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Decision support system for assessment of patients with 

neurodegenerative disorders 

Abstract – Clinical decision support system represents a computer-aided tool that utilizes 

advanced technologies for influencing clinical decisions about patients. This dissertation presents 

research and development of a new decision support system for the assessment of patients with 

neurodegenerative diseases. The analysis of movements that are part of standard clinical scales or 

everyday activities represents the basis of the system. These movements are recorded using small and 

lightweight wearable, wireless sensors, which do not require complicated setup and can be easily 

applied in any environment. The first part of system is dedicated to the (early) recognition of 

Parkinson’s disease (PD) based on gait analysis and deep learning algorithms. PD patients could be 

identified with a high accuracy. The other part of the system is dedicated to the assessment of PD 

symptoms, more specifically, bradykinesia, utilizing the knowledge-based reasoning. A method for 

analysis of bradykinesia related movements is defined and presented. Moreover, by applying different 

signal processing techniques, new metrics have been developed to quantify the essential 

characteristics of these movements. The prediction of symptom severity was performed using new 

expert system that completely objectified the clinical evaluation criteria. Validation was performed 

on the example of the finger-tapping movement of patients with typical and atypical parkinsonism. 

A high compliance rate was obtained compared to clinical data. The developed system is objective, 

automated, easy to use, contains an intuitive graphical and parametric presentation of results, and 

significantly contributes to the improvement of clinical assessment of patients with 

neurodegenerative diseases. 

Keywords: decision support system; movement analysis; wearable sensors; machine 

learning; signal processing; expert rules; neurodegenerative disorders; Parkinson’s disease, 

bradykinesia; clinical assessment.  

Scientific area: technical sciences, electrical engineering 

Specific scientific area: biomedical engineering 
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Систем за подршку одлучивању, евалуацију и 

праћење стања пацијената оболелих од 

неуродегенеративних болести 

Резиме – Системи за подршку клиничком одлучивању представљају рачунарске алате 

који применом напредних технологија могу утицати на доношење одлука у вези са 

пацијентима. У овој дисертацији представљени су истраживање и развој новог система за 

подршку одлучивању, евалуацију и праћење стања пацијената оболелих од 

неуродегенеративних болести. Анализа клинички релевантних и свакодневних покрета чини 

основу овог система. Обрасци ових покрета снимљени су помоћу бежичних, носивих сензора 

малих димензија и тежине, који не захтевају компликовану поставку и могу се једноставно 

применити у било ком окружењу. Први део система намењен је (раном) препознавању 

Паркинсонове болести (ПБ) на основу анализе хода и алгоритама дубоког учења. Резултати су 

показали да је ПБ пацијенте могуће препознати са високом тачношћу. Други део система 

посвећен је праћењу симптома ПБ брадикинезије применом резоновања који се базира на 

знању. Представљена је метода за анализу покрета који се користе за евалуацију 

брадикинезије. Поред тога, применом различитих метода обраде сигнала развијена је нова 

метрика за квантификацију важних карактеристика ових покрета. Предикција степена развоја 

симптома се заснива на новом експертском систему који у потпуности објективизује клиничке 

евалуационе критеријуме. Валидација је урађена на примеру покрета тапкања прстију, који је 

снимљен на пацијенатима са типичним и атипичним паркинсонизимом. Показана је висока 

усаглашеност у поређењу са клиничким подацима. Развијени систем је објективан, 

аутоматизован, једноставно се користи, садржи интуитиван графички и параметарски приказ 

резултата и значајно доприноси унапређењу клиничких процедура за евалуацију и праћење 

стања пацијената са неуродегенеративним болестима.  

Кључне речи: систем за подршку одлучивању; анализа покрета; „носиви“ сензори; 

машинско учење; обрада сигнала; експертска правила; неуродегенеративне болести; 

Паркинсонова болест; брадикензија; клиничко праћење и евалуација стања. 
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Thesis outline  

 Chapter 1 provides information about the clinical decision support systems, their basic 

structure, types, and technological aspects of the work presented in this thesis. Furthermore, this 

Chapter also presents the medical background of the analysed problem, including details about the 

neurodegenerative disorders, with special focus given to Parkinson’s disease, as well as clinical 
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procedures for assessment of these patients along with the problems that need to be resolved. At the 

end of the Chapter, the objectives and initial research hypotheses of the thesis are presented.  

Chapter 2 presents state of the art in the field of advanced technologies that are developed and 

implemented to support the clinical assessment of patients with Parkinson’s disease and related 

disorders. It reviews different methods in terms of measurement systems, experiment design, and 

intelligent algorithms that are developed and used for providing diagnostic recommendation or 

prediction of symptom severity or response to therapy.  

Chapter 3 introduces a new decision support system for the assessment of patients with 

neurodegenerative disorders. The system is briefly explained.  

Chapter 4 describes the challenges of the gait segmentation, which represents one of the most 

important pre-processing steps in the gait analysis. Four different segmentation methods are applied 

and validated using the gait data, recorded from patients with Parkinson’s disease and healthy 

subjects. The segmentation techniques are compared in terms of their accuracy, precision, and 

applicability to every day clinical implementation.  

In chapter 5, a new method for the identification of Parkinson’s disease patients is presented. 

The particular focus is given to the recognition of Parkinson’s disease in the early stage of its 

development. The method uses deep learning algorithms and gait data recorded with wearable inertial 

and force sensors. Two types of deep neural networks are developed and validated. The performance 

of the designed models is additionally examined in terms of data augmentation strategy, length of 

walking sequences that are used for training and testing, and walking conditions under which the gait 

is recorded.  

Chapter 6 describes a method for analysing the amplitude of repetitive hand and leg 

movements that are used for the assessment of symptom severity. Furthermore, this Chapter 

introduces a new technique for the segmentation of repetitive movements into individual cycles.  

