

Fig.1.5 An example of scale variation 

• Background clutter: if the background of the scene contains many transient other objects, 
particularly in natural outdoor environments, it is referred to as a cluttered background, or 
dynamic background, such as the motion of the leaves of the trees in the wind, swaying trees, 
humans or animals crossing the road, traffic lights, or waves of water, and so on. Sometimes it 
is easy to handle these problems, but sometimes it is difficult to deal with them. 

 
• Identical objects: if two similar objects have moved close to each other, then the tracker of the 

target can leap to the other object. For this reason, the tracked object might be lost and track the 
wrong one [22]. This problem is known as the hijacking problem.  
  As a result, visual object tracking suffers from a lack of robustness due to these disturbances. 

From a mathematical standpoint, most of the visual tracking models encountered can be considered 
as non-Gaussian, non-linear, multi-modal models, or some combination of them [17].  

 
In the literature, there are numerous algorithms that have been evolved and performed to cope 

with difficulties that appear in the video tracking process, such as distance and orientation gradient 
histogram, mean shift, Scale Invariant Feature Transform (SIFT), Random Sample Consensus, 
optical flow, etc. [2]. 
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1.4 Contributions  
 
Although, in the literature, many tracking algorithms use one feature or two fused features 

which work in some environments, the aim in this work is to create a robust algorithm for detecting 
and tracking vehicles in a video surveillance environment using more than two features, and taking 
into consideration some different vehicle tracking problems mentioned in previous sections.  

For this purpose, the first contribution of this work was the generating of a video sequence of 
different artificial traffic scenarios on a two-lane road using MatLab. Five scenarios have been 
proposed and provided for testing the invented tracking algorithm and indicated as cases for 
particular traffic motions in different conditions, which have been demonstrated in chapter 4. 

The second contribution is to design an algorithm for vehicle tracking in a generated synthetic 
video sequence using a particle filter. This algorithm can be applied to a real-world video sequence 
as well, which is presented in the results section later. 

The proposed tracking algorithm is based on simultaneous usage of three different image 
features – color, edge orientation, and texture, and fusing these three cues to deal with the 
disadvantages of individual features, and to compensate their sensitivities produced by the 
circumstances of the surrounding environment. In the proposed algorithm, the fusion of the three 
descriptors is made based on the weighted average of estimates of the three features (color, texture, 
and edge).   

1.5 The structure of this thesis 

The rest of this thesis has been organized as follows: In chapter one, the concept of visual object 
tracking, applications, and related problems are explained. Chapter two contains an overview of 
relevant topics in various sub-components in the literature relevant to object detection and tracking 
in a video series, which supports the contributions in subsequent chapters. The fundamental 
principles of particle filter-based object tracking, as well as the selection of particular image's 
features, their formalization, and features' individual efficiency,  have been presented and discussed 
in chapter three. In chapter four, the new proposed algorithm that consists of integrating three 
individual SFPF using descriptors' weights adaptation is explained and the flowcharts of SFPF and 
MFPF algorithms are included as well. In chapter five, typical traffic situations were presented as 
the verification cases as well as the set of the obtained results as the outcome of features 
incorporation and to illustrate the performance of our proposed algorithm. And furnish the 
appropriate discussion. Finally, chapter six provides conclusions drawn from this thesis, future 
research, and work. A list of the references is given in the last part of the thesis. 
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2 Tracking of Object in Video Images Sequence  

2.1 Principle of Visual Object Tracking and Related work 
Visual object tracking has been developed through the past decades, and many different 

methods have been suggested in a huge number of references in the literature related to moving 
object detection and tracking in video sequences [25], [26]. These methods mainly vary from one to 
another about how they address the following issues:  

• How to exemplify the tracked object?  
• Which merits of the image should be utilized?   
• How should the object's form, appearance, and motion be represented in the model?  

The answers to these questions generally rely on the condition and surrounding environment in 
which the tracking process is accomplished [27]. Some tracking models have been evolved which 
try to answer these questions for various scenarios, such as Markov chain Monte Carlo, optical 
flow, Kalman filter, particle filter, which are all well-known image processing methods for object 
tracking purposes [26].  

Vehicle tracking in real traffic flow with dynamic changes could be considered as a non-linear 
case. Even though the extended Kalman filter is able to cope with the non-linear state model, it is 
still facing the problem of diverging when the approximation of non-linearity is made in an 
inaccurate manner. Thus, for this study, the particle filter  (PF) was selected as a trustworthy 
tracking algorithm for vehicle tracking due to its robustness and its ability to deal with non-linear 
and non-Gaussian problems [26]. 

The basic stages for object tracking generally consist of three steps: (1) object detection, (2) 
object representation, and (3) object tracking [28], [29], [30] as shown in Fig. 2.1 

 

 
 
  

  

Object 
Detection 

Object 
Representation 

Object 
Tracking 

Image’s 
Sequence 

Fig. 2. 1 The essential phases concerned in the object tracking 
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2.1.1 Object detection  

Object detection is the first step in identifying the tracked object in a video series, and it’s the 
process of determining the location and distinguishing the associated pixels necessary for the 
objects of concern in the frames. It is an essential condition for the tracking process procedure [31], 
[32]. In general, there are two techniques for object detection mostly applied to commencing the 
tracking process:  

(1) Manually detecting and bounding the object we want to track  by a rectangle and determining 
its location in the first frame, then allow the tracking algorithm to detect the proposed 
features to follow the object in the subsequent frame and  

(2) The object is automatically detected using proposed features such as color, texture or edge, 
etc. [31].  

There are numerous different approaches that are applied to detecting moving objects, which 
have been developed and mentioned in the literature. Some of the main and leading techniques in 
discovering moveable objects are [28], [29], [31]:   

• Background subtraction, 

• Frame difference, 

• Temporal differencing, 

• Optical Flow,   

• Kalman filter, 

• Particle filter, and 

• Others. 

 
i) Background Subtraction: In video sequences with a static background, background 

subtraction is extremely used [31]. It segments the image into two parts: foreground and 
background. The foreground consists of moving objects like moving vehicles, people, while the 
background includes static objects, such as trees, buildings beside the road, or obstacles like the 
stopped cars, etc.  

 
In this technique, the reference background image is captured first without the existing of 

the tracked object in the scene. The moving objects or foreground objects are revealed by 
subtraction between the current image frame and the reference background image frame.  
In order to discover and identify the moving objects, a threshold value must be specified. The 
threshold is used to determine whether pixels in an image belong to the foreground or the 
background. 
The pixels at intensity levels above the threshold are labeled as foreground, while the pixels of 
lower intensity level than the threshold are labeled as background. As in practice, by time 
elapsing, the background of any scene progressively changes, and to bypass incorrect detection 
of objects, the reference background image should be updated from time to time. Background 
subtraction is simple and straightforward to implement [33] and performs well against a static 
background and with several moving objects, but the drawback is time-consuming, and their 
sensitivity to the changes of the illumination and external environment [30], [32], [34]. An 
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illustrative example of this principle is given in Fig. 2.2. Two moving cars on the road (Fig. 
2.2.b could be discriminated by simple and straightforward subtraction of the static scene (Fig. 
2.2.a), The image obtained from the background subtraction approach (Fig. 2.2.c) obviously 
shows the objects of regard. 
 

 
Fig. 2.2 Background subtraction example, (a) The background scheme (b) The new frame (c) The 
background subtraction results [34]  

ii) Frame difference: The frame difference approach is also a subtractive method, like background 
subtraction. This approach is mainly carried out by N consecutive frames, in which usually the 
comparisons are done by computing the differences between two or three consecutive frames 
pixel-by-pixel as well as threshold assignment, leading to revealing the objects and movement 
in the scenario [28], [29], [30]. Mathematically, the difference between the current and previous 
frames is calculated by Equations (2.1) and (2.2). 
 

       Foreground pixel:       F F Thresholdc p− ≥  (2.1) 

       Background pixel:      F F Thresholdc p− <  (2.2) 

 
Where  Fc and Fp are current and previous frames respectively. 
 
This method is straightforward to implement and can proceed in real-time with a lower 
delay of only one frame for a simple version [35]. 
Fig.2.3.a and Fig.2.3.b show a person in two successive frames, and the result of applying 
the frame difference approach is illustrated in Fig.2.3.c.  
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Fig.2.3 Frame difference approach, (a) the background frame (# k-1), (b) the current frame (# k ) 
and (c) the difference image [29] 

 
iii) Temporal differencing: Temporal differencing is also named as double difference. It is the 

suitable approach for scenarios in the case of moving cameras [31]. This technique computes 
the differences between two or three consecutive frames pixel-by-pixel in order to reveal 
shifting areas in the scene [34]. In the case of a moving camera, the motion of the target and the 
camera are jumbled up. This approach is easy and simple to implement, widely used, rapidly to 
adapt to the changes in lighting, camera movement, or dynamic environments, and yields 
accurate objects' motion. However, it's unsuccessful to detect the interfering areas of moving 
objects, ineffective to find stopped objects in the scene, and objects that conserve uniform 
regions. This approach takes a long time for calculations, and uses a lot of memory [28], [29], 
[34]. Furthermore, it becomes harder to detect an object moving towards or away from the 
camera, and the results might not be accurate [29], [31], [36], [37], [38]. Temporal frame 
differencing is illustrated in Fig.2.4. 
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Fig.2.4 Temporal frame differencing sample, (a) Previous Frame(# k-1),  (b) current Frame (# k), 
(c) Absolute frame difference result  [34] 

 

iv) Optical flow:  It is a different technique for finding moving objects in video sequences. The 
apparent motion (i.e. the rate at which light patterns move) of illumination patterns inside a 
picture framework is referred to as optical flow [34]. This approach produces a two-dimensional 
vector, which represents the velocities and orientations of every pixel in successive image 
sequences. Discontinuities in the optical flow aid in partitioning images into areas that match 
with various objects. Although the approach is computationally costly and sensitive to noise, it 
has the advantage of being able to detect motion in video image series with multiple moving 
objects and dynamic backgrounds [30], [31], [34], [35], [37]. Fig. 2.5 shows a picture with its 
visual stream vectors. 
 

 
 

Fig. 2.5 Optical flow vectors in moving object  [34] 
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v) Kalman Filtering: This is a widely used signal-processing approach of recursive estimation for 
predicting the position of a moving object based on previous motion data. 
 

2.1.2 Object modeling and representation 

One of the significant aspects that define the performance of object tracking algorithms is object 
representation [39]. Object representation can be applied as the second step in the tracking process, 
which refers to the way of modeling and representing the tracked object. The tracked object is a 
sub-image (rectangular window) that includes the image of the moving object and its local 
background. The moving object might be vehicles, humans, birds, and/or any other type of moving 
object. Object representation is the approach of demonstrating objects. Therefore, to represent the 
object, some features that define the object should be extracted. The approach of demonstrating the 
scene's objects of interest is known as object representation. Representing the object means that  
some descriptors or features should be extracted/calculated. After that, these features are used to 
track the object during the course of tracking [29], [31], [32]. There are many techniques that could 
be used to classify object representation, such are those based on shape, color, texture, and motion 
[28], [29], [32]. Fig. 2.6 shows the classification methods to represent moving objects. 

 

Fig. 2.6 Objects classification methods [29], [31], [32] 

2.1.2.1 Shape based representation 

Representation using shape is carried out by analyzing the geometrical shape and finding objects 
of similar shapes by matching with the contents of a relevant database. The contrasted images, form 
information about motion regions which can be obtained for classifying movable objects such as 
[4], [3]:  

• Points: The object is represented by a single point, such as the centroid or a group of points; 
this method is appropriate for the tracked objects that take small areas of an image. 

• Primitive geometric shapes: The shape of the object is represented by means of a square, 
rectangle, ellipse, etc. Simple, solid objects, as well as non-rigid ones, are better to represent 
them by primitive geometric shapes. 

• Object silhouette: it is represented by the region inside the border of an object. This form is 
appropriate for monitoring and tracking non-rigid, complicated shapes. 

Color 
based Object 

Representation 

Shape 
based 

Motion 
based 

Texture 
based 
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• Articulated shapes: Articulated objects are comprised of body parts that are connected with 
joints, such as the human body, where all body parts such as the head, hands, legs, and feet 
are connected by joints. 

• Skeletal models: Object skeleton can be obtained by applying the medial axis converted to the 
object‘s silhouette. This model could be used for representing rigid and articulated objects. 
  

Every point in every frame is taken into account for classification, and results are kept as 
histograms. Pattern matching approach manner can be applied, but it does not perform well in a 
dynamic situation [28], [29], [32]. Fig. 2.7 shows some examples of object shape representations. 

 

Fig. 2.7 Object representations [39] (a) point or centroid (b) multiple points c) rectangular shape  
d) elliptical shape e) object silhouette f) object contour (g) articulated shape (h) skeletal mode= 
object skeleton 

2.1.2.2 Color based representation 

In the case of the colored image, then the classification that relies on color could be applied to 
represent objects by utilizing the feature as color, which is a relatively fixed feature and doesn't 
change with the changing of the object view side and it is easy to obtain. In real-time applications, a 
technique relying on the color's histogram is used in object tracking processes [28], [29], [32]. A 
variety of color spaces can be used in representing information about colors such as RGB (red, 
green, blue), HSV (hue, saturation, value), and YCbCr (luminance and chrominance). But the RGB 
color space is mostly used [15]. Fig. 2.8 shows an example illustrating the original image in RGB 
space (Fig. 2.8.a) converted to HSV color space (Fig. 2.8.b), whereas Fig. 2.9 shows two different 
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images: Flower and Kingfisher as examples representing RGB color space (left)  and YCbCr color 
space (right). 

 
 (a)  RGB Color space 

 
 (b) HSV Color space 

Fig. 2.8 RGB image (original) color converted to HSV space [40] 
 

  

  
(a)   (b)  

Fig. 2.9 Flower and Kingfisher Image in (a )RGB space, and (b) YCbCr Color spaces [41] 

Histograms for the first component of RGB (R) and YCbCr (Y) color spaces are shown as samples 
in Fig. 2. 10. 

 
RGB Color space histogram 

 
YCbCr Color space histogram 

Fig. 2. 10 Histograms of the first component of RGB and YCbCr color spaces [41] 



Chapter 2                                                                                                         Tracking of Object in Video Images Sequence 

18 

2.1.2.3 Texture based representation 

The texture is an important feature for defining the characteristics of the images. It is a gauge of 
the intensity disparity of surfaces that defines the regular patterns and inherent properties in an 
image, such as uniformity, regularity, linearity, smoothness, density, directionality, and coarseness 
[28], [29], [32], [42]. As examples, some texture characteristics are demonstrated in Fig. 2.11. 