Chapter 7 presents a new method for the evaluation of symptom severity. The first part of the 

method provides a detailed analysis and quantification of clinically relevant repetitive movements. A 

new parameterization is designed to quantify the essential kinematic, temporal and frequency 

movement properties objectively. The developed metrics are used as the input to the expert system 

for the prediction of clinical scores. The decision-making process implements expert rules that 

completely objectify clinical criteria for score assignment. The results are validated on data recorded 

during finger-tapping movement from patients with typical and atypical parkinsonism and presented 

in a manner that is understandable and intuitive for the potential end-users.  

Chapter 8 presents the results of the developed decision support system on the example of one 

patient.  

Finally, chapter 9 summarizes the results and contribution of the thesis and outlines the 

possibilities for future developments of the developed and proposed decision support system.  

 

 



 

 

 

3 

 

Publications presented in the thesis 

The thesis is based on the publications listed below:  

I. International journal papers  

[1] V. Bobić, M. Djurić-Jovičić, N. Dragašević, M. B. Popović, V. S. Kostić, and G. Kvaščev, 

“An Expert System for Quantification of Bradykinesia Based on Wearable Inertial Sensors,” 

Sensors, vol. 19, no. 11, p. 2644, Jun. 2019, doi: 10.3390/s19112644. (M21) 

[2] M. Belić, V. Bobić, M. Badža, N. Šolaja, M. Đurić-Jovičić, and V. S. Kostić, “Artificial 

intelligence for assisting diagnostics and assessment of Parkinson’s disease—A review,” 

Clinical Neurology and Neurosurgery, vol. 184. Elsevier B.V., p. 105442, Sep. 01, 2019, doi: 

10.1016/j.clineuro.2019.105442. (M23) 

[3] V. Bobic, M. Djurić-Jovičić, N. Jarrasse, M. Ječmenica-Lukić, I. N. Petrović, S. M. 

Radovanović, N. Dragašević, and V. S. Kostić, “Spectral parameters for finger tapping 

quantification,” Facta Univ. - Ser. Electron. Energ., vol. 30, no. 4, pp. 585–597, 2017, doi: 

10.2298/fuee1704585b. (M24) 

 

II. International conference papers  

[1] V. N. Bobic, M. D. Djuric-Jovicic, S. M. Radovanovic, N. T. Dragasevic, V. S. Kostic, and 

M. B. Popovic, “Challenges of Stride Segmentation and Their Implementation for Impaired 

Gait,” in Proceedings of the Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society, EMBS, Oct. 2018, vol. 2018-July, pp. 2284–2287, doi: 

10.1109/EMBC.2018.8512836 (M33) 

[1] V. N. Bobić, M. D. Djurić-Jovičić, N. Jarrasse, M. Ječmenica-Lukić, I. N. Petrović, S. M. 

Radovanović, N. Dragašević, and V. S. Kostić, “Frequency analysis of repetitive finger 

tapping – extracting parameters for movement quantification,” in Proc of the 3rd International 

Conference on Electrical, Electronic and Computing Engineering, Jun. 2016, p. MEI2.2 1-

MEI2.2 5. (M33) 

  



 

 

 

4 

 

 

 

 

1. Introduction 

1.1. Decision support systems for clinical practise 

Clinical decision support system (DSS) refers to any computer-aided tool that is developed to 

influence clinical decision making about patients [1]. Although human expertise represents an 

essential part of any clinical decision-making process, computational methods and precise sensor 

systems can support the whole process with objective measures of patients’ state and behaviour that 

cannot be otherwise observed by a human eye. The significance of clinical DSS is manifold – these 

systems can improve health care and contribute to a better understanding of medical problems that 

need to be resolved and contribute to the design of clinical reasoning models [2]. The necessity for 

these systems has been further recognized in the past decades due to growth in health care costs and 

complexity, challenges that are related to the management of clinical knowledge and information, 

adoption of electronic medical records, and increased need for personalized medicine [2].  

The literature suggests that a DSS should have different important characteristics, which could 

be grouped into three main components: 1) data management; 2) decision-making process; and 3) 

user-interface [3].  

1.1.1. Data management  

Having good data management capabilities represents a prerequisite to a reliable decision-

making process. This includes access to both internal and external data and information [3]. In the 

sense of modern clinical DSS, data management requires effective techniques for acquiring large and 

complex electronic health data (or big data) that is represented in a standardized form and enables 

fast, accurate, and efficient processing [1], [2]. The choice of the data representation scheme is 

influenced by the problem that the intelligent system tries to solve.   

Over the last few decades, researchers have developed different techniques for capturing 

relevant clinical data, ranging from simple keyboard data entries, speech or image inputs, scannable 

forms, various physiological data to real-time data monitoring. With the recent technological 

advancements, an especially important role for the acquisition of clinical data belongs to wearable 

systems. Wearable systems represent sensor devices that can continuously measure human 

physiology, such as electrocardiography (ECG), heart rate, blood pressure and oxygen saturation, 

body temperature, electromyography (EMG), electroencephalography (EEG), and body, head and 

eye movements [4]. A typical wearable system consists of 1) sensors that produce analog or digital 

data; 2) a processing unit that collects and transforms raw data; and 3) a display that shows acquired 
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and processed data [5]. In the case of wireless wearables, the system also comprises a transceiver that 

wirelessly sends data to a central unit. Furthermore, data processing can be completely performed at 

the sensor unit, or it can be partially performed, transmitted to the computer, and then processed [5]. 

Regarding the design requirements, these systems should 1) be low-cost to increase their potential for 

large scale applications, 2) be small and lightweight to allow monitoring of human physiology in an 

unobtrusive manner, 3) provide safe operating and positioning on a human body, 4) provide low-

energy operation and communication and 5) simple and flexible setup that can be easily adapted for 

a new user [5]. The integration of wearable technologies into healthcare can help with relocating the 

resources, active engagement of patients in the disease management process, increase of the flexibility 

of regular clinical procedures, and reduction of the need for continuous supervision [4].  

A wireless inertial measurement unit (IMU) is a wearable sensor module that typically 

comprises a 3-axial accelerometer and 3-axial gyroscope sensors (and sometimes magnetometers). 

The accelerometer represents an electronic sensor that allows determination of the object’s position 

and movement in space. It measures total acceleration forces that are exerted upon an object, 

including both static (such as gravity) and dynamic (causing the object to move) forces. Measured 

accelerations are provided through the components of the IMU’s local coordinate system. The 

rotational movement of an object can be detected with a gyroscope sensor. The gyroscope measures 

the rate at which the object changes its orientation (i.e., angular velocity) around the three axes of the 

IMU’s local coordinate system. Magnetometer sensors measure the direction, strength, or relative 

change of the Earth’s or any other magnetic field. Typically magnetometer is used for determining 

the movement heading reference. By placing IMUs on a human body, analysis of body kinematics 

can be performed. IMUs are easy to apply and they allow for recording for a long time and in any 

space. Additionally, the quality of these sensors is continuously increasing, while their price and size 

are being reduced, improving their applicability for everyday and clinical use [6]. Their applicability 

has been further extended with inertial sensors embedded in smartphones, which are now widespread, 

low-cost, and unintrusive [7].  

1.1.2. Decision-making process 

Artificial intelligence (AI) is the core of the DSS. Different definitions of AI are discussed 

in the literature. In a broad sense, AI is the intelligence demonstrated by machines. Russell and Norvig 

[8] defined AI as the study of intelligent agents. An intelligent agent represents anything that 

perceives the environment through sensors and performs subsequent actions upon it through 

actuators. In that context, behaviour of agents is defined by agent functions that perform a mapping 

from perceived information to actions. In another approach, AI is described as the field of computer 

science dedicated to designing intelligent computer systems that can perform functions associated 

with human behaviour, such as learning, reasoning, problem solving, and others [9]. The two most 

important sub-fields of AI are expert systems and machine learning.  

Expert systems represent computational systems that are designed to solve different 

problems in a manner that is similar to the reasoning of a human expert [10]. The basic idea behind 

the expert systems is to encompass domain-specific human knowledge and expertise and to serve as 

a tool for non-expert users looking for advice on the subject matter. Two main components of expert 

systems are a knowledge base and an inference engine [9]. The knowledge base comprises instances 

of domain-related knowledge and information. Knowledge bases typically comprise certain pieces of 

knowledge (such as rules), and a system could contain several knowledge bases with different types 
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of knowledge [11]. The inference engine comprises information-processing units (inferences) that 

perform simple reasoning tasks [11]. The inferences use knowledge from a knowledge base to provide 

new information based on the given input. DENDRAL [12], MYCIN [13], and PROSPECTOR [14] 

were the first examples of the expert systems that were successfully developed and applied for 

resolving domain problems. MYCIN was dedicated to the diagnosis of blood infections and 

comprised a knowledge base of about 450 rules, which were acquired from extensive interviews with 

experts, textbooks, and experience with diagnosis [8]. Furthermore, the system embodied a calculus 

of uncertainty of medical knowledge called certainty factors.  

Machine learning (ML) comprises algorithms that are able to learn from data [15]. The 

learning represents the process that enables algorithms to perform some task. Given some input data, 

ML can resolve different tasks; classify objects belonging to different categories, predict numerical 

values, find natural grouping among unlabelled data, transcribe or translate data from one form to 

another, detect atypical or abnormal events (anomalies), synthesize new similar samples based on the 

existing data, insert missing data values, and other [15]. Based on a learning principle, ML algorithms 

can be divided into two main groups: supervised and unsupervised learning algorithms [15]. 

Unsupervised learning algorithms process unlabelled multidimensional data to find and explore the 

distribution of data or some properties of that distribution. In contrast, supervised learning algorithms 

process multidimensional data that is associated with some labels or targets, which “teach” the ML 

algorithm what to do. There are some other types of learning algorithms, including semi-supervised 

learning algorithms, which use partially labelled data, or reinforcement learning algorithms, which 

use a feedback loop to interact with the environment during the learning process [15].  

The performance of ML algorithms is typically measured with some quantitative metrics. 

Accuracy represents the most common metric for evaluating the performance of classification tasks; 

however, other measures are used as well, including sensitivity, specificity, precision, F1-score, and 

area under the curve [16]. The basic idea behind the ML is to examine the algorithm’s ability to 

generalize and evaluate how well these algorithms are performing on previously unseen data [15]. 

Because of that, input data is split into training data, used for algorithm learning, and test data, used 

for examining the algorithm’s ability to generalize. In the literature, different validation techniques 

and methods for data division are proposed and implemented depending on the task, data type, 

database size, and used algorithm. 

Input data usually represents some set of features that are specifically captured or designed to 

solve the problem of interest. It is usually provided in the form of a multidimensional vector, where 

rows indicate different examples, and columns correspond to features. Appropriate data 

representations are typically obtained using various signal processing techniques. In a broad sense, 

signal processing is defined as the implementation of analog or digital techniques for improving the 

functionality of data [17]. Analog techniques process time-varying electrical signals, whereas the 

digital techniques utilize data provided in the form of an array of numbers. In biomedical engineering, 

these techniques are applied to provide diagnostic or any other relevant clinical information [17]. For 

these applications, the following techniques may be important: advanced spectral methods, time-

frequency analysis, wavelets (both continuous and discrete), advanced filters, and multivariate 

analysis. 