 The texture is an inherent feature and it describes the spatial ordering of density and 
concentration values or color in an image, which may be cyclic, stochastic, or both [17]. Two 
different types of periodical and stochastic textiles are illustrated in Fig. 2.12 as examples.  

The texture could be considered as a regional representation that is appropriate when the center 
of attention is internal properties [42].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.11 The red box mark textures for optical microscope images of a) a superconductor, b) 
human cholesterol, and c) a microprocessor [42] R.C. Gonzalez and R. E. Woods: 
Digital Image Processing. 

 

 

 

 
Fig. 2.12 Images of two different types of periodic and stochastic textures 

  
a) Smooth  

 
b) Coarse  

 
c) regular 

Periodic 
Texture 

  

Stochastic  
Texture 
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2.1.2.4 Motion based representation  

Motion representation needs to take into account both solid and non-solid objects. Solid objects 
are easier to track than non-rigid ones since their motion is more predictable. Inflexible entities are 
likely to describe the short-term flow, whereas nonrigid items, such as humans, have a composite 
average residual flow with an interrupted component. Using motion-based categorization does not 
demand a predefined pattern template,  it is hard to define non-moving humans [28], [29], [32]. 

 

2.1.3 Object tracking 

Object tracking refers to the process of following a specific target of interest, or multiple targets, 
in a given video sequence [31]. It is achieved by producing or estimating the route for the moving 
object by finding its position in each frame through the object model formed in the previous frame 
as it moves in the scene [28], [29]. The major factors that make the tracking process in image 
processing a difficult task is the occlusion, loss of information, the non-uniform shape of the object, 
complicated object movement, noise in an image, and real-time requirements. Some types of the 
main approaches widely used to track a moving object are: 

• Kernel tracking, 
• Point tracking,  
• Shape-based tracking,  
• Feature-based,  
• Motion-based tracking,  
• Mean shift tracking,  
• CAM-Shift tracking, and  
• Silhouette tracking, etc.  [28], [29], [32]. 

This thesis was focused on traffic applications, and the main points of interest were the general 
tracking strategy, the tracked object's appearance model, its motion model, overcoming troubles 
caused by common disturbances such as image clutter, shadows, and occlusions, as well as the 
concepts of fusion of obtained data in various ways. 

2.2 Tracking strategies 

The tracking process techniques for any specified object vary, relying on the required goals. For 
example:  

i) The objects that have specific characteristics, such as vehicles, people, faces; 

ii) Objects that have specific characteristics with a certain feature, such as movement of 
vehicles and people, and the face of a specific person; 

iii) Objects of unknown nature beforehand, but of specific interest, e.g. moving objects in 
general. 

In each example (scenario), a portion (window) of the input frame is compared with a reference 
model that represents the object's appearance. Image patches, which characterize the appearance of 
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the tracked window at the intensity level of the pixel, shape, and/or general features such as color, 
edge,  and/or texture can all be used as a reference [43]. 

 
In the last few decades, significant leaps in computer vision-based object tracking have been 

made. In general, the first step in the tracking of the object in the image sequence is that the object 
undergoes an initialization process where the tracked object parameters are specified, and it is 
centered in a bounding box in the first frame [24].  

The mathematical exemplification of this window can be manifested as the features that 
describe it. Then the object description model is constructed based on extracted features that are 
utilized in the later frames. 

The approach applied to estimate the state and foretell the track of the moving object in the 
subsequent frames is the tracking strategy (e.g., Markov chain Monte Carlo algorithm, Kalman 
filters, particle filters, optical flow algorithm, Normalized Cross-Correlation, and Mean-Shift, etc.) 
[25]. 

During the tracking process, the object status and surroundings are continually changing; this 
makes the extraction of features and building the model in the tracking process more difficult, 
which needs a more powerful tracker [25]. 

Since a video sequence contains a huge amount of data, it is crucial to extract only a small 
amount of significant information from computer vision-based object detection and tracking. 
According to the current computer vision literature, there are many methods used for object 
tracking techniques in a video sequence, but all have some disadvantages. [10], [44]. Some types of 
these methods are: model-based, feature-based, region-based, and contour-based tracking. 

 

2.2.1 Model-based tracking 

The model-based tracking method focuses on regaining high-accuracy trajectories and models 
of the tracked objects, and it relies on the appearance and shape of tracking objects in the estimation 
of an object’s position [15], [45]. According to [46], a model-based technique requires a model for 
each tracked object (for example, a color model or a contour model). 

This approach usually supplies a more robust solution. The main merit of the model-based 
methods is that knowing information about the scene helps in the refinement of performance and 
robustness through the ability to predict hidden object movement, discover partial occlusions, and 
act to minify the effects of disturbances generated during the tracking process [47]. The weak point 
of this method is the dependence on the geometric shape details of the object. It is impractical 
and/or un-expectable to have detailed models for every vehicle that might be seen on the road [10].  

2.2.2 Region-based tracking 

In this method, a sub-region of the frame is created as a bounded geometric shape (e.i. box or 
ellipse) around the initially known position of the moving object. This created an area (sub-region) 
is considered as the tracked object, which encompasses both the vehicle in the road and the 
surrounding portion of the background (road and area beside the road). The main principle here is to 
use more information with the vehicle's information, providing in this way a greater robustness 
[27]. There are considerable approaches that could be used for representing and modeling image 
regions. Mostly, the region modeling relies on the use of a probability density distribution of the 
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color , so the object is represented based on color.  Color distribution could be described by a color 
histogram histogram, or a mixture of Gaussian kernels [27]. 

This strategy acts properly well in free-flowing traffic [10] and is effective computationally, but 
it is ineffective when a number of objects move simultaneously in the image sequence, and it cannot 
track the moving objects accurately if they are in an occlusion situation [44]. Fig. 2.13 displays 
tracking regions in two images as examples. 

 

Fig. 2.13 Tracking region in images [48]  

2.2.3 Contour based tracking strategy  

This strategy depends on the extraction of an object’s contour [28], [39], [49].  It is a 
discriminative method because it requires some form of picture apportionment to distinguish the 
object as a part of the image. The main goal is to obtain a representation of the bounded border of 
the object.  

When the bounded border of the object is specified, its representation becomes the data and 
information of interest in subsequent frames. The advantage of a border representation instead of a 
region representation consists in decreasing computational complexity. However, the inability to 
separate the vehicles that are in a partial occlusion situation and the case of multiple vehicles in the 
region grouped as one object is the most important disadvantage of this approach [10], [15], [49]. In 
the contour tracking method, a contour that exemplifies an object in the previous frame repeatedly 
develops to the new location in the present frame. This developed contour demands a part of the 
object in the present frame be overlaid with the object area in the prior frame [50]. 

Fig. 2.14 illustrates an example of a head tracking result in rotation and movement case. 

 

Fig. 2.14 Head tracking result using contour-based tracking [27] 
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2.2.4 Feature-based tracking 

This strategy consists of the calculation of sub-features of a particular image which characterize 
the object of interest, like color, edge, points, corners, or texture to be used for the tracking purpose 
instead of tracking the entire region as a whole [10], [15], [51]. The most basic example is that the 
region of concern is represented as a collection of pixels of various light intensities and colors,  
where the same pixel pattern is searched in successive frames. As a result, the correlation-based 
technique would be a method with an extended time-consuming. Derived properties such as color 
distribution, border-point orientations, corner placements, and texture are more frequently used to 
define the region of interest [15].  According to [46], the feature-based approach utilizes visible 
features like the histogram of Oriented Gradients (HOG) [Dalal and Triggs, 2005], Haar [Viola and 
Jones, 2003] features to follow the observed objects. 

The advantage of using features-based tracking is that, even in the existence of partial occlusion, 
some of the features of the object in motion stay obvious. Besides, the same algorithm can be 
applied for tracking in daylight or night-time at different conditions [3], [4].  In this work, the object 
tracking is represented as a rectangular region, surrounding the object and encompassing both 
features of the object itself as well as of the local background. The region-feature-based technique 
has been selected as the most effective one for our needs. 

 
Fig. 2.15 illustrates examples of corner features-based tracking. Fig. 2.15.a shows a sample of 

corner features picked out by the tracker. The temporal development of many corner features in the 
image plane is shown in Fig. 2.15.b. When corner features reach the exit region, the grouping 
module groups them into vehicle hypotheses, as shown in Fig. 2.15.c [10]. 
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Fig. 2.15 a) Tracker-detected corner features,  b)  A sample of the tracker's feature tracks, c) The 
sample of feature grouping [10] 

2.3 Appearance model in object tracking  
Defining the appearance characterization of the moving object is an almost significant 

indication for the tracking in video sequences [23]. The appearance model could be related to the 
approach of how the tracked target itself is represented, as well as the approach of how features 
have been extracted as a description of a region of interest and the approach to how they are 
formally represented. 

There are the three fundamental representations for visual cues that could be used to portray the 
target's appearance: A 2D-array such as picture data, a 1D-histogram of ordered characteristics, or a 
feature vector.  The appearance representation requires the transfer-ability of certain properties from 
one frame to the next as shown  in Fig. 2.16. 

 

Fig. 2.16 Appearance representation. (a) 2D-Array, (b) Histogram, (c) Feature vector [52] 

The use of color distribution to characterize the region was historically the first technique 
utilized [16]. Color-based trackers are fairly resilient in terms of object deformations, but they are 
extremely sensitive to changes in illumination, which may be compensated for by some kind of 
model adaption [53]. Several publications in this field are concerned with some form of 
object/region representation based on picture contrast, which leads to the extraction of contour 
points/corners. The calculation of picture gradients is an essential step in this categorization. For 
detection and tracking moving objects, many techniques based on the Harris Corner Detector – 
HCD [54], Scale Invariant Feature Transform – SIFT [55], and Speeded-Up Robust Features – 
SURF [56] are used. A typical feature for detecting a human in an image is the Histogram of 
Oriented Gradient (HOG) [57], and this technique also could be used to describe the region contents 
of interest, and the coherence of an object's appearance in successive frames is used to track it [46]. 

An additional feature of an image that can be used to describe the contents of a region is a 
texture (Local Binary Pattern – LBP, Grey Level Co-occurrence Matrix – GLCM, Harralic texture 
features,...). Although this feature hasn't been used very frequently in tracking applications, there 
are several examples [15], [58]. 

In the context of processing a series of images, the object’s appearance can be described by a 
bounded rectangular window, or an elliptical shape (image template as an example) with feature 
descriptors, that are represented as a histogram of color, or edge, or texture, or histogram of 
oriented gradient (HOG), etc. 
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Fig. 2.17 and Fig. 2.18 illustrate the image template and some histograms which represent the 
object appearance on the given frames as examples.    

Current frame and 
location 

 

Appearance model 
(e.g. image template, 
or color, intensity, 
edge histograms)   

 

Fig. 2.17 Appearance model: Image template, color, or intensity, or edge histograms [48] 

 

Current frame and 
location 

 

Appearance model 
( from top to botom, 

image template, 
histograms of RGB 

color, edge,  and 
texture) 

 

 

Fig. 2.18 Appearance model: Image template, RGB color, edge, and texture histograms [15] 
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2.4 Motion model  

Object tracking aims to determine or estimate an object's location within subsequent video 
image sequences based on previous scene information. This principle can be accomplished by 
predicting the moving object’s position in video image sequences based on the motion model. The 
motion model terms the potential motion of the object between consecutive frames, and it is used to 
specify the region in which a given target is expected to appear in the next image [59]. The motion 
of the object is usually in parametric forms, such as translation, rotation, and affine movement, 
which are used to describe how an object moves. The appearance representations or methods 
utilized to estimate the object's mobility vary based on the visual tracking techniques used in this 
approach [50].  The physical properties of the object's motion must coincide with the object’s 
motion model. 

The vehicular motion along the road (reference coordinate frame) has been assumed as a planar 
and translational one. The additional assumption is that the magnitude and orientation of a velocity 
vector defining the motion are constant and are useful under the assumption that the period between 
measurements is tiny. If these intervals are extended due to the occlusion of an object, the 
prediction capabilities of the filter in use become important. Equation 2.3  terms the motion or state 
model, which is defined as a function of the preceding state 1kX − and a noise variable kn . 

 1( , )k k kX f X n−=  (2.3) 
 

The image information and data at the present time step k  are utilized to calculate the 
measurements kZ  in this system. Observations on the location and appearance of the target are 
obtained via feature extraction computations. The measurement function of the present state kX
and a measurement error kv  at time k  form the observation model, which links measurements to 
states [60].  

( , )k k kZ h X v=  (2.4) 
 

 Traditionally, the Kalman filtering concept has been used in vehicle tracking as the first 
approach [61]. The need for explicit measurements of model states, for example, the position of an 
object's centroid, velocity, also the assumption of the Gaussian nature of measurement errors and 
state uncertainty, made this technique to be less attractive, despite the fact that it is still used [62]. 
Particle filtering (PF) makes use of Spatio-temporal information about the target item rather than 
assuming perfectly known dynamic behavior or a motion model with a given level of uncertainty. 
That is why PF is preferred in real-world tracking applications [1], [24], [63]. This is a built-in 
advantage that allows the PF to function well in the face of typical image disruptions [15]. 

2.5 Disturbances 

The presence of fluctuating shadows and reflections, as well as the occurrence of partial or even 
full occlusion of the tracked object, are the most common disturbances in video tracking of road 
vehicles. In these situations, there are a few basic measures to follow:  
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1) the presence of these irregular working conditions should be recognized based on the shadow 
model [64], or some indicators that discriminate the occlusion;   

2) the proper action for this working regime should be taken, such as by modifying the 
distribution of motion parameters [24], calculating and analyzing the probability of object 
presence in a certain image region [65], attempting to discover non-occluded sub-regions [51], 
and so on;  

3) The tracking system should be able to detect when the abnormal circumstance is no longer 
present, commonly based on some assumptions about the object's conduct during the 
occlusion [15], [66]. 

2.6 Choice of a Particle Filter (PF)  
Kalman filter (optimal state estimator) is a common tool for target tracking in the probabilistic 

framework, but it cannot accurately dissolve the tracking problem if the model is nonlinear and 
non-Gaussian and if it is not well approximated [67]. 