The recent achievements in the field of AI have been mostly brought by a subset of ML called 

deep learning (DL). The main limitation of the conventional ML algorithms is their inability to 
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process raw data. These algorithms need to be fed with features that faithfully portray the desired 

patterns in data in order to recognize them [18]. The extraction of suitable attributes is not a trivial 

task – it requires dedicated work and high-level engineering skills. With bigger datasets or a larger 

number of groups being analysed, creating proper data representations becomes even more complex 

and demanding. DL comprises a set of algorithms that can process raw data and automatically extract 

features for efficient classification or detection of objects [18]. These algorithms have shown amazing 

capabilities for different classification tasks; however, the first breakthrough was seen in image and 

speech recognition tasks [19]–[22].  

The reasoning (inference) system and knowledge base on which that system operates 

represent the most important part of the clinical DSS [2]. Based on the used reasoning, clinical DSS 

could be divided into two main groups: knowledge-based and nonknowledge-based [1]. The concept 

of the knowledge-based clinical DSS arose from the idea of expert systems that are designed to 

simulate the decision-making process of a human expert [1], [10]. The knowledge base of these 

clinical DSS contains information about diseases and their symptoms and other relevant clinical 

information, which is typically expressed as production (or “if-then”) rules. The inference engine of 

these systems usually associates the knowledge base with the patient data. These systems require a 

priori knowledge in order to provide the correct answers to specifically designed medical questions 

[1]. The earliest of these systems were dedicated to the provision of diagnostic support, but not in the 

manner that simply mimics and replaces the human reasoning but instead gives information that 

assists the decision-making process of clinical workers. On the other hand, the nonknowledge-based 

clinical DSS use machine learning algorithms for finding patterns in clinical data These models do 

not require any a priori knowledge - the DSS is designed to find new patterns and relationships in 

given datasets, which are then applied to previously unseen data. This is especially important for the 

cases when a priori knowledge is limited or non-existent. A combination of different reasoning 

methods results in a hybrid clinical DSS [23]. The hybrid systems can utilize the best of any methods 

and provide an optimal solution for a concrete problem.  

1.1.3. User interface  

Communication with a user is derived through a user interface. The user interface should have 

a powerful but also simple design [3]. It should enable interaction through queries, reports, and 

graphs.  

The use of a Web-based interface extends the usability of DSS systems to a large number of 

users [3]. In this way, developers can introduce and utilize new technologies at their site. Furthermore, 

Web browser user interfaces facilitate adoption among users: they do not require extensive training, 

they increase profitability and speed of decision-making processes, and they can be used with no 

geographic limitations [3].  

Mobile platforms and technologies have been increasingly adopted and implemented in the 

field of medicine, enhancing the possibilities of the existing systems. In general, the mHealth 

represents the health practise that is supported by mobile devices [24]. The rise of mHealth 

technologies has been guided by the development of smartphones and tablets, as well as advances in 

mobile platforms, most significantly Android and iOS, and mobile communication technologies, such 

as 3G, 4G, Bluetooth, Zigbee, Radio-frequency Identification (RFID), and others. The use of mobile 
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user interface in clinical DSS increases their portability and possibility for customization. 

Furthermore, these tools are available “at hand” every time the physicians need it at a low-cost [25].  

1.1.4. Applications 

Based on the clinical problem that a clinical DSS tries to solve, there are four categories of 

these systems [1]: 

1. Alerting systems are programs that continuously monitor and test the patient’s clinical data 

according to the previously defined clinical criteria. Alert is activated when data meet the set 

criteria. The design and timing of alerts depend on the goal.  

2. Critiquing systems respond to entered information about a medical intervention by identifying 

inconsistencies between the entered data and an internal definition or by indicating an 

alternative treatment approach.  

3. Suggestion systems represent the third category of clinical DSS, which are designed to 

interactively support the clinical decision-making process, by answering to physician’s 

request for assistance. In these systems, the clinicians use the DSS, enter the relevant clinical 

data, the system process the data, and composes a suggestion.  

4. Retrospective quality assurance programs utilize patient’s clinical data and formulate 

decisions about the quality of care and send them back to physicians.  

The clinical DSS has been developed for many clinical areas, including neurology. In the next 

section, the medical background of the thesis and need for the development of new DSS for 

assessment of neurodegenerative disorders are described.  

1.2. Understanding the medical background of the analysed 

problem 

 Neurodegenerative disorders represent progressive and incurable diseases, which are causing 

degeneration or complete death of nerve cells [26]. These conditions can produce problems with 

motor or mental functioning. Parkinson’s disease (PD) is the second most common neurodegenerative 

disorder in the world. According to some sources [27], the prevalence of PD in 2016 was estimated 

as 6.1 million (95% uncertainty interval 5.0–7.3) cases worldwide. In the same study, it was reported 

that 16,702 (95% uncertainty interval 12,943 to 20,877) individuals were diagnosed with PD in 

Serbia, which represented 0.24% of the total population of the Republic of Serbia at a time [28]. 

These numbers are showing a significant growth compared to data reported for 1990: the prevalence 

of PD increased 2.4 times over 26 years [27]. It is expected that the number of individuals diagnosed 

with PD will continue to increase, and it will affect between 8.7 and 9.3 million people in the world 

by the year 2030 [29].  

1.2.1. Symptomatic expressions of neurological disorders of 

parkinsonian type 

PD occurs from the progressive loss of dopaminergic neurons in the basal ganglia structure 

called substantia nigra [30]. The disease is characterized by diverse motor and non-motor symptoms 

(Figure 1.1) that are affecting the physical and mental abilities of PD patients and violating their 

everyday life, routines, and activities. The most notable PD clinical motor representations are 

bradykinesia, rest tremor, rigidity, and postural instability [31], [32]. Bradykinesia (or slowness of 

https://www.sciencedirect.com/topics/neuroscience/dopaminergic
https://www.sciencedirect.com/topics/neuroscience/substantia-nigra
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movements) is one of the most recognizable and characteristic symptoms of PD, expressed with 

difficulties in planning, initiating, and executing motions, especially in tasks that require sequential 

motor performance [33]. Because of that, bradykinesia is assessed and evaluated using fast, repetitive 

hand and leg movements, including finger-tapping, hand opening-closing, hand pronation-supination, 

and toe-tapping. Although they are not cardinal PD symptoms signs, gait disturbances represent one 

of the most incapacitant motor signs, characterized by decreased stride length and walking speed, 

festinating gait, and increased stride variability [34]. Abnormal changes in the gait pattern may be 

visible from the early stages of disease development. 

In addition to the primary parkinsonism type (referred to as the Parkinson’s disease or 

idiopathic Parkinson’s disease), there are also some atypical syndromes, such as progressive 

supranuclear palsy (PSP), multiple system atrophy (MSA), corticobasal degeneration (CBD) and 

dementia with Lewy bodies (DLB) [35], [36]. These syndromes are characterized by similar 

symptoms, especially in the early stage of disease; however, atypical parkinsonism is much more 

progressive than idiopathic PD and requires different treatment [36].  

 
Figure 1.1 Illustration of Parkinson’s disease symptoms in different disease stages (image adapted 

from [37]). 

1.2.2. Clinical assessment 

There is no specific test that can provide a definite PD diagnosis [31]. For that reason, the 

recognition of PD is not a trivial task, especially in the early stage of disease development. PD is 

usually diagnosed using the UK Parkinson’s Disease Society Brain Bank criteria based on the 

presence of specific symptoms [38]. Some studies examined the reliability of the clinical PD 

diagnosis [39]. Post-mortem neuropathological examination was performed on 232 cases of 

parkinsonism, of whom 131 with idiopathic PD and 101 cases with other types of parkinsonism. The 

clinical diagnosis was correctly given in only 26% of cases when observing individuals who did not 

show a clear response or did not receive standard therapy. For people in the advanced stage of the 

disease development (>5 years disease duration), diagnostic accuracy achieved 88%; however, only 
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53% of individuals diagnosed in the early stage (<5 years disease duration) have been confirmed as 

PD.  

The severity of PD is often evaluated using the Hoehn and Yahr (H&Y) scale [35]. Initially, 

the H&Y scale had five scores (from 1 to 5), but later it was complemented with two additional ratings 

(1.5 and 2.5) for more precise quantification of PD severity level [40]. Assessment of parkinsonism 

signs and evaluation of both motor and non-motor clinical symptoms is performed using the 

standardized clinical scale named the Unified Parkinson’s disease rating scale (UPDRS) [41], [42]. 

Motor symptoms are assessed with a set of tests designed to provide more detailed insight and 

evaluation of these symptoms.  

However, neurologists cannot objectively measure human behaviour or physiology; they can 

only observe (hear or see) patients and assess them based on their knowledge and experience. Such 

an assessment may result in subjective and rough evaluation. Furthermore, human judgement can 

change over time (due to their current mood, fatigue, or their focus) and result in an inconsistent 

assessment of patients [43]. Due to the mentioned issues, there is a strong need for the development 

of new systems that can support the clinical decision-making process and provide an objective and 

automatic assessment of patients with neurodegenerative disorders. 

1.3. Objectives of the thesis  

The goal of the research is to design a new clinical decision support system that can contribute 

to the development of objective, automatized, and improved assessment of patients with 

neurodegenerative diseases. The system is based on the analysis of clinically relevant repetitive 

movements that are recorded using small and easy to use wireless wearable sensors and processed 

using different signal processing techniques and artificial intelligence algorithms. 

The importance of research is reflected in the practical and scientific potential of the obtained 

results that improve and facilitate the everyday clinical decision-making process. Achieved 

improvements refer to a complete understanding of all phases and changes of the movements being 

analysed and the design of metrics that thoroughly describe all specific movement characteristics. 

Furthermore, the advancements include the development and implementation of a new expert system 

and machine learning algorithms that objectify the decision-making process, together with the 

provision of graphical and parametric feedback in a form that is entirely understandable to potential 

end-users (neurologists and clinicians).  

1.4. Starting hypotheses of the thesis  

H1: By using the advanced algorithms, recognition of patients with neurodegenerative disorders can 

be improved. The work presented in this thesis is looking for answers to the following research 

questions:  

1) Is it possible to develop a fast and easy to apply diagnostic support based on the signals that 

are recorded by the lightweight and small wireless wearable sensors while performing 

clinically relevant repetitive movements?  

2) Can applied machine learning algorithms achieve results that improve diagnostic accuracy 

compared to the results presented in the literature? 
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H2: It is possible to achieve objective evaluation and quantification of the degree of motoric 

impairments in patients with neurodegenerative disorders. The work presented in this thesis is looking 

for answers to the following research questions:  

1) Can small and lightweight wireless inertial measurement units be used to record clinically 

relevant repetitive movements for evaluating the severity of motor impairment in patients with 

neurodegenerative diseases?  

2) Can the selected signal processing techniques be used to analyse the recorded signals and to 

develop new metrics that contribute to a better understanding of the observed movements and 

quantification of essential movement properties, such as motor blocks, amplitude, speed, 

amplitude decrease, and others? 

H3: It is possible to develop a new expert system for objective prediction of clinical motor scores. 

The work presented in this thesis is looking for answers to the following research questions:  

1) Is it possible to develop an objective and automatic support for the assessment of motor 

symptom severity that is based on the introduced parameterization and a new expert system 

that fully objectify standardized clinical evaluation criteria?  