A particle filter is a suitable tool for estimating the states of moving objects due to its good 
performance, its ability to solve the problems of clutter and occlusion, and the fact that it is robust 
for solving the problems of non-linear, non-Gaussian in dynamic state estimation as mentioned in 
many kinds of literature. In general, PF is a hypothesis tracker that uses recursively a set of 
randomly sampled particles of weights ‘ i

tw ’, to build and approximate the posterior possibility 
density function (PDF) using the Monte Carlo techniques, and computes estimates based on these 
samples and weights [25], [67], [68]. Therefore, Particle filters could be considered as a substantial 
alternate to Kalman filters, which are the most appropriate for non-linear systems and linear 
systems that suffer from Gaussian noise [49].  Estimating the state of the moving object of interest 
is estimated by the weighted sum of particles. Prediction and updating are the two primary phases in 
the tracking process. In the prediction step, each particle is altered in accordance with the state 
model of the region of interest in the video frame, which includes the insertion of random noise to 
imitate state noise. The weight of each particle is re-evaluated with the newly observed data in the 
update phase. After that, a resampling technique removes particles with low weights and duplicates 
those with higher weights [25]. 

Numerous of the proposed particle filters for video sequence tracking are based on a single 
feature, such as color, texture, or edge gradients, etc. but, when clutter exists in the background, 
single-feature tracking may not always deliver dependable performance. Thus, using multiple-
features based PF for tracking the moving object improves the robustness and provides a richer 
description of the object [25]. 

2.7 Fusion of multiple cues 

A fusion of several cues is an efficient strategy to overcome the specific shortcomings of some 
of the strategies outlined above. Fusing more than one feature would drive the vehicle tracking 
process to be more accurate and efficient. The necessary data and information could be acquired by 
different sensors combining color and infrared images  [69], as well as by different color channels 
[12], or by combining color and segmentation information [70], or by combining other features. The 
texture of the region could be combined with depth information [71]. The multi-feature merging 
method is largely significant and effective in adaptability capacity, especially in the presence of 
disturbances [15], [18], [26] it is espoused in this thesis as well. 
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3 Tracking of Moving Object Based on Multiple Image 
Features Using Particle Filter 

3.1 Particle Filter Applied in Video Object Tracking 
Any type of visual tracking of moving objects starts by discovering the object to be tracked. This 
step can be done automatically or by a human operator. After that, the process should be automatic 
from this point on. The tracking algorithm foretells the next position of an object depending on the 
assumed model of motion (2D – 3D, continuous – with stops, maneuverable – non-maneuverable, 
etc.). The estimated position of the object is revised once a new set of measurements is taken, and 
the procedure is continued.  The way how the set of previous measurements and estimates are used 
in the following prediction varies between different filters/estimators (data block processing, 
iterative ones – based on balancing between state and measurement uncertainties, based on maximal 
likelihood, etc.)[15]. Visual tracking of moving objects could be implemented and achieved by 
many approaches as mentioned in the previous chapters, and in some of the computer vision 
literature. From a tracking algorithm standpoint, the choice made in this thesis was a “particle filter” 
(PF), which is one of the available techniques that could be used. 

Particle filters, also known as Sequential Monte Carlo approaches, use a set of random particles 
with associated weights to approximate the Bayesian posterior probability density function (PDF) 
and compute estimates based on these samples and weights. The main notion behind particle filters 
is that rather than finding a precise representation of a simplified model (Gaussian), one can create 
an approximate representation of a complicated model (of any arbitrary Probability Distribution 
Function – PDF). 

The main reasons for using PF were:  

1. It is a helpful tool that can be used in a diversity of situations: 
• Applicable in the “Image processing” context; 
• Both for automatic detecting and tracking of objects on the scene; 
• Capable of coping with complex environments. 

 
2. It allows the analysis of complex systems without the need for their simplification: 

• Non-linear 
• Non-Gaussian 

The Kalman filter was the main approach for solving state-space models before particle filtering 
techniques gained popularity. A linear Gaussian state-space model can be solved with the Kalman 
filter. Its versions, the extended Kalman filter, and the unscented Kalman filter, can be utilized 
when the linearity or Gaussian criteria are not met.  However, they fail to offer a realistic estimate 
for extremely nonlinear and non-Gaussian cases[72]. 

Modelings of non-linear and non-Gaussian systems are essential and required for tracking objects 
in video. How can we acquire a solution for tracking a moving object if we have to include these 
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two phenomena? A probabilistic approach that constructs tracking as interference in a Hidden 
Markov Model (HMM) could be utilized as one solution [11]. Fig.3.1 shows how to make this 
frame.  

 

 

 

On figure 3.1: 

1 2 1, ,..., kx x x +  are hidden states (Markov chain), and 

1 2 1, ,..., kz z z +  are observations. 

Particle filtering is an encouraging approach since it performs well with both Gaussian and 
non-Gaussian noise errors that are incorporated in the system measurements[73], and it utilizes and 
fuses multiple features such as color, edge, and texture to follow a single object or a group of 
objects in movement in video sequences. The PF is a robust technique to track objects in image 
sequences with complicated backdrops[68]. 

 

3.1.1 Bayesian’s filter  

The particle filter is essentially based on the Bayesian filter. It is therefore necessary to 
understand the Bayesian filter to comprehend the PF. 

The Bayesian filter is based on Bayes' theorem premise. As shown in[73], [74], a nonlinear system 
can be specified and written as follows: 

1 ( , )k k k kx f x n+ =   (3.1) 
 

( , )k k k kz h x v=   (3.2) 
Where, 

kf : Transition equation (state equation) at time k, 

kh : Observation equation (measurement equation) at time k, 

kx : State of the object which is to be estimated, 

kz : System's observation (measurement), 

kn : Process noise (system white noise) induced into the system due to process, 

Measurements kz  1kz +  

kx  1kx +

 

. . . . Hidden state 
(e.g  Object location) 

 

. . . . 

Fig.3.1Probabilistic frame work for tracking system[11] 



Chapter 3                                           Tracking of Moving Object Based on Multiple Image Features Using Particle Filter 

30 

kv : Added noise to the measurement (measurement white noise) due to measuring instruments, 
k : Time index. 
 

A Bayesian estimator's purpose is to approximate a conditional PDF, of the state kx  given the 

measurements 1 2, ,..., kz z z . This conditional PDF is indicated as 1:( / )k kp x z . 

At the beginning of the iteration process, the initial measurement is taken at k = 1. Consequently, 
the estimator's initial condition is the PDF of 0x , which can be represented as[73], [74]: 

0 0 0( ) ( / )p x p x Z=   (3.3) 
 

Where 𝒁𝟎: The set of initialized measurements at k =0. 

 

If we assume that there are two variables x  and z , the ( , ) ( , )p x z p z x= is called Joint 
commutative probability, which is relied on the Bayes theorem[75]. 

 

( / ) ( ) ( / ) ( )p x z p z p z x p x=   (3.4) 
 

( / ) ( )( / )
( )

p z x p xp x z
p z

=   (3.5) 

Equation 3.5 represents the posterior PDF, it can be written as:  

( )( )likelihood priorposterior
evidence

=   (3.6) 

 

3.1.2 Particle filtering 

Particle filters were first offered by Nicolas Metropolis in 1949, who proposed analyzing 
systems by looking at the features of groups of particles rather than individual particles. However, 
computational and processing capability has only been enough for their execution in the 1980s. 
Even now, the particle filter's computational complexity is the main barrier to its spreading extent 
and use. The particle filter is a statistical technique which estimates the work effectively for issues 
that the traditional Kalman filter fails to solve. The particle filter is used to numerically execute the 
Bayesian filter[73],[74]. In the initialization step, dispersed random numbers of particles (N) for 
PDF 0( )p x would be created. These particles are moved to the next step using the transition model. 
When the number of particles is raised, it leads to more accurate state estimation, but it also causes 
problems with calculation complexity. As a result, the number of particles selected is restricted to a 
particular number based on the intricacies, environment, and conditions of the system [73]. 
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The fundamental particle filtering technique is based on applying relevant sampling techniques 
to update a distribution in a sequential way. The sequential importance sampling (SIS) method, 
developed by Kong et al., is a particle filtering technique (1994). SIS is a method of solving the 
recursion problem by applying importance sampling[72]. 

PF, in general, utilizes the Monte Carlo approach to recursively construct the posterior 
probability density function of the state space[43], [49], [67], [68]. The primary idea behind PF is to 
represent a posterior PDF through a set of weighted samples that are picked at random.  Each 
particle represents a state hypothesis, and it is randomly spread based on the transition model from 
the previous density. The likelihood model is used to weigh each diffused particle, and the weight 
describes the particle's quality[9]. The posterior PDF is approximated recursively by a collection of 
weighted particles which are randomly sampled. The tracked object's state at the time 𝒌 is 
indicated by kx  and is represented by a collection of samples in motion space, while the system's 

observation is pointed out by kz . Like a Bayesian filter, the PF performs two primary processes at 
each iteration: prediction and updating[9], [76]. 

• Prediction: In each frame 𝒌, the samples are propagated depending on the system model (3.1), 
and the particles are spread independently. The prediction step gives an approximation of the 

previous PDF that corresponds to the propagation of particles i
kx  at the time 1k − , and it  is 

performed by equation (3.7): 

1

1( ) ( )
N

i
k k k

i
p x x x

N
δ

=

≈ −∑   (3.7) 

Where 𝑵 is the total number of particles and ( )i
k kx xδ − is the Dirac delta function. 

• Update: in this step, at time 𝒌, the measurement kz is available, the weight of each sample is 
calculated using the likelihood model (observation model (3.2)), and the discrete 
approximation of a posterior PDF 1:( / )k kp x z at time 𝒌 is calculated using the equation (3.8): 

1:
1

( / ) ( )
N

i i
k k k k k

i
p x z w x xδ

=

≈ −∑    (3.8) 

where : i
kw is normalized weight, and it is given as:  

1

i
i k
k N

j
k

j

ww
w

=

=

∑


  (3.9) 

so that, the normalized weight set satisfies: 

1
1

N
i
k

i
w

=

=∑   
 (3.10) 
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The particle weight i
kw is presented by equation (3.11) 

 

1
1

0: 1 1:

( / ) ( / )
( / , )

i i i
i i k k k k
k k i i

k k k

p z x p x xw w
q x x z

−
−

−

⋅
≈   (3.11) 

Where: ( / )i
k kp z x is the likelihood function, 1( / )i i

k kp x x −  is the state transition density 

distribution, and 1: 1( / , )i i
k k kq x x z−  is the proposed distribution (importance distribution/function) in 

which the particles are samples. 
 

Iterations of PF based tracking systems consist of four main steps:  

• State transition (prediction): using the motion model,  

• Measurements (Likelihood estimation): by observing the features using the observation 
likelihood model,  

• State estimation: based on maximal particle weights, 

• Resampling (Selection step): a selection of the new set of particles for the next iteration. 

 
3.1.3 Particle filter algorithm  

To make the strategic description of a single iteration of the recursive PF algorithm simpler, 
suggested tracking process steps are represented as follows: 
 

1. Initialize the target state 0x at 𝑘 = 0  in the first frame, and calculate the reference 
histogram based on the proposed feature (color, edge, or texture) for the target window of 
the size height  width.  

2. Assume the initial state of the system PDF 0 0( / )p x z as initial distribution 0( )p x is 

known. Generate a set of random particles 0( ; 1: )ix i N= based on the 0 0( / )p x z , around 
the target point. 

3. Predict new particles’ state at the time k to determine a prior particles‘ state, it is done by 
spreading each particle based on the transition model (equation (3.1)), 

4. Compute histogram distance (Bhattacharyya distance for color, edge, or texture features) 
for each particle window, 

5. Compute the weight i
kw (equation (3.11)) for each particle for the measurement kz based 

on histogram distance using the proposed features, and normalize the weights. 
6. Select the location of the target as the particle with maximum weight (minimum histogram 

distance). 
7. Resample the particles according to their weight to generate new samples for the next 

iteration, 
8. Increase time step, go to step 3. 

 
The general flow chart algorithm of the particle filtering process is shown in Fig.3.2 below. 
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Initialize Target state 0x in 1st Frame & Compute   

Ref. histogram of initialized target window 

Next Frame . . . . Predict new 
particles state 

Resample the particles for the 
next step 

Generate a set of random 
particles ( ; 1: )i

kx i N=  

Compute Particles’ window 
histograms & histograms 

distance 

Compute particles’ weight 
i
kw based on histogram 

distance 

Select the Target locations as 
particle with max. weight 

Fig.3.2 general particle filter flow chart 
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3.2 State Transition 
The transition model/state motion model describes how objects move from one frame to the 

next. In this thesis, based on the premise that the motion of the object along the road is planar, 
translational, and 2-dimensional motion, and that the magnitude and direction of a velocity vector 
are constant in a short period between measurements, the following equation (3.12) describes the 
general transition state model[11], [15], [67]: 

 

1

k k
x x

y yk k

x x
y y

X F n
V V
V V

−

   
   
   = = +
   
   
      





 

 (3.12) 
 

 

Where: the state vector kX


 at time 𝒌 in Image Coordinate Frame (ICF) comprises of position and 
velocity components,  

𝑭  is the transition matrix,  

𝒙 and 𝑽𝒙are position and velocity in 𝒙 direction respectively,and  

𝒚 and 𝑽𝒚, in the 𝒚 direction, and   

𝑛�⃗ 𝑘 is a white Gaussian process noise of the system model with known PDF, and 

Δx and Δy are the position increments computed in the previous step. 

Fig.3.3 shows a schematic representation of this step. 

 

 

 

This transition model reduces to: 

1 1
k k

k k k

x x x
X n

y y y− −

∆     
= = + +     ∆     





 
 (3.13) 
 

If the sampling intervals are rather long, followed by the vehicle accelerating/braking or 
performing angular maneuvers, the validity of the previously mentioned assumptions is jeopardized 
(particularly in the occlusion periods). 

Next state Previous state 

System Transition 
Model 

Fig.3.3 Transition model step representation 
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3.3 Visual Tracking Based on Image Features  
In many approaches, the tracking processes are based on the tracking of the entire object, but 

tracking based on features tracks only the proposed features representing the window around 
moving objects from frame to frame.  Representation of an image can be made by means of a single 
feature vector or sometimes a combination of features may be used to represent that image. This 
method has several advantages, such as the ability to see/recognize some of the moving object's 
features even when there is partial occlusion[77]. 

Since there is not enough information provided about the object being tracked, if a single feature 
is used for tracking, it is possible to lose track of the object and begin tracking the wrong one. 
Hence, if many features are employed, more information about the object can be provided. 

From a tracking strategy point of view, the choice to apply a region/feature-based method was 
motivated by the expectations: 

• Increasing the level of information if the tracked object is the vehicle accompanied by the 
surrounding area; 
 

• Reduced amount of calculation if the features of the region of interest are calculated instead of 
the complete contents of it; 
 

• Higher robustness if a few features are properly included and the results of their usage are 
integrated. 

The feature tracker depends on the deterministic search of a window, whose feature histogram 
matches a reference window feature histogram [78].  

In video object tracking, features can be easily identified in the feature space. The choosing of 
feature is primarily related to the exemplification and the particular type of the object (vehicles 
moving on the road, boats or ships in the sea, walking people in the street). Hence, choosing the 
right feature has a significant turn in the tracking process. The most usually used features for 
tracking in literature are those based on the color, shape, texture, and optical flow in the image [41], 
[77], [79]. In this work, features derived from the color, the object’s contour, and the texture inside 
the window, is intensively considered in the context of tracking. 

3.3.1 Color feature  

In the literature, several approaches for tracking applications based on color attributes have been 
published. Color is a simple and straightforward feature to compute and implement. There are many 
color spaces that have been utilized in tracking applications, such as RGB space (red, green, blue), 
HSV space (hue, saturation, and value), YCbCr space (luminance and chrominance), etc. Color 
histograms are used extensively in the color feature extraction process, and a mathematical 
representation of the collection of colors is called color space. Below is a brief description of RGB, 
HSV, and YCbCr color spaces: 

 
• HSV Color Space: Although RGB is the most popular, there is a multitude of color spaces to 

choose from. This is due to the fact that different color spaces convey and afford color data in 
different ways, making certain calculations easier and providing a more straightforward approach to 
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identifying colors. The HSV color space (Hue, Saturation, and Value) is much near at hand to the 
RGB color space. Hue (H) is the major color seen by humans, which is defined as the angle (in the 
range 0 to 2π) about the central axis. The saturation (S) is defined as the quantity of white light that 
varies (assorted) in color and it is stated as the radial distance started from the central axis to the 
outer surface in the range from 0 to 1. The value (V) represents the measure of brightness/intensity, 
which is the span along the central axis in the range from 0 to 100 [80],[81]. Fig.3.4 shows the HSV 
Color Space. 

 

 
 

Fig.3.4 HSV Color Space[80] 
 

 
• YCbCr Color Space: The YCbCr color space can be seen in Fig.3.5. YcbCr, and RGB are 

distinguished by the fact that RGB represents color as a combination of red, green, and blue, 
whereas the YCbCr space appears the color as brightness and two additional color contrast signals. 
The Y in YCbCr stands for brightness (luma), Cb stands for blue minus luma (B-Y), and Cr stands 
for red minus luma (R-Y). The advantage of the human eye is being used to create this color space.  
Changes in light intensity are more noticeable to the eye than changes in color. When storage space 
is limited, the intensity component can be recorded with more precision than the Cb and Cr 
components[41].  
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Fig.3.5 YCbCrColor Space[41] 
 

 
• RGB Color Space: RGB color space is depicted in Fig.3.6. The trichromatic theory is used to 
create this color space. Typically used in systems that display images using a cathode-ray tube 
(CRT). RGB space is widely utilized in computer systems, televisions, other electronic devices, as 
well as image processing[41].  

 

 
 

Fig.3.6 RGB Color Space[41] 
 

 
The RGB color space is the most widely utilized. Local-global color histograms, color space 

partitioning, the use of a clustering technique, and other methods, can be used to represent 
colors[41]. The color histogram is the most commonly utilized for this purpose because of its 
invariance during a rotation or changing orientation and its robustness to scaling changes [41],[82]. 
On the other hand, it performs poorly when the lighting changes or the background is the same 
color as the tracked object[79]. The color histogram employed in our method is made up of three 
sequential histograms (R, G, and B), each having 21 bins, for a total of 63 bins. In the second 
column of Fig.3.7, typical color histograms for candidate windows in various frames from an actual 
sequence are displayed[15]. 

 



Chapter 3                                           Tracking of Moving Object Based on Multiple Image Features Using Particle Filter 

38 

 
 

 

 

 

3.3.2 Edge (contour/border) feature 

The edge of an object is a collection of pixels having strong gradient intensities. The edge 
feature provides shape information that has been shown to be useful in visual contour tracking. In 
comparison to color features, the edge feature is less sensitive to variations in illumination[44]. This 
representation of the item's contour, on the other hand, is frequently sensitive to the presence of 
other pixels in the image that don't belong to the object but satisfy the high gradient intensity 
condition. The edge feature is defined in our work as a histogram that expresses the distribution of 
edge points’ gradient directions. The edges of the object are distinguished using a variety of 
gradient-based operators (Sobel, Canny, Roberts, and Prewitt). In our method, the edges are 
extracted by estimating Sobel operators 𝑲𝒙and 𝑲𝒚on a greyscale image. The magnitudes of the 
horizontal gradient 𝑮𝒙and the vertical gradient 𝑮𝒚are determined as follows: 

 
( , ) ( , )
( , ) ( , )

x x

y y

G x y K I x y
G x y K I x y

= ×

= ×  
 (3.14) 
 

 

where,

1 0 1 1 2 1
2 0 2 , 0 0 0
1 0 1 1 2 1

x yK K
− − − −   
   = − =   
   −   

  and ( , )I x y  is the candidate window. 

Fig.3.7 Color, Edge, and Texture features Histograms for the candidate windows in 
real video sequence (frames: #310 – initial (reference), #320 – with shadow, 
#340 – partial occlusion, and #360 – full partial occlusion 
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The following formulas are used to compute the magnitude (G) and phase (θ) of gradients along 
edges: 

2 2

1

( , ) ( , ) ( , )

( , )
( , ) tan

( , )

x y

y

x

G x y G x y G x y

G x y
x y

G x y
θ −

= +

 

=  
  

 
 (3.15) 
 

The histogram of gradient phase angles is a distribution that describes the contour of an object. 
For the unsigned gradient, the overall range of phase angles is -180o to +180o, divided into 64 equal 
bins. The steps for determining the phases of gradients in the histogram of contour points are as 
follows: 

• Determine which pixels (positions) have a magnitude (G) that is greater than a certain 
threshold (e.g., 80 percent of maximal magnitude in this window).  

• Determine the phase angle (θ) gradient that reconciles to the extracted pixels. 
 
• Produce the histogram of these phase angle gradients.  
 

The third column in Fig.3.7 shows the histograms of phase angle gradients for the chosen windows. 

3.3.3 Texture feature 

The texture is a grade of the consistency level and change in intensity that defines characteristics 
such as regularity, linearity, uniformity, density, directionality, smoothness, and coarseness of a 
surface[42]. The texture is known as the spatial configuration of intensity values or color in an 
image, which could be periodic, stochastic, or both[17]. There are several methods employed for 
describing and representing texture, including structural, statistical, and spectral approaches[83]. 
We chose the statistical techniques and put three of them to the test: 

i) Local Binary Patterns (LBP): It is an approach used in many applications. LBP is a grey-level 
measure used to characterize surface texture attributes. It's a robust and dependable method for 
describing a texture's pure local binary based on the texture unit[84],[85]. A texture unit (TU) is 
implemented by eight elements. Each element has one of two potential values (0,1) derived from 
a 3 × 3 local neighborhood in the two-level version. Only 28=256 texture units are potential in 
the two-level version. 

The pixels ip of an image ( , )i iI x y are labeled using LBP by thresholding each pixel of a 3x3 
neighborhood with the value of the central pixel and treating the result as a binary number 
[84],[85],[86]. An example of LBP calculation is shown in Fig.3.8. The original 3x3 
neighborhood is shown in Fig.3.8a. The following are the steps for determining the LBP measure: 
 
1- By comparing the gray level values of neighbors with the central pixel value, the neighbors' 

labels are obtained using the binary code [0, 1] and it could be gained using equation (3.16). 
This binary code could be thought of as a binary pattern. It is labeled 1 if the examined gray 
level value of the pixel is greater than the gray level value of the central pixel, otherwise, it is 
labeled 0 [86], as illustrated in Fig.3.8b.  
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 (3.16) 
 

id ′  is the obtained binary code, id  original pixel value at position i , and 0d is the central 
pixel value.   
 

2- Give weight to the corresponding pixels using the value 12i− , as shown in Fig.3.8c, 
 

3- Multiplying the elements of Fig.3.8b by their respective weight kernel (Fig.3.8c) to obtain the 
outcome of this step as given in Fig.3.8d, 
 

4- Finally, using equation (3.17), the LBP measure is calculated by adding the values of the eight 
pixels[86], as shown in  Fig.3.8e. 

8
' 1
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2LBP
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i

i
I d −

=
=∑  

 (3.17) 
 

 
5- The central pixel is substituted by the obtained value ( LBPI ). Each pixel and its 3x3 neighbors 

in the original image are processed to create a new LBP image. 
 

 

 

9 8 3  1 1 0  1 2 4  1 2 0  
LBP= 

1+2+16+128=147 
2 4 6  0  1 ˟ 8  16 = 0  16  

3 1 7  0 0 1  32 64 128  0 0 128  

a  b  c  d        e  

Fig.3.8 The stages of two-level version (LBP)  texture unit  calculation 

The obtained LBP measure in this example is = 147. 
 
The frequency of occurrences of certain binary patterns throughout the image is represented by a 
histogram[76]. The texture descriptor for the region is represented by the histogram of these LBP 
measures[86]. 
 

ii) Grey Level Co-occurrence Matrix-based Features (GLCM): Also, it is known as a co-
occurrence distribution. It represents and illustrates the spatial distance and angular spatial 
interrelation across a given image sub-region. In other words, it represents the number of 
occurrences of various gray-level combinations for each pixel and its specified neighbors in the 
image. The GLCM computes how often a pixel with a gray-level value i (grayscale intensity)  
appears horizontally, vertically, or diagonally when compared to neighboring pixels that have 
the gray level value j [87], [88]. 

Threshold 
Multiply 
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The Grey Level Co-occurrence Matrix is a matrix with the same number of rows and columns 
as the image's gray levels (G). The Matrix’s size represents the set of possible values. GLCM is 
computed based on two main parameters: 

 
- The relative distance (d) between the pixel pair (distance or count to the next adjacent neighbor) 

 
- The rotational angle (θ) or relative orientation, e.g. 0°, 45°, 90°, 135°, .... (8 orientations of 

adjacency), as seen in Fig.3.9. 

 

 

 
Fig.3.9 Directions/orientations (θ) of Adjacency in GLCM 

 
In order to create a GLCM matrix, we must go through five steps[13]: 
 

1. Generate a framework matrix, 

2. Determine the spatial relationship between the reference and adjacent pixels,  

3. Fill and complete the framework matrix by counting the occurrences, 

4. Add the matrix to its transpose to make it symmetrical, 

5. Normalize the matrix to convert it to probabilities 

 

By applying some mathematical operations to the created GLCM values, different 
characteristics of the pixel distribution can be obtained. These types of operations were labeled as 
descriptors. Each descriptor is associated with a distinct texture characteristic. The following are 
some of the most often used descriptors (statistic parameters) that could be calculated from GLCM 
matrix[88]:  
 
• Maximum probability: this metric determines the GLCM's strongest response. The possible 

value range is [0, 1]. 
  

• Correlation: a metric that indicates how closely a pixel is connected to its neighbors 
throughout the entire image. The values range from 1 to -1, which corresponds to perfect 
positive and negative correlation contrasts, respectively. 
  

• Uniformity, also known as energy, is a metric measure of consistency in the range [0, 1]. 
Uniformity is equal to one for a constant image. 

90° 45° 

0° 

135° 

 

Pixel of 
interest 
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• Homogeneity: determines how near the distribution of elements in the GLCM to the diagonal 
is in terms of spatial proximity. The value range is [0, 1], with the highest value is obtained if 
GLCM is a diagonal matrix.  

• Entropy: The randomness of GLCM's elements is being measured by entropy. If the image is 
not texturally uniform, then most elements of the GLCM have small values, indicating that the 
entropy is quite high. 
 

 The information about an image texture is described by these statistical parameters (Harralic 
descriptors) and expressed in a vector form. 

 
iii) Elements of GLCM: The elements of GLCM have been converted to a vector (histogram), 

which appears the most successful approach in our work and has been adopted here. The 
GLCM matrix was chosen to be 8x8 in size (eight classes of grey level). We utilized a 1-pixel 
offset oriented to the east direction (from left to right). After normalization, GLCM elements 
(number of occurrences) turn into probabilities. The GLCM elements' probabilities of 
occurrence are transformed into a 64-bit vector, which appears in a histogram type of 64 bins. 
The GLCM-based histograms are shown in the fourth column of Fig.3.7. 

 

The illustrations are made for different circumstances in the traffic scenario, which shows the 
candidate vehicle tracking windows in a sequence of frames. Three features are obviously not 
equally sensitive to the disruptions that occur during this phase. In the presence of shadow and 
partial occlusion, the edge feature histograms are fairly stable (appropriate histograms are of 
recognizable bipolar nature). Color histograms are the most susceptible to these impacts, whereas 
GLCM histograms are in the middle. None of the histograms are useful in the situation of complete 
blockage (final row) [15]. 

3.4 State estimation 

Each new frame's measurement includes the calculation of the specified picture feature for each 
particle. The suitable histogram represents the contents of the considered particle (window) 
regardless of whatever single feature is chosen. The similarity metric is proportional to the particle's 
weight. In our approach, we utilized the Bhattacharyya distance ( )BD between the actual particle 
(window) histogram and the reference histogram as information regarding local similarity at a 
certain position. The Bhattacharyya distance can be computed as follows: 

1
( ) 1 ( ) ( 1)

m
i i ref

u u
u

BD k hist k hist k
=

= − ⋅ −∑  
 (3.18) 
 

where: i – particle index, k – frame index, u – bin index, m–total number of bins, i
uhist  and 

ref
uhist refer to the extracted histograms of a considered particle’s window and the reference one 

respectively.  
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The reference histogram ref
uhist is obtained using the initial one (0)hist , which is characterizing 

the initial window around the object, and the previous one ( 1)hist k − , which is characterizing the 
window around the last estimated position of the object. 

The reference histogram ref
uhist is gained by utilizing the initial one (0)hist , which describes and 

represents the initial window around the object, and the previous one ( 1)hist k − , which describes 
the window surrounding the last estimated position of the tracked object. The equation (3.19) below 
represents the mathematical expression that is used for reference histogram calculation. 