2) What are the results of the expert system compared to the benchmark data given by several 

neurologists who have years of experience in diagnosing, assessing, and evaluating patients 

with neurodegenerative diseases? 
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2. Advanced technologies for supporting the clinical 

assessment: State of the art 

Lack of objectivity and reliability in the adopted and standardized clinical procedures for PD 

assessment has been a strong motivation for researchers to design and develop new systems that can 

support and improve clinical diagnosis and evaluation of disease progression and symptoms severity 

[44]. The methods proposed in the literature vary in terms of used instrumentation, observed tests and 

experiment protocols, the number of included patients, and applied analysis. In the next few sections, 

a comprehensive overview of the literature is provided and organized based on various essential 

aspects of the performed analysis.  

2.1. Measurement systems for capturing relevant clinical data 

When it comes to the assessment of PD patients, researchers most frequently focused their 

studies on analysing clinical signs. Motor representations of this disease were especially studied since 

they represent the most cardinal and recognizable PD signs. Degrading vocal performance in PD 

patients was suggested as one of the supporting pieces of evidence of PD progression, and as such, 

was addressed in a number of research studies for providing objective PD assessment. Multiple types 

of voice measurements were recorded using the head-mounted microphone [45] or a telemonitoring 

system [46]. Some researchers focused on the analysis of handwriting images or handwriting 

dynamics recorded with a smartpen [47], [48], whereas the others analysed clinically relevant hand 

and leg movements captured with different sensor systems, including optical systems [49]–[52], 

smartphone integrated sensors [53]–[55], wearable force and inertial sensors [56]–[64], force 

platforms [65], [66], standard computer keyboards [67], [68], or electromagnetic sensors [69], [70]. 

The number of studies utilizing the wearable wireless sensors for analysis of physiological signals in 

PD patients is increasing during the past years. Unlike optical systems, wearables are small and 

compact, often inexpensive, and do not require dedicated space for recording. IMUs are particularly 

significant; these sensor units are suitable for capturing and analysing clinically relevant movements 

of the head, trunk, upper and lower extremities that are especially important in the assessment of 

parkinsonism. Inertial sensors have been applied for recording body movements during gait [61], 

finger-tapping [60], [71], hand opening-closing [72], hand pronation-supination [58], [59], [73], toe 

or foot-tapping [74], [75], or for tremor analysis [64], [76], [77]. Sometimes, these sensors have been 

combined with other sensor modules for providing an in-depth analysis of patients’ state, including 

force sensors [78], EMG sensors [79], or ambient sensors [80]. However, with the higher number of 
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sensor modules used, the complexity of testing increases, thus reducing the convenience and 

practicability of such setup.  

2.2. Measurement protocols and database size  

Most studies utilized data recorded for that research, which resulted in a variety of 

implemented experimental protocols. Hand and leg movements for assessment of bradykinesia have 

been recorded for a concrete number of repetitions, e.g., ten times [59], [60], or for some specified 

period, usually 10-15 s [58], [72], [81], depending on the version of the UPDRS which was followed. 

The gait was also recorded under diverse conditions: some observed shorter time series recorded 

during short walking distances, typically 5-15 m [61], [66], whereas the others analysed few minutes 

long signals which described walks along tens of meters long paths [82]. The size of the used 

database, more specifically, the number of included subjects (patients) also varied significantly 

between studies: from systems demonstrated on data obtained from just a few patients [83], to those 

including a few hundreds of patients [61]. In some studies, healthy subjects even mimicked the 

impaired movement patterns of PD subjects [84]. Furthermore, the clinical characteristics of included 

patient groups differed significantly between the studies. Data variety could be significant for some 

tasks (e.g., prediction of full-scale symptom severity). However, in some cases, the developed 

systems should focus on some specific sub-group of patients (e.g., recognizing PD in its early stage, 

not in the late stages when symptoms are already too developed and easily recognizable).  

Unfortunately, collecting enough data for efficient analysis and especially for implementing 

machine learning algorithms is a very demanding task. It requires a lot of time, multidisciplinary 

collaboration between different institutions, and researchers dedicated to collecting and annotating 

data in a standardized manner. Some freely available databases contain physiological data recorded 

from patients with PD and related disorders. UCI Machine Learning Repository contains several 

datasets with voice measurements. One of these databases represents the result of a six-month trial of 

a telemonitoring device that was developed to provide a system for remote monitoring of symptom 

progress [46]. It contains voice recordings that were automatically captured in homes of 42 early 

staged PD patients. This repository also includes a database with multiple types of sound recordings, 

which were recorded from 20 PD patients and 20 healthy controls [85], and from 23 PD patients and 

eight healthy controls [45]. Hand PD is another publicly available dataset that contains data collected 

from patients with PD [86]. The database includes drawings of four spirals and four meanders 

transformed to .jpg format. The drawing data is collected from 74 individuals diagnosed with PD and 

18 healthy subjects [47]. An improved version of this dataset is also available at the same site [87]. 

The new database contains drawings from 66 individuals, namely 31 PD patients and 35 healthy 

subjects. The individuals were asked to perform 12 different drawing exams, and the database 

contains 264 images in total. The data is also complemented with handwritten dynamics data recorded 

with a smartpen.  

The largest available open-source database that contains PD movement data is the database 

created in 2000, available at the PhysioNet site [88]. This database includes gait data, collected from 

93 PD patients (in the early or mild stage of the disease development) and 73 healthy subjects. The 

data was recorded for approximately 2 minutes on level ground, using force sensing resistors placed 

on shoe insoles. The same research group published some other gait databases on the PhysioNet site, 

including the database that comprises data from 15 patients with Amyotrophic lateral sclerosis (ALS), 
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15 patients with PD, 20 patients with Huntington’s disease (HD), and 16 healthy controls [82], [89]. 