( ) (0) (1 ) ( 1)refhist k hist hist kα α= ⋅ + − ⋅ −  (3.19) 
 

[0,1]α ∈  - Histogram weighting coefficient. 

The particle's weight is computed using an exponential function, as shown in the equation (3.20) 
with σ = 1.5 as the deviation. 

2

2
( )

21( )
2

iBD
iw k e σ

πσ

−
=

 
(3.20) 

 

The weights are then normalized as follow:  

1

( )( )
( )

i
i

N
j

j

w kw k
w k

=

=

∑
 

(3.21) 
 

 

The center (position) of the particle's window that is the most identical to the reference template 
(with the highest value of weight ( )iw k ), is considered as the new estimate of state (position of the 
target). 

max max

max

( , ) ( , ),

( ) max( ( )) 1,2,...

i i
k k w w

i

x y x y

w k w k for i N

=

= =
 (3.22) 

 

or as a weighted sum: 

1
( , ) ( ).( , )

N
i i i

k k
i

x y w k x y
=

=∑  (3.23) 
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3.5 Resampling 

Resampling process is a significant step in particle filtering. It introduces the required feedback 
information from the measurements. Resampling step provides a way of using the likelihood of 
each particle 𝐱𝐢 to create a new set of particles in time 𝒌 for the next iteration in the tracking 
process[89], [90]. Each particle is chosen from the previous set of particles with a probability 
proportional to its weight, which implies that if the particles' weights are extremely low, they are 
removed with a high likelihood, and substituted with a duplicate of particles with large weights 
[72],[91]. In PF literature, resampling step has the particle degeneracy problem, which means that 
the variety of particles is reduced because particles with high significant weights are selected 
multiple times and particles with low weights are discarded[60], [90], [91], [92]. And the 
explanation for this is, when a few particles become dominant due to their high similarity 
measurements, the efficient number of particles is greatly lowered, the more of this takes place, the 
less particles there are that participate in the distribution's approximation. This has an impact on 
the tracker's capacity to respond appropriately to stochastic changes in the motion of the object. 
The effective number 𝑵𝒆𝒇𝒇of samples is a signal of the degree of particles depletion; therefore, a 
resampling is carried out only when necessary instead of executing the resampling step at every 
iteration[60]. The PF's resampling condition is defined by a threshold, when 𝑵𝒆𝒇𝒇decline below a 
nominated threshold, resampling begins. The effective number of particles can be determined 
using the formula (3.24). 

A variety of techniques are available for resampling. The most popular resampling approach is 
select with replacement[60], [90], [92]. 

2

1

1

( )
eff N

i

i

N
w

=

=

∑
 (3.24) 

Among the several available resampling algorithms [92], we have chosen the most popular 
resampling approach, which is known as selective with replacement. The algorithm for this 
approach is as follows: 

(i) Calculate the cumulative weight iwc (Cumulative sum of weights (CSW)) based on 
normalized particles’ weights w : 
 

1

i

i
s

s
wc w

=

=∑  
(3.25) 

 
(ii) Generate a random number with a uniform distribution, [0,1)ju U  

(iii)𝑭𝑶𝑹 𝒋 = 𝟏:𝑵, From the initial set of particles, choose the particle ix for replication based on 
following the condition:  

If 1[ , )i i
ju wc wc−∈ , then assign samples j ix x=  

END FOR j  



Chapter 3                                           Tracking of Moving Object Based on Multiple Image Features Using Particle Filter 

45 

Fig.3.10 shows the cumulative sum of weights (CSW) graph calculated by iwc  
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Some particles with lower weights will be removed, while some particles with higher weights 
will be multiplied as a result of resampling[15]. 

3.6 Similarity measure 

The similarity measure is an important step and plays a significant turn in the tracking process. 
It compares the target feature vector (histogram) with the feature vector of reference. In fact, it 
calculates the distance between the histograms of the reference window and the target window[41]. 
In this work, the Bhattacharyya distance has been used for similarity measures and assessment. The 
used Bhattacharyya distance expression is given in the equation (3.18). 

For the proposed features used in this thesis, the histograms were calculated for RGB color with 
21 bins for each color channel (63 bins, in sequence, together), 64 bins for an edge and 64 bins for 
texture.   

The similarity measure criteria utilized for the evaluation between the two histograms are based 
on Bhattacharyya distance as given in the equation (3.26): 

( ) 1 ( )i isim k BD k= −  (3.26) 

The predicted position of the moving target is chosen as the position of the particle where the 
similarity is the best. Fig.3.7 showed typical histograms for RGB color, edge gradient orientation, 
and texture of the reference target window (#310) and candidate window (#320, #340, and #360). 

 

Fig.3.10 Cumulative weight graph: particle’s weight (brown), the CSW (solid) and 
a transformation from standard uniform number to the event (dashed) [92]. 
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3.7 Multi-Feature-Based Tracking Algorithm 

Many of the particle filters mentioned in the literature rely on a Single-Feature-based Particle 
Filter (SFPF) for tracking vehicles in the video sequence, but they are suffering from many 
individual drawbacks, and have weakness ambiguities because a single feature in some 
circumstances doesn’t supply enough information and reliable performance, especially at the 
existence of visibility noise and typical disturbances[15], [43] (e.g. the influence of luminance 
changes, shadows, and texture ambiguity during object's rotation).  Accordingly, tracking using 
several features can offer more information and a more accurate description of the object, as well as 
increase the tracking system’s robustness. 

The image features mentioned in sections 3.3.1, 3.3.2, and 3.3.3 would be the candidate features 
to be used for SFPF. The primary idea beyond this Multi-Feature-based Particle Filter (MFPF) was 
that by fusing the results of various SFPFs, one might overcome the shortcomings of each SFPF. 
The relative significance of all SFPF outputs will be adaptively modified based on the assessed 
quality of these outputs in order to give priority to picture features that are less influenced by the 
present disturbance situation[15]. 

There are certain additional steps and parameters that should be mentioned in the construction of 
the MFPF algorithm in comparison to the proposed original SFPF steps stated in Section 3.1.3: 

 
• Initial distribution of particles – made as the same one used for all three single features ( SF ). 

Assuming the dispersion radius is 0DR  and  due to the significant initial uncertainty of the 
object's velocity, the initial dispersion radius,  has been doubled ( 0 2DR DR= ⋅ ), while the 
radius utilized for the following steps is 0DR , 
 

•  The average similarity nAS  of all features ( nSF ), is determined using the average value of 

Bhattacharyya distances iBD of all particles. This is a fundamental parameter that designates 
the relative significance of a feature,   

• The similarity metric is determined by the equation (3.26),  
• For any nSF , the level of confidence nLC  is defined as the ratio of real nAS  to initial (1)nAS  in 

the first frame following initialization. This level of confidence could be more than one (in the 
case of successive average similarity nAS  is greater than (1)nAS ). 

 
•  After normalizing the three nLC  values, the relative value (weighting factor, nWF ) for each 

nSF  is calculated. 

3

1

( )( )
( )

n
n

j
j

LC kWF k
LC k

=

=

∑
 (3.27) 

Equation (3.28) is used to estimate the final state by the weighting factor and position of the object 
with maximal weight 
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max max

3

1
( , ) ( , )n n

obj obj n w w
n

x y WF x y
=

= ⋅∑  
(3.28) 

• If the nAS  that is correlated to nLC is less than the threshold value thr
nAS , the nLC is set to zero, 

and the nSF is not considered in the final state estimation. 
 

• If all nAS are less than their specified threshold values (as in full occlusions), PF is switched to 
"prediction mode," to estimate the next new position relying on past predictions, rather than 
new measurements.  

• During the full-occlusion phase, the radius of particles scatter ( DR ) is gradually expanding, 
while they stay at their nominal value ( 0DR DR= ) in the case of " partial occlusion or non-
occlusion phase"  

• The reference histograms (reference model) that will be used during the "prediction phase” 
would be the last reference histograms used on the previously estimated position in "estimation 
mode".  

• Resampling has a slightly different meaning in the MFPF algorithm environment than it does 
in the SFPF algorithm environment. After all three features have been resampled; the final step 
is to extract particles "N" from all three sets of resampled particles at the same time. 

 
Fig.3.11 below shows the overall flow chart for the proposed MFPF algorithm. 
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Fig.3.11 MFPF flow chart algorithm 



Chapter 3                                           Tracking of Moving Object Based on Multiple Image Features Using Particle Filter 

49 

where: 

- n
occI are the indicator for the appearance of occlusion in nSFPF , 

- occk  is the time when the occlusion began, 
- FoccI is an indicator, indicates full occlusion, 

- thr
nAS are average similarities thresholds for each feature, 

- 
max max

( , )n n
w wx y  are locations where the weights are largest for nSFPF , 

- 0
nhist  represent the initial reference histograms of nSFPF , 

- ref
nhist are SFPF n 's reference histograms for features that have been updated, 

- last
nhist are the last-updated histograms, 

- ( , )obj objx y  the obtained estimate of position for the object, 

- ˆ ˆ( , )obj objx y  is the predicted position of the object, 

- ˆ ˆ( , )i ix y  are the predicted positions of the particles.  

The MFPF algorithm steps for integrated Features for the flowchart given in Fig.3.11 are as 
follows: 

 

(i) INITIALIZATION: at  0k =  ( k is frame index), 
• Initialize the values: 0[ , ], , , ,Focch hx y N DR I α  

- Where[ , ]x yh h , is the dimension of window, N is number of particles, 0DR is distribution 

radius, FoccI is an indicator, indicates complete occlusion occurred, andα  , is forgetting 
factor. 

• Manually choose the monitored object at its initial location 0 0( , )x y , 

• Set the rectangular window of dimension [ , ]x yh h around object’s centroid, 

• Compute initial histograms for initial window: 

- 
0 0
1 RGBhist hist= , initial RGB histograms 

- 0 0
2 HOGhist hist= , initial edge gradient histograms 

- 0 0
3 GLCMhist hist= , initial gray level co-occurrence matrix histograms. 

• Set reference histograms to initial ones:       For n=1:3, 0ref
n nhist hist= , end for 

• Create and spread a set of N particles around the initial position 0 0( , )x y with a radius of

02 DR⋅ according to adopted distribution. 
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(ii) MEASUREMENT STEP:  at 1k k= + , 

 
• For n = 1:3,  

• For i = 1:N,  

- 
1

( ) 1 ( ) ( 1)
m

i i ref
u u

u
BD k hist k hist k

=

= − ⋅ −∑ , Calculate Bhattacharyya distances for 

each particle (Equation (3.18)) 
where, k is frame number, u  is index of bin, m  is number of bins, i

uhist is particle 

window’s histogram and ref
uhist is the reference histogram 

- ( ) 1 ( )i isim k BD k= − ,Calculate the similarity measures for all N particles (equation 
(3.26) ), 

- 

2

2
( )

21( )
2

iBD
iw k e σ

πσ

−
=

, Calculate the particles’ weights (σ = 1.5) (Equation (3.20)), 

- 

1

( )( )
( )

i
i

N
j

j

w kw k
w k

=

=

∑
, Normalize the weight (Equation (3.21)), 

• End for i 
- ( ) ( ) ( )max max

@ , maxn n n i
w ww k x y w= , Find positions ( )max max

,n n
w wx y  of particles with largest 

weights for each feature  

- ( ) ( ) ( )max max
, ,n n n n

x y w obj w objD D x x y y = − −  , Calculate increments for each feature 

- 
1

1 N

n j
j

AS sim
N =

= ∑ , Calculate average similarities, 

• End For n 
• if   k = 1,    

- ( ) ( )
3

1

1, ,
3

n n
x y x y

n
D D

=

∆ ∆ = ∑ , Initial calculation of prediction increment, 

• For  n = 1:3,  
- (1)ref

n nAS AS= , define reference similarities,  

- 80% (1)thr
nAS of AS= , set average similarities thresholds 

- ( ) ( )0 0@ ,last
n n x yhist hist x y = + ∆ + ∆  ,Initialization of the last histograms in the 

first step  
• End For n 

• End if 
- 0 +(1- )ref last

n n nhist hist histα α= ⋅ ⋅ , modifying reference histogram 
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(iii) PREDICTION STEP: 

 
• predict the moving vehicle’s state ˆ ˆ( , )obj objx y  based on state transition model (Equation(3.8))  

• For  n = 1:3, specify the positions of particles ˆ ˆ( , )i ix y  according to transition model, 
• End For n 
 
• For  n = 1:3,  

if ref
n nAS AS< , check the feature validity 

,
0,

n
occ

n

I True
AS

=

=
 

Else  
n
occI Fulse=  

End if 
• End For n 

 

(iv) UPDATING STEP: 
 

• if 1 2 3
occ occ occI I I True⋅ ⋅ = ,  full occlusion is occurred 

if FoccI False= , 

occk k= , Remember the index of last frame before occlusion 

1FoccI = , switch occlusion flag to full occlusion, 
End if, 
if 02DR DR≤ ⋅ , Gradual increasing radius of spreading. 

01.1DR DR= ⋅  
End if,  

( ) ( )ˆ ˆ( ), ( ) ( ), ( )obj obj obj objx k y k x k y k= , new object state in full occlusion state 

( ) ( )( ), ( ) ( ), ( )x y x occ y occk k k k∆ ∆ = ∆ ∆ , position increment in full occlusion state 

For  n = 1:3, ( )last
n n occhist hist k= , End For n, remember the last valid histograms 

• Else , no complete occlusion 
0

0Focc

DR DR
I

=

=  

For  n = 1:3,  n
n ref

n

ASLC
AS

= , End For  
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For  n = 1:3,  
3

1

n
n

j
j

LCWF
LC

=

=

∑
, End For  

For  n = 1:3,  ( )
3

1
( ( ), ( )) ,n n

x y n x y
n

k k WF D D
=

∆ ∆ = ⋅∑ , End For
 

( )( ( ), ( )) ( 1), ( 1) ( ), ( )obj obj obj obj x yx k y k x k y k k k = − − + ∆ ∆  , Calculate estimated 

vehicle’s position, 
 

For n = 1:3, 
@ ( ), ( )last

n n obj objhist hist x k y k =   , Calculate histograms on updated position, 

End For 
• End if,  

 

(v) Resampling step: 
 

Resample the particles in all three features by excluding and substituting any particle that fulfills 
the removal requirement, according to section 3.5. 

(vi) GO TO step 2 (To start new iteration). 
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4 The performance evaluation of the proposed SFPF 
algorithm 

4.1 Testing the environment for object tracking using different 
features based Particle Filter 

One of the most important researches in the visual tracking field is the development of systems 
that automatically analyze or monitor traffic activities. Tracking of targets has its own challenges 
when the targets pass through many disturbances such as movement of the vehicles close to each 
other, merging, appearing of shadows, or maneuvering, etc. Often the goal of tracking is to obtain a 
record of the correct trajectory of single or multiple targets over time and space, by processing the 
available information from the distributed sensors or any other means. For that purpose, it is 
required to attain accurate and dependable vehicle tracking in traffic images. So, to evaluate the 
performance of the proposed algorithm mentioned in the previous chapters, two steps have been 
taken. In the first step, synthetic traffic scenarios have been created to simulate moving vehicles in 
two directions on a round road of two lanes, using MATLAB [93]. The vehicles have been assumed 
to move at a constant velocity. This program has been generated for the purpose of designing and 
testing a moving vehicle tracking algorithm. Fig. 4.1 represents a top view of the suggested traffic 
scenario. The second step is the implementation and testing of the proposed tracking algorithm on 
the created synthetic scenarios [94]. This algorithm can be utilized and performed in a real video 
sequence. 

 

Fig. 4.1 Top view of the traffic scenario [93] 
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4.2 Testing the proposed tracking algorithm SFPF using multiple 
descriptors of the image independently    

In this section, we are going to test the proposed algorithm (SFPF algorithm) of object tracking 
based on three individual and independent features (image descriptors) by means of presenting two 
cases. The first one is a single object tracking in a created artificial video sequences for three 
different scenarios; the second one is single object tracking in real video sequences for two different 
scenarios. 
 

In general, any traffic scenario might be exposed to many different environmental conditions. 
The testing scenarios illustrated in the following sections have been used to achieve the following 
targets: 

 
i) For testing the algorithm on created artificial and real video scenarios for the case of a single 

movable object. For that purpose, we have tested some disturbances’ effects on the tracking 
process. Typical situations to be tested were the cases: without disturbances, disturbances 
caused by shadows, maneuvering, and partial occlusion, 
 

ii) In order to present a comparative analysis of the application of the object tracking algorithm 
(SFPF) using three independent features (image descriptors). 
 

For the proposed algorithm (SFPF) we have adopted independently the RGB color space, edge 
intensity, and texture as separate descriptors to be used in SFPF algorithm. 

4.2.1 Synthetic Traffic scenarios generation for testing of the tracking 
algorithm 

Traffic simulation has been an often-used tool in the study of traffic systems. The synthetic 
traffic scenarios have been created on a suggested circular two-lane road as shown in Fig. 4.1 and it 
is implemented via Matlab program that simulates the motion of string vehicles in both directions 
on the road lanes  [93]. 

The tracking method for video data and information that we use is based on a window-matching 
manner, which involves determining the grade level of likeness between regions in sequential 
images. In this manner, an object can be recognized, and its position deduced in the later frames 
[95]. For the synthetic video sequence, relatively small windows of size equal to 32×32 pixels are 
used for window matching purposes with the criterion to maximize the proper similarity function, 
as it was used in [43]. 

The assumed ego-car in the synthetic proposed scenarios is the red one, and the parameters for 
the synthetic video sequence simulation are: 

 
• The velocity of the target vehicle in all cases is 90 km/h.  
• The time interval between frames is 50 ms.  
• The number of particles used in PF was 150 in all cases.  
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• The spreading radius of the particles was 10 pixels in Cases-I and II, and 15 pixels in Case-III.  
• The framework window size is 32×32 pixels.  
• 1 meter ≈ 7 pixels. 

There are three proposed scenarios of moving vehicles (for the synthetic sequence of images) 
used for testing the tracking algorithm: 

1) Case-I: Tracking the non-maneuvering target car without disturbance 

This was the case used for the basic verification of the tracking algorithm in situations where 
there are no disturbances and no obstacles on the road, as shown in Fig. 4.2: 

 

 
(a) Frame #4 

 
(b) Frame #20 

 
(c) Frame #40 

 
(d) Frame #55 

Fig. 4.2 Tracking of the vehicle without disturbances on the road 

 
Fig. 4.3 below shows the average similarity (for all particles) and the deviation between the actual 

vehicle position and the estimated (updated) target positions respectively, using the three features 
independently.  
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Fig. 4.3 Case-I a) Average similarities, b) Tracking errors 
 

From Fig. 4.3 we can see that the errors are approximately the same for all three descriptors 
(root mean square errors are 4.18, 3.94, and 4.61 pixels, respectively for color, edge, and texture). 
Average similarity slightly gives preference to the color descriptor.  

 
2) Case-II: Tracking a target car with disturbances in the image (shadow produced by the 

ego-car itself and shadows produced by the road environment) 

In this scenario, the disturbances such as the ego-car shadow and environment's shadows such 
as those produced by clouds, trees, buildings, or by any other things besides the road, that appear 
abruptly at different intervals have been inserted. Fig. 4.4.b illustrates the target car with shadow 
produced by the car itself (𝒌 = 15), and Fig. 4.4.c shows the target car when it is affected by a 
building's shadow beside the road (𝒌 = 45).   

 

 
   (a) Frame #4 

 
  (b) Frame #15 

 
  (c) Frame #45 

Fig. 4.4 a) Reference frame (#4), b) Target car with its shadow (k=15), c) Tracked car within 
the building’s shadow (k=45) 

0 10 20 30 40 50 60
0

2

4

6

8

10

Frame No.

Po
si

tio
n 

Er
ro

r  
[p

ix
]

 

 
RGB Edge Texture

(b)



Chapter 4                                                                             The Performance Evaluation of the Proposed SFPF Algorithm 

58 

 
The obtained average similarity and deviation between the actual and estimated position of the 

target vehicle can be seen in Fig. 4.5 below.  

 

 

 

    Fig. 4.5  Case-II  a) Average similarities, b) Tracking errors 
 

The error diagram shows that the color and texture descriptors are more sensitive to the shadow 
in both cases. The average similarity of the color and texture descriptors is dropped to 0.83 at the 
building's shadow interval, and the root mean square errors are 6.94, 8.19, and 5.61 pixels for color, 
edge, and texture respectively (giving preference to edge descriptor).  
 
 

3) Case-III: Tracking a maneuvering target car without disturbance 
 

Fig. 4.6 illustrates the situation of tracking stages of car maneuver bypassing another car, before 
over-taking (𝒌 = 25), the two cars in parallel (𝒌 = 39), and after over-taking (𝒌 = 55). 
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Fig. 4.6  Different status intervals frames, a) Reference frame (#4), b) before over taking (k=25), c) 

2-cars in parallel (k=39), c) after over taking (k=55) 

The average similarity and the deviation between the actual and estimated positions 
respectively, for the target vehicle can be seen in Fig. 4.7. The maneuvering stage occurs between 
the 4th frame and 70th frame.  

 

 
Fig. 4.7 Case III, a) Average similarities, b) Tracking SFPF errors    
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We can see from Fig. 4.7 that the color is the appropriate and favorite compared with other 
descriptors; and the root mean square error is 6.67, 11.26, and 9.92 pixels for color, edge, and 
texture respectively. 

Table 4.I summarizes the RMS errors in pixels for the three preceding examples of artificial 
sequence cases using the SFPF algorithm.  Looking at the results obtained from the synthetic 
sequences (cases 1 to 3), in Case I Edge offers the best RMS error, and in Case II Texture grants the 
best RMS error, while in Case III, Texture provides the best RMS error. 

Table 4.I RMS tracking errors in pixels 

 Case I Case II Case III 

RGB 4.18 6.94 6.67 

Edge 3.93 8.19 11.26 

Texture 4.61 5.61 9.92 
 

4.2.2 Single object tracking in real-video sequences using three independent 
image descriptors 

The proposed tracking algorithm has been tested by using the created artificial video images in 
the previous section. In this section, we are applying and implementing the proposed algorithm in 
real-video sequences for tracking a single vehicle based on each feature individually using PF. Two 
cases of real-video sequences (Case-IV and Case-V) have been selected here. The first case is 
’Tracking the target car in real video sequences in the presence of the car’s shadow itself and trees’ 
shadow as disturbances', and the second case is ’tracking of the maneuvering car in real-video 
sequences with partial and full occlusions’. The assumed simulation parameters for the selected 
real-video sequence are: 

•  The interval between frames - 10. 
 
•  The number of particles used in PF was 200 particles for both cases.  

 
•  The spreading radius of the particles was 20 pixels for both cases.  

 
• The framework window size (Hw) is 120×110 and 60×64 pixels for Cases-IV and V, 

respectively. 
 

•  1 meter ≈ 63 pixels for Case-IV and 1 meter ≈ 16 pixels for Case-V. 
 

 
1) Case-IV:  Tracking the target car in a real video sequence with disturbances of car and 

tree shadow 

This case describes the tracking situation in the existence of car shadow and tree shadow. Fig. 
4.8 shows the overall scenario followed by the target windows and color histogram respectively for 
the reference frame (𝒌 = 235), car at tree’s shadow frame (𝒌 = 263), and car after tree shadow 
frame (𝒌 = 291).  
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Fig. 4.8 Overall scenario and target vehicle window at different time 

A typical histograms for the three features respectively: color, edge, and texture for target 
vehicle window at three different times (k), are shown in Table 4.II. 

Table 4.II Histograms for color, edge, and texture descriptors 

RGB 

   

Edge 

   

Texture 

   

Frame No. #235 #265 #290 

 
 
The average similarity and the deviation between the actual and estimated position of the target 

vehicle respectively are shown in Fig.4.9. 
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Fig.4.9 Case-IV (a) Individual average similarities, (b) SFPF errors  

We can see from the average similarity in Fig.4.9.a that the edge is a favorable descriptor; while 
the mean square errors are 18. 94, 24.01, and 16.69 pixels respectively for color, edge, and texture.  

One should note that there are some differences in comparison to the synthetic sequence of this 
type: 

(i) Size of the frame – larger than before 

(ii) Variable shadow all the time 

(iii) Both types of shadows simultaneously 

(iv) The correlation between pixels and meters is variable and different (1 meter ≈ 64 pixels).  

 
2) Case-V: Tracking of maneuvering target car in real-video sequences with partial and 

full occlusion  

This case describes the tracking situation of the target vehicle exposed to partial and full 
occlusions due to the tree beside the road. One could say that this case is the most complex scenario 
because of the following: 

(i) Decreasing the size of the car. 

(ii) Partial and even full occlusions. 
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(iii) Maneuver during the full occlusion phase. 

 
Fig. 4.10 illustrates the overall scenario and some important frames (a, b, and c) that contain the 

target windows and corresponding color histograms representing these situations. The yellow and 
red dots inside the red windows represent the actual and estimated target positions respectively. 

 

   # 470 
   

# 510  # 580 # 640  # 670  # 700 

Fig. 4.10 Overall scenario and target vehicle window at different time 

Table 4.III shows typical histograms for the three features respectively: color, edge, and texture 
of the target vehicle window at three different times. 

Table 4.III Histograms for color, edge, and texture descriptors 
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Fig.4.11 below shows the average similarity and the deviation between the actual and the 
estimated (updated) target positions using the three descriptors independently respectively.  

 

    
Fig. 4.11 Case-V:  (a) Individual average similarities, (b) Individual SFPF errors  

 
According to the average similarity Fig. 4.11.a, it's obvious that all descriptors mostly have 

comparatively near values. Error values in Fig. 4.11.b show that color and edge, as well as texture, 
have relatively similar values at different periods. The RMS errors for color, edge, and texture are 
13.10, 15.77, and 13.50 pixels respectively. 

Table 4.IV illustrates the obtained RMS errors in pixels that present the SFPF results for the two 
real scenarios (cases IV and V) for different attitudes and behavior. 

 Table 4.IV RMS TRACKING ERRORS (PIXELS) 

 Case IV Case V 

RGB 18.94 13.10 

Edge 24.01 15.77 

Texture 16.69 13.50 
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From the studied, tested, and analyzed cases for a single object in synthetic video sequences and 
the real-video sequences using the proposed SFPF algorithm to track a moving object, we can 
summarize the following: 

 
• We have presented a comparative analysis using three individual features/image descriptors 

(independently) by the application of the proposed object tracking SFPF algorithm. 
 

• In the case of the target vehicle (Case-I), where it is without maneuvering and disturbances, the 
tracking errors are mostly the same for all three descriptors. 

 
• In the case of tracking of the target car (Case-II) with its self shadow, and the shadow produced 

by the road environment, it's obvious that the color and texture descriptors are more sensitive in 
comparison to the edge descriptor, as shown in Fig. 4.5.b. 

• The maneuvering of the undisturbed target vehicle (Case-III) shows that the edge descriptor is 
the most sensitive to rotation, as illustrated in Fig. 4.7, and the color cue gives the best accuracy 
compared to the others.  
 

•  In the case of tracking the target car (real video) with its shadow and tree's shadow (Case-IV), 
one can conclude that the edge is the favorable descriptor in the first half of the journey whereas 
texture is favorable in the second half of the journey, according to Fig.4.9.b. 

 
• The vehicle in maneuver status (Case-V), is being the most complex scenario in the presence of 

the mentioned disturbances. Looking at the similarity results‘ figures, favorability in some 
periods has been given to the color, and at other times it is given to the texture, whereas at 
another time it is given to the edge. 

 
• It could be said that according to different scenarios tested here, none of the analyzed descriptors 

can be declared as the best one in all cases. To overcome this ambiguity, some fusion of 
individual results obtained by the different descriptors should be made into one integral tracking 
algorithm based on the three analyzed descriptors, and this will be implemented and applied in 
the next chapter. 
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5 Performance Evaluation of MFPF Tracking Algorithm in 

Comparison to SFPF Algorithm 

Through describing and implementing the particle tracking techniques to track a moving 
vehicle in a video sequence in the earlier chapters using a Single-Feature Particle Filter "SFPF", 
we can say that none of the used descriptors can be suggested and declared as the best descriptor 
could be used alone as the comprehensive nominee in all different circumstances because these 
features have shown their own sensitivities in some conditions. The color-based features are 
usually sensitive to illuminance changes. The gradient-based features are affected by the presence 
of other objects near to the object of interest in the window and require massive calculations effort, 
and their computations can be time-consuming. The texture-based features have relatively less 
sensitive to changes in illumination, but they are extremely sensitive to irregular or anarchic 
backgrounds. It was shown that SFPF tracking techniques were able to track the moving object 
mostly correctly, accurately, and predict the trajectory if there are no disturbances. Hence, it is 
clear that to overcome this sensibility, ambiguity, and the defects associated with the features in 
different circumstances and environments, merging of the results obtained by every single 
descriptor from the three features should be made in an adaptive manner into one integral tracking 
algorithm. And this is a reasonable step as a middle solution to compensate for the features' partial 
sensibility. 