The database was formed similarly as the latter one: the data was recorded for 5-minutes using force 

sensing resistors while walking along a 77 m long hallway. These datasets are usually complemented 

with demographic and clinical data of included patients. 

A significant number of research groups utilized these databases in their research; however, 

the obtained results severely depended on the applied analysis, which will be discussed in the 

following section.  

2.3. Intelligent algorithms for objective and automatic PD 

assessment 

Clinical data recorded with accurate and unobtrusive systems has been processed utilizing 

different signal processing techniques and artificial intelligence algorithms for the provision of (early) 

diagnosis, monitoring of symptom progression, and response to therapy [90]. The choice of the 

analysis that was applied mostly depended on the desired outcome. The presented literature review 

focuses on the methods and results that are relevant to the topic of this thesis. 

2.3.1. Provision of diagnostic recommendations 

As correct diagnosis represents one of the top medical priorities, and the crucial step of the 

PD assessment, the development of new diagnostic tools has been a topic in many research studies. 

Various signal or image processing techniques were frequently combined with supervised machine 

learning algorithms for the recognition of patients with PD and related neurological disorders.  

A study combined an open-source database containing voice measurements with fuzzy k-

nearest neighbours algorithm and achieved a sensitivity, specificity, and accuracy above 95% for 

discriminating PD patients and healthy subjects [91]. A support vector machine algorithm (SVM), 

mixed with a genetic algorithm for feature extraction, also provided high accuracy results for PD 

recognition based on the same dataset [92].  

Evolutionary algorithms applied to the finger-tapping data were able to classify healthy 

controls and PD patients with sensitivity, specificity, and accuracy of 94.6%, 91.8%, and 93.5%, 

respectively [69]. Similar results were obtained for the early-stage PD recognition - these algorithms 

accomplished sensitivity, specificity, and accuracy of 94.4%, 91.8%, and 92.5% [69]. Keystroke 

features were also analysed for the provision of accurate identification of PD [93]. An ensemble of 

machine learning classification models achieved sensitivity and specificity of 96% and 97%, 

respectively. A feature vector with 12 elements was extracted from the tremor recordings of 21 PD 

patients and 21 healthy control individuals using a wavelet analysis [55]. The designed set of 

attributes was fed to a neural network classifier, which accomplished sensitivity, specificity, and 

accuracy of 95%.  

Interesting results have been obtained using the PhysioNet database with gait data recorded 

from 92 patients and 73 healthy controls [62]. Radial basis function neural network fed with gait 

features extracted from force data, classified patients and healthy controls with sensitivity, specificity, 

and accuracy of 96.77%, 95.89%, and 96.38%, respectively. In another study utilizing this database, 

several gait features were extracted from the recorded force profiles, including stride time, stance 
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time, swing time, and foot strike profile [94]. The medium gaussian SVM differentiated PD patients 

and healthy controls with sensitivity, specificity, and accuracy of 97%, 87%, and 94%, respectively. 

A 10-m long walking was recorded with the inertial sensors from a large pool of subjects (156 PD 

patients and 424 healthy subjects) [61]. The IMU gait measurements were processed using the Hidden 

Markov models, which resulted in fixed-length gait representations. Classification performance was 

examined using a classical k-nearest neighbour classifier, which accomplished an accuracy of 

85.51%.  

DL algorithms have also penetrated the field of neurology. New studies have proven their 

high potential for recognizing for patients with neurodegenerative disorders. The decision-making 

process of DL algorithms resembles the work of clinical experts – each movement pattern is rated 

with one output, similar to the clinical scores [90]. Furthermore, DL algorithms extend the capabilities 

of conventional ML with the possibility of performing a temporal analysis, which might be 

particularly crucial in the PD assessment [95].  

Fuzzy recurrence plots of very short time series of keystroke logs data were passed as input 

to a long short-term memory (LSTM) network, and accomplished accuracy of 81.9% for early PD 

identification [68]. Several DL models were designed to recognize PD patients based on their 

handwriting data [48], [87], [96]. A convolutional neural network (CNN) model fed with the Hand-

PD dataset accomplished an accuracy of nearly 95% [96]. Transfer learning using the Alex CNN 

showed even better results with an accuracy of 98.28% [48].  

Various studies processed gait data for the provision of DL based support for more accurate 

(early) PD diagnosis. Video data captured with the Microsoft Kinect sensors system was fed to an 

LSTM model [52]. This approach achieved high accuracy results (98.10%). In another study, different 

network topologies were examined for early PD identification based on gait data recorded with the 

Microsoft Kinect device [97]. The best result was obtained with a convolutional LSTM network 

(accuracy of 83.40%). Several research groups developed DL models utilizing the above mentioned 

publicly available PhysioNet database, which contained gait data from 92 patients and 73 healthy 

controls [63], [95], [98]. A new CNN network was fed with force data transformed to spectrogram 

images and trained for PD identification [98]. This approach accomplished an accuracy of 88.17% 

for one data division. A two-channel model (consisted of both LSTM and CNN) extracted patterns 

from the gait data and enabled recognition of PD with accuracy above 96% [95]. The network with 

18 parallel 1-dimensional CNN blocks accomplished the best results for this database with high 

accuracy of 98.7% [63].  

Although showing promising results in the field of deep learning-based diagnosis of PD 

patients, none of these studies tackled the problem of the early PD diagnosis using the data recorded 

with wearable sensors. Inconsistent validation techniques limit the possibilities of comparison with 

other methods. Furthermore, most studies evaluated their algorithms using data division performed 

on the record (file) level, which may cause unrealistically good results.  