The ultimate state estimate is calculated using the weighted average of individual estimates 
obtained by each feature. Testing and verification of the tracking accuracy of a single-feature and 
three fused features based on particle filters were achieved using a collection of synthetic and real 
traffic sequences scenarios containing typical perturbations (shadows, variable background, partial 
and full occlusions, maneuvering, etc.). 

The fundamental novel idea behind that upholds the algorithm proposed in this thesis is built 
on the following assumptions: 

1. Because of the feature's varying sensitivity to typical disturbances, the proper fusing of data 
obtained through the use of more than two fused features will be more robust than if only a 
single feature is used. 

2. In order to conserve time in the computation, we have supposed that a relatively small number 
of particles have to be employed. 

3. In contrast to more complex systems based on the use of Artificial Intelligence, this tracking 
algorithm does not require any prior learning. The object tracking success and adaptability in 
the tracking process are based on "online" measurements and the different ways in which they 
are combined. 
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5.1 Impacts of varying some algorithm’s parameters 

In this section we will study and discuss the effect of changing some important parameters on 
the proposed algorithm in the vehicle tracking process, such are the effects of: 

• Number of particles (N),  
 

• Spread radius of particles (DR), and  
 

• Thresholds of average similarities (AS).  

The sensitivity of the algorithm to the parameters will be studied and illustrated in two examples, 
one for our created artificial video sequences and one for real video sequences. 

5.1.1 Impact on artificial video sequences  

1) Effect of the increasing number of particles  
 
The effect of altering the number of particles (N) on the tracking behavior and procedure could 

be seen by using two different values for the number of particles (N) in two different simulations 
run for the same scenario (Fig.5.1). In the first case, the number of particles is chosen to be equal 
to 100, and in the second case, the number of particles is chosen to be equal to 200. The obtained 
average similarity and RMS errors results for both cases can be seen in Fig.5.2 and Fig.5.3 
respectively.  

Table 5.I lists the obtained RMS errors for both cases using the SFPF and MFPF algorithms. 
 

  

 
Fig.5.1 Artificial scenario for checking the impact of tracking algorithm parameters  
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Fig.5.2 Case 1.: N=100 particles   a) Average similarities, b) Tracking errors 
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Fig.5. 3 Case 2: N=200 particles   a) Average similarities, b) Tracking errors 

    Table 5.I RMS TRACKING ERRORS (PIXELS) 

 
RMS Error [pix] 

N = 100 particles N = 200 particles 

RGB 5.41 6.19 

Edge 5.35 4.76 

Texture 8.04 4.88 

Integrated 3.01 1.89 
 

Regarding increasing the number of spread particles, it’s clear from Table 5.I that the integrated 
RMS error is decreased as the number of spread particles is increased. 

 
 
2) Effect of increasing the diffusion radius 

 
The spread radius (DR) impact on the tracking behavior could be checked by selecting two 

values of DR for the same scenario in two different simulation runs. In the first case, DR was 
chosen to be equal to 10 pixels, and in the second case, DR was chosen to be equal to 15 pixels. 
The obtained average similarity and RMS error results for both cases can be seen in Fig.5.4 and 
Fig.5.5 respectively. 
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Fig.5.4 Case 1.: DR=10 pixels   a) Average similarities, b) Tracking errors 
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Fig.5. 5 Case 2: DR=15 pixels   a) Average similarities, b) Tracking errors 

Table 5.II illustrates the obtained RMS errors for the SFPF and MFPF algorithms for both cases. 

    Table 5.II RMS TRACKING ERRORS (PIXELS) 

 
RMS Error [pix] 

RD = 10 pixels RD = 15 pixels 
RGB 6.19 5.98 
Edge 4.76 6.76 

Texture 4.88 4.86 
Integrated 1.89 2.41 

 

The effect of increasing/decreasing spread radiuses of particles in this particular artificial case as 
illustrated in Table 5.II is that, as the spread radiuses are increased, the integrated RMS error is 
increased.  
 
 
3) Effect of thresholds of average similarities  

 
To see the impact of thresholds of average similarities, there were considered two cases for the 

same scenario at different average similarity thresholds for each case. 
 In the first case, the average similarity threshold was selected to be equal to 60% of the initial 
average similarity in the first frame of the scenario for each descriptor, while in the second case, it 
was 80% of the first average similarity in the first frame. The obtained average similarity and RMS 
error results for both cases can be seen in Fig.5.6 and Fig.5.7 respectively. 
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Fig.5.6 Case 1: Threshold=60%  a) Average similarities, b) Tracking errors 
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Fig.5.7 Case 2: Threshold=80% a) Average similarities, b) Tracking errors 

 
Table 5.III represents the obtained RMS errors from the SFPF and MFPF algorithms.     

Table 5.III RMS TRACKING ERRORS (PIXELS) 

 
RMS Error [pix] 

Threshold = 60%  Threshold = 80%  
RGB 6.19 6.19 
Edge 4.76 4.76 

Texture 4.88 4.88 
Integrated 1.89 1.89 

 
Looking at Table 5.III, one can see that the RMS errors are not affected in both cases by the two 
given thresholds (60% or 80% of the first value of average similarity). 

5.1.2 Impact on real video sequences  

We have selected the scenario shown in Fig.5.8 for evaluating the effects of parameters on the 
proposed tracking algorithm. 

 
Fig.5.8 Selected real scenario for checking the parameters on the proposed tracking algorithm 
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1) Effect of the increasing number of particles  

The effect of the number of particles on the tracking behavior is shown in the obtained results of 
average similarity and RMS errors for both cases as shown Fig.5.9 and Fig.5.10 respectively, and 
Table 5.IV below lists the obtained RMS errors for the SFPF and MFPF algorithms for each case. 

 

 

Fig.5.9 Case 1.: N=100 particles   a) Average similarities, b) Tracking errors 
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Fig.5.10 Case 2: N=200 particles   a) Average similarities, b) Tracking errors 

    

 Table 5.IV RMS TRACKING ERRORS (PIXELS) 

 
RMS Error [pix] 

N = 100 particles N = 200 particles 

RGB 19.41 17.81  

Edge 22.16 21.02 

Texture 18.26 16.04 

Integrated 17.45 15.11 
 
 
Table 5.IV shows that the integrated RMS error is decreased as the number of spread particles are 
increased. 
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2) The Effect of increasing the diffusion radius 
 
The spread radius (DR) chosen for both cases is 15 pixels and 20 pixels respectively. The 

impact of varying the spread radius on the tracking behavior in this scenario in both cases could be 
seen in the obtained results of the average similarity and the RMS error results as seen in Fig.5.11 
and Fig.5.12 respectively. 

 

 

 

Fig.5.11 Case 1: DR=15 pixels   a) Average similarities, b) Tracking errors 
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Fig.5.12 Case 2: DR=20 pixels   a) Average similarities, b) Tracking errors 

 

Table 5.V below lists the obtained RMS errors for the SFPF and MFPF algorithms for both cases. 

    Table 5.V RMS TRACKING ERRORS (PIXELS) 

 
RMS Error [pix] 

RD = 15 pix RD = 20 pix 

RGB 12.87 17.81  

Edge 13.98 21.02 

Texture 14.55 16.04 

Integrated 11.41 15.11 
 
In this particular case of real video, Table V illustrated that the RMS errors increased as the spread 
radiuses increased. 
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3) Effect of average similarity thresholds 
 

The effect of similarity thresholds on the considered scenario was tested by applying two 
different similarity thresholds: 60% and 85% of the initial average similarity in the first frame of 
the scenario. The impact of changing the similarity threshold for both cases could be seen in 
Fig.5.13 and Fig.5.14 respectively. 

Table 5.VI summarizes the obtained RMS errors in the SFPF and MFPF algorithms for each 
case. 

 

 

 

Fig.5.13 Case 1: Threshold=60% a) Average similarities, b) Tracking errors 
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Fig.5.14 Case 2: Threshold= 85% a) Average similarities, b) Tracking errors 

 

    Table 5.VI RMS TRACKING ERRORS (PIXELS) 

 
RMS Error [pix] 

Threshold = 60% Threshold = 85% 
RGB 19.39 17.39 
Edge 14.85 14.85 

Texture 19.01 15.86 
Integrated 14.18 13.93 

 

Table VI shows that the two cases of thresholds (60% or 85% of the first value of average 
similarity) give almost the same RMS error in this real video. 
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5.2 Experimental Comparison of MFPF and Different SFPF 

Algorithms 

Several scenarios for testing and analyzing vehicle tracking have been used in this thesis. Some 
of them are artificial and others are real. We have picked some of them for illustration and 
discussion and divided them into two groups. The first group is the created synthetic video 
sequences (sec. 5.2.1), and the second group is the real video sequences (sec. 5.2.2). And each 
group is categorized into cases, and each case is considered as a specific issue.  In all cases, the 
illustration of the entire scene is always shown first, followed by a collection of frames throughout 
the tracking process. Average similarities of the proposed three features for the tracked vehicle's 
window are displayed as curves with their predefined threshold values. The threshold is the 
reference used to point out that if the average similarity value of a feature is less than the threshold 
value, then a feature becomes worthless for tracking and is eliminated from the estimate process. 
The other kinds of curves are used to indicate how the tracking errors are variable (difference 
between estimated positions using the three features and the actual vehicle's position as determined 
by data in pixels). These data are used to compute the Root Mean Square (RMS) tracking error that 
is indicated in the equation (5.1). 

 
max

2 2

1max

1 ( ) ( )
i

es tr es tr
i

RMS x x y y
i =

 = − + − ∑  (5.1) 

where:  

- maxi , refers to a set of validation points; 

- ,es esx y , are the estimated coordinates of the object in pixel, and 

- ,tr trx y , are the real object coordinates in pixels.  

 
The root mean square errors for the artificial and the real video sequences are shown in Tables 

5.VII and 5.VIII in the next section. RMS is used to compare the tracking accuracy of the three 
SFPFs and the proposed MFPF. 

 

5.2.1 Synthetic video sequences  

The assumed parameters for synthetic video sequence simulations are as follows: 
 

• The time interval between frames (IBF) – 50 ms, 
• Velocity of the tracked vehicle – 90 km/h (25  m/s, 1.25 m/IBF), 
• The number of particles used in PF – 150, 
• The number of particles used in PF was 150 in Case-I, Case-II, and 200 in Case-III.  
• The spreading radius of the particles was 10 pixels in Cases-I and II, and 15 pixels in Case-III.  
• Tracking window – 32×32 pixels, 
• 1 meter ≈ 7 pixels.  
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1) Case-I: Tracking the target car by fusion of multi-features without disturbances  

 
Fig.5.15 shows a simple example of synthetic sequences representing the tracking of a car that 

is not exposed to any type of disturbances during the scenario. 

 

 
 (a) Frame #4 

 
 (b) Frame #20 

 
(c) Frame #40 

 
(d) Frame #55 

Fig.5.15 Tracked car on the road 
 

Fig.5.16 shows the average similarity measures (Fig.5.16.a) and the position errors between the 
estimated car positions and true ground position (Fig.5.16.b) using the three proposed descriptors 
separately and integrated as well.   
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Fig.5.16 Case-I a) Average similarities, b) Tracking errors 

 
From Fig.5.16.a one can see that the average similarity gives preference to color feature. The 

RMS tracking errors for the three individual descriptors are 4.18, 3.93, and 4.61, while for the 
integrated algorithm, the error is 2.21 pixels. 

2) Case-II: Tracking in the presence of the car's self-shadow and shadow produced by the road 
environment 

The disturbances such as self-shadow, shadows created by trees and buildings or clouds are 
included in this example of synthetic sequences, and these disturbances appear abruptly at different 
times.  

Fig.5.17.b presents the car with its self-shadow (frame #15), while Fig.5.17.c presents the presence 
of a shadow produced by nearby buildings (frame #45). 

 

 

 
   (a) Frame #4 

 
  (b) Frame #15 

 
  (c) Frame #45 

Fig.5.17 Case-II a) Reference frame (#4), b) Self-shadow effect (#15), c) The effect of shadow 
produced by environment objects (#45) 
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The average similarity and the deviation between the actual and estimated (updated) vehicle’s 
position have been presented in Fig.5.18 below. The error curves (Fig.5.18.b) show that all features 
have been influenced by the presence of the vehicle's self-shadow (frames 13 to 28) and the building's 
shadow (frames 42 to 48). 

We can see from Fig.5.18.a that the texture's average similarity is less than the specified similarity 
threshold in the period 13 to 42. Therefore it is excluded from the tracking process during this time 
period (frames), so the tracking relies on the color and edge features only. In addition, we can 
obviously see that the color and the texture descriptors' average similarity are sharply decreased within 
the period 42 to 48 (the period of building shadow or road environment shadow). And both descriptors 
have been excluded because their associated similarity values are less than the predefined similarity 
thresholds as shown in Fig.5.18.a. As a result, the tracking process is solely focused on the edge 
feature. 

The RMS tracking errors for the three separate features and integrated algorithms are 6.94, 8.19, 
5.61, and 4.36 pixels respectively. 

 

   

 

    Fig.5.18 Case-II  a) Average similarities, b) Tracking errors 
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3) Case-III: Tracking of a target vehicle during a maneuver 

 
Fig.5.19 illustrates the artificial tracking scenario, that includes the phases of an ego car (the 

red one) bypassing the other car (the white one). 
 

 
Fig.5.19 Case-III: Over passing status frames, a) Reference frame (#4), b) before over passing 

(#25), c) two cars in parallel (#39), d) after over passing (#55) 
 

The maneuvering phases in this scenario took place between frames #4 and #60. The average 
similarities and the tracking errors are presented in Fig.5.20 below. 

It is obvious from Fig.5.20.a that the color feature was the least sensitive and it has the highest 
average similarity.   

The obtained RMS tracking errors for three individual descriptors and integrated PF algorithms are 
6.67, 11.26, 9.92, and 5.25 pixels, consecutively.   
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Fig.5.20 Case III  a) Average similarities, b) Tracking errors    

By comparing all results obtained for the simple artificial sequences (Cases I to III) with the 
isolated disturbances, one can conclude that the “Integrated filter” was the best in all cases. 
Therefore, there is no possibility to decide which separate PF is the best candidate for all cases. 
Accordingly, the following sets of real traffic sequences in the next section are analyzed, where all 
typical disturbances act together simultaneously. 

 
Table 5.VII illustrates the RMS errors in pixels for all three previous examples of artificial 

sequence cases. Analyzing the results obtained for artificial sequences (Cases I-III), one can see the 
superiority of the integrated tracking algorithm compared to any of the individual features 
separately.  

Comparing the results obtained from the SFPF, one can conclude that there is no particular 
SFPF that could be declared as the best in all cases. There are cases where each one of them might 
be the best candidate, and at the same time, this SFPF could be the worst in some other scenarios. 

Table 5.VII RMS tracking errors in pixels 

 RMS Error [pix] 
 Case I Case II Case III 

SFPF 

RGB   4,18 6.94 6.67 

Edge 3.93  8.19 11.26 

Texture 4.61 5.61 9.92 

MFPF 2.21 2.21 5.25 
MFPF Relative to the 

best SFPF [%] 56.23 77.72 78.71 

 
Table 5.VII shows that the three-feature-based filter that uses the image's three features gives 

RMS tracking errors that are 21% – 43% less than the lower errors among the SFPF RMS 
tracking errors. 
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5.2.2 Real video sequences  

Some of the selected parameters for the real video sequences have been changed in 
comparison to artificial video sequences. The spreading radius of particles was selected to be 20 
pixels because the size of the vehicles in the selected real scenarios was bigger. The number of 
particles used was 200 particles. The weighting coefficient (α) is 0.5. The sizes of tracking 
windows for the chosen six real scenarios cases have been: 168×96, 50×40, 120×110, 65×45, 
100×72, and 60×64 pixels respectively. 

  

1) Case-IV: Influence of Small Partial Occlusion  

This simple example figures out the partial occlusion of the vehicle caused by the existing trees 
beside the road, which appear at different intervals, as is illustrated in Fig.5.21. The obtained 
average similarities and tracking errors for this scenario can be seen in Fig.5.22.  

 

Fig.5.21 Illustration of Case IV, frame (#15) is a reference frame 

As shown in Fig.5.22.a, average similarities for the “Edge” and “Texture” features are always 
above their threshold values, whereas the “RGB” feature is the most affected. It is even eliminated 
from the estimating process in the last phase of the sequence. From Fig.5.22.b, it is clear that the 
“Integrated” filter is not mostly superior in any isolated particular frame in comparison to 
particular SFPFs. However, we can see that the RMS tracking error in the case of MFPF during the 
entire interval is the least, as seen in the first column of Table 5.VIII. 
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Fig.5.22 Case-IV: (a) Individual average similarities, (b) Individual SFPF errors Vs. MFPF error 

2) Case-V: Influence of Longer Partial Occlusion 

In this illustrative example, the arriving car is not wholly obscured (partial occlusion) when it is 
overtaking another vehicle at some period during the sequence of frames, as is seen in Fig.5.23. 

 

Fig.5.23 Illustration of Case V 
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For the reason of low initial values of average similarities for the proposed three features, the 

suitable threshold values are comparatively low, and the threshold is specified as a percentage (e.g. 
80%) of the initial values of average similarities. Practically, all the time maintaining all of the 
SFPFs as components in the estimate operation (see Fig.5.24). The most sensitive feature is the 
edge, taking into account that the contour orientations of the tracked vehicle also discriminate the 
vehicle that is being overrun. Table 5.VIII's second column demonstrates that the accuracy of all 
three SFPFs are extremely close, whereas MFPF is somewhat better. 

  

 
Fig.5.24 Case V: (a) Individual average similarities, (b) Individual SFPF errors Vs. MFPF error 

 

3) Case-VI: Influence of Shadows 
 

This example illustrates the circumstance in which the background is variable due to the 
presence of trees' shadows at different periods, as we can see in Fig.5.25. 
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Fig.5.25 Illustration of Case VI 

Because some parts of the road are mostly darkened, and the edge feature is the feature that 
relies on the actual amount of shadow, and in addition to the changing (increase) of car size in the 
scenario, the “Edge” feature utilized by SFPF is mostly the sensitive one compared to the other 
features, as shown in Fig.5.26.b. The average similarities of all three features as shown in Fig.5.26.a 
is always higher than their specified threshold values.   

For all sequences of the frames, the tracking errors of all features swing between minimum and 
maximum limits. The tracking error (RMS) for MFPF is the preferable and most superior one, as 
seen in the third column of Table 5.VIII. 
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Fig.5.26 Case-VI (a) Individual average similarities, (b) Individual SFPF errors Vs. MFPF error 

 

4) Case-VII: Influence of Full Occlusion 
 

In this scenario, the tracked vehicle for some time (about 70 frames) is obscured by another 
vehicle traveling along the adjacent road lane, and it becomes completely invisible (Fig.5.27). 

The three average similarities of the descriptors are lower than the stated threshold values 
during complete occlusion between frames #80 and #160, and MFPF runs in "Prediction" mode, as 
shown in Fig.5.28.a. Starting with frame #150, the "Edge" feature generates significant results, 
while the color and texture features remain excluded, and MFPF primarily serves as a single feature 
particle filter based on the "Edge" feature.  The fourth column of Table 5.VIII points out that the 
MFPF has the best RMS tracking accuracy for the entire time compared with SFPF. 

 

 

Fig.5.27  Illustration of Case VII 
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Fig.5.28 Case-VII: (a) Individual average similarities, (b) Individual SFPF errors Vs. MFPF error 

 

5) Case-VIII: Combined Effect of Shadows and Full Occlusion 

In the following scenario, the shadows produced by the vehicle itself and trees, partial 
occlusions, and a brief period of complete occlusion, are combined, as well as gradual zooming out 
of the size of the vehicle as shown in Fig.5.29.  The "edge" feature is the lower responsive to these 
perturbations, as is seen in Fig.5.30a.  

Due to the entire occlusion of the tracked vehicle between intervals #350 and #380, MFPF 
operates in "Prediction mode". Before and after this period directly, MFPF was only managed by 
the "Edge" descriptor of SFPF. Outside of this time, the other two features have a nearly equal 
impact. 
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Fig.5.29 Illustration of Case VIII 

 

   

 

Fig.5.30  Case-VIII:  (a) Individual average similarities, (b) Individual SFPF 
errors Vs. MFPF error 

The fifth column of Table 5.VIII shows that the MFPF has a less RMS tracking accuracy compared 
with SFPF. 
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6) Case-IX: Influence of Full Occlusion Accompanied by Maneuvering  

 
This case illustrates the influence of partial and complete occlusion. During the interval of 

maneuvering, the tracked vehicle is subjected to partial and entire occlusion while making a turning 
to the left. There is a relatively small interval at which all three features generate valueless estimates 
in the interval of complete occlusion (Fig.5. 31) (since average similarities are lower than the 
specified appropriate thresholds). 

 

Fig.5. 31 Illustration of Case IX 

Once the occlusion is gone, both "RGB" and "Texture" features become the main reasonable 
sources of information (Fig.5.32). Table 5.VIII's sixth column demonstrates the superiority of the 
MFPF technique. 
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Fig.5.32 Case-IX:  (a) Individual average similarities, (b) Individual SFPF errors Vs. MFPF error 

 

Table 5.VIII exhibits the obtained RMS errors that illustrate the SFPF and the MFPF results 
accuracy for the six real scenarios for different cases and situations. In each of the six scenarios, it 
is clear that the MFPF has given the lowest RMS tracking error. When the obtained outcomes of 
individual SFPFs are compared, it becomes clear that no ones of the three features (a single SFPF) 
could be proclaimed as the best in all conditions in every scenario. There are some periods during 
the scenario where any one of the SFPF could be the best candidate, while in others; this SFPF 
might be the worst. The RMS tracking errors produced by a three-feature-based filter (MFPF) 
which uses all the image’s three features are always 10%–25% fewer than the least RMS tracking 
errors of SFPF. 

 In general, the results achieved by this MFPF showed advantages that outweigh all other 
"Single-Feature Particle Filters" (SFPF) and remain agreeable from the aspect of overall 
computation time.  

    Table 5.VIII                                                                                        
RMS TRACKING ERRORS (PIXELS) 

 Case       
IV 

 Case 
V 

Case   
VI 

Case 
VII 

Case 
VIII 

Case 
IX 

SFPF 

RGB 36.40 13.50 18.51 11.23 17.81  14.52 

Edge 17.61 10.89 24.01 12.54 21.02 15.77 

Texture 26.35 11.95 16.69 13.66 16.04 13.50 

MFPF 15.21 8.38 16.16 9.97 15.11 11.93 
MFPF Relative to 
the best SFPF [%] 86.37 76.95 96.82 88.78 94.20 88.37 

 

To highlight the MFPF algorithm's comparative advantages, two new statistical measures of 
quality have been included in the real scenarios (Case-IV to Case-IX). Table 5.IX below shows the 
probability that any of the particular SFPF has had an average similarity greater than a certain 
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threshold, which has been defined as 80% of the primary average similarities. Regarding the status 
of MFPF, Table 5.IX's final row depicts the odds that MFPF is not in prediction mode. And it is 
self-evident that when the SFPFs lose the tracked object, or when all of the SFPFs' outcomes are 
inadmissible, the MFPF must switch to just a prediction mode, which is less often than any other 
SFPF. 

Table 5.IX  
PROBABILITY THAT THE AVERAGE SIMILARITY IS ABOVE ITS THRESHOLD 

 Case       
IV 

 Case  
V 

Case   
VI 

Case 
VII 

Case 
VIII 

Case 
IX 

SFPF 

RGB 88.3 % 100 % 100 % 22.2 % 59.0 % 80.0 % 

Edge 95.3 % 100 % 100 % 70.3 % 77.2 % 89.2 % 

Texture 95.3 % 100 % 100 % 18.5 % 63.6 % 72.3 % 

MFPF 100 % 100 % 100 % 73.1 % 85.7 % 100 % 
 

Finally, Table 5.X shows the probabilities that the tracking errors are less than the threshold of 
15 pixels. We have embraced this threshold value as a relevant one based on the collection of cases 
already evaluated, average distances from monitored objects and their sizes, as well as image 
resolution. From this perspective, one might conclude that MFPF is superior. 

Table 5.X 
PROBABILITY THAT THE TRACKING ERROR IS LESS THAN 15 PIXELS 

 Case       
IV 

 Case  
V 

Case   
VI 

Case 
VII 

Case 
VIII 

Case 
XI 

SFPF 

RGB 6.9 % 63.4 % 37.9 %  100 % 18.1 % 70.7 % 

Edge 67.4 % 78.0 % 37.9 % 70.3 % 31.8 % 76.9 % 

Texture 23.2 % 78.0 % 55.1 % 66.6 % 59.0 % 72.3 % 

MFPF 62.7 % 100 % 62.0 % 96.3 % 72.7 % 84.6 % 
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6 Conclusion 

Most of the known visual object tracking techniques in the world that intend to the estimation of 
kinematic parameters of the moving object are met by essential tasks using computer vision. These 
tracking techniques face many defies such as variable background, occlusion, and others with the 
increase in the demand for accurate object detecting and tracking. This means that the tracking 
techniques have to be improved by evolving the existing tracking approaches.  

This research introduces the algorithm of video tracking of vehicles based on a particle filter that 
uses a fusion of three individual filters relying on three features of the concerned image. All three 
proposed features (color, edge, texture) are represented in the standard form of histograms. The 
basic assumption was that none of the typical image features can be used alone for all different 
traffic conditions with different disturbances. Rather than attempt to improve any one of the single 
features/descriptions, we decided to use the combination of three of them (the color, the edge in the 
form of orientation of gradients, and texture as gray-level-co-occurrence-matrix) and expressed 
independently via different probability distributions – histograms. 

A Bhattacharyya distance measure is used to specify the particle position that has a maximal 
similarity of the appropriate histogram compared with the reference histogram, in order to estimate 
three candidates for the estimated position of the tracked object. The final estimate is calculated 
from the weighted averaging of three candidates using adaptive weighting factors depending on 
average similarities in the particles set. 

A higher level of adaptability is reached by excluding some of the features when their average 
similarity measures are below particular threshold values. Individual particle filters based on a 
single feature have different sensitivities relative to typical disturbances, like variable shadows and 
reflections, partial and full occlusions, variable background, etc. that affect the tracking process.  

Verification of the performance of the proposed multi-feature-particle-filter was initially done by 
analyzing simple traffic of artificial image sequences, followed by typical real traffic scenarios on 
roads. In all synthetic image sequence scenarios and in all realistic traffic sequence scenarios, the 
Integrated PF algorithm was the best, and it was superior.  

Whilst this MFPF was poorer to the best SFPF in different sub-intervals of the tracking sequence, it 
looked to be superior overall in terms of RMS tracking error throughout the sequence. RMS 
tracking errors on the whole interval for the artificial sequences have been 21% – 43%  less than the 
least RMS errors of any SFPF, whereas for the real sequences have been from 10 % to 25 %. As it 
was shown in Tables VII, and VIII, the MFPF algorithm is also superior relative to any of SFPF 
because of the less frequent need to go to prediction mode, as well as because of the higher 
probability that the tracking error is inside the specified tolerance zone. 

The computational burden due to the tripling of particle filter calculation times was reduced by 
adopting a relatively low number of particles (200). Through an adequate selection of minimal 
reasonable average similarities, the algorithm excludes and disregards some SFPF results if their 
average similarity related to a particular feature is less than the threshold. If all three features 
provide inadmissible results (e.g. full occlusion), the algorithm switches to prediction mode and 
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continues the work together with reinitializing the particle distribution and gradually expanding the 
area where they are spread. Weighting coefficients that differentiate individual affects of image 
features are automatically adapted, based on their average similarities in the set of particles. 
Parameters of the MFPF algorithm have been constant here for all illustrative cases. Wherever there  
exists some higher level of  prior knowledge about traffic scenario on the particular part of the road, 
there is a possibility for re-parameterization of MFPF (thresholds, window size, number of 
particles, forgetting factor, etc.) in order to adjust to this situation, and to improve the tracking 
accuracy. 

Our future study of this work will be oriented towards improvements of the algorithm relative to the 
effects of target resizing (zooming) and rotation, as well as to the natural extension in the case of 
multiple vehicles.  
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