2.3.2. Evaluation of symptom severity 

Another approach to this topic combines clinical data and intelligent algorithms for providing 

an objective evaluation of symptom severity or therapeutic effects. The PowerGlove system was used 

for quantifying several hand motor symptoms of PD patients in both OFF and ON therapy conditions 

and successfully measured differences between the two states [78]. The effects of deep brain 
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stimulation on the performance of finger-tapping movement were also examined using a method that 

implemented a musical keyboard for recording finger taps and five features describing biomechanical 

and temporal movement properties [99]. A smartphone accelerometer was used for the acquisition of 

hand tremor data in 52 PD patients [100]. From the recorded data, different features were extracted 

and fed to four different classifiers. A naive Bayes classifier achieved high accuracy results (near 

100%) for the prediction of symptom severity. Small force and gyroscope sensors measured data 

during the reinforcement manoeuvres for quantifying the severity of rigidity at the elbow and wrist 

[101]. The recorded data was described with different measures of mechanical impedance. The 

obtained features showed agreement with the clinical data.  

Bradykinesia was often analysed in the literature since it represents one of the most 

recognizable motor symptoms of PD. The severity of this clinical PD sign was evaluated using 

different clinically relevant repetitive movements, including finger-tapping [60], [71], [81], hand 

opening/closing [102], [103], hand pronation/supination [58], [59], [73], foot or toe-tapping [74], and 

by simultaneous analysis of several movements [64], [104].  

From the accelerometer data of 36 PD patients and ten healthy controls, researchers extracted 

eighteen features describing various frequency and biomechanical movement characteristics [60]. 

The most relevant features were selected using an ordinal logistic regression model and a greedy 

backward algorithm. The performance of the designed model was compared with the scores of 3 

specialists, showing high predictive power, with the Goodman-Kruskal Gamma score of 0.961 [60]. 

A similar approach was implemented for assessment of bradykinesia severity based on the repetitive 

hand opening/closing task [103]. Features describing the dominant grasping frequency and mean 

angle were extracted from the signals recorded with small IMUs. A regression model was fitted, and 

the output was compared with the clinical scores, showing high correlation expressed through the 

determination coefficient 𝑟2 = 0.99. In another study, two time-domain and two frequency-domain 

features were extracted from the gyroscope data recorded during the repetitive finger-tapping 

movement [105]. Each feature was statistically correlated with the clinical scores (from 𝑟 = 0.73 to 

𝑟 = −0.80). The severity of bradykinesia symptom in the finger-tapping movements was also 

quantified with a method that combined principal component analysis and multiple linear regression 

[81]. This approach predicted UPDRS finger-tapping scores with a mean square error of 0.45 

compared to the benchmark clinical data. A method that used a motion capture system and dynamical 

analysis for providing automatic finger-tapping show strong (𝑟 = 0.785) and significant correlations 

(𝑝 < 0.0015) with clinical data [49]. The new performance indexes were also introduced to describe 

bradykinesia severity in upper limbs [58] and walking and sit-to-stand tasks [106]. The obtained 

indexes successfully correlated with the clinical bradykinesia scores and differentiated PD patients 

with and without bradykinesia [58] and ON and OFF states in patients [106].  

Several studies implemented a SVM classifier for prediction of UPDRS scores [64], [72], 

[84]. SVM accomplished high accuracy results (sensitivity, specificity, and accuracy above 97%) for 

prediction of finger-tapping scores using spectral and non-linear features [84]. The features were 

extracted from gyro signals that were recorded in healthy subjects mimicking the impaired 

movements of PD patients. Error below 5% was also obtained for estimating the severity of several 

symptoms (bradykinesia, tremor, and dyskinesia) in 12 PD patients performing multiple movements 

of upper and lower extremities [64], or for estimating bradykinesia severity in 78 PD patients 

performing hand opening/closing for 10 s [72]. A decision tree algorithm was also applied for 
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predicting bradykinesia severity in a hand pronation/supination task and showed a mean agreement 

of 0.48 with clinical ratings [73].  

Although supervised machine learning algorithms predicted clinical scores with high 

accuracy, the labels used for designing models were subjectively given by one or several specialists 

in movement disorders. The clinical scoring process severely depends on the examiner experience 

and knowledge, and it was shown that a high inter-rater variability exists in the given scores. The 

abovementioned reasons limit the applicability of these algorithms for prediction of clinical scores 

since this type of learning might introduce the subjectivity in the obtained results as well (the model 

predicts based on the scores given by a small group of physicians, not based on the rules that are used 

in clinical practice). Furthermore, the models were usually defined based on data obtained from a few 

dozens of data samples, which is not enough data for designing a clinically acceptable model. Due to 

those facts, some research groups implemented decision rules for describing the clinical decision-

making process. Clinical scores were predicted with high accuracy (above 90%) using fuzzy rules 

and features related to biomechanical properties of foot-tapping [74] and hand pronation/supination 

movements [59]. Commercialized smartphone application Kinesia One, proposed by the Great Lake 

Technologies, predicted scores for several bradykinesia tasks based on data recorded with an inertial 

sensor placed on an index finger [107]. However, the output of these systems provided just a score 

evaluating the severity of a symptom; none of these systems does provide a graphical nor parametrical 

output of the performed movement analysis. Furthermore, most of the presented systems utilized 

features that were not fully describing important biomechanical features of performed movements (as 

they are observed in the clinical practice).  

A lot of work has been done in this field; however, a need for additional improvements still 

exists in different aspects of these studies. The required advancements mainly apply to an early 

diagnosis of these diseases, especially to a diagnosis that is based on easily performable everyday 

tasks that can be recorded with simple and inexpensive instrumentation. Furthermore, the assessment 

tools for the prediction of clinical scales can also be improved in terms of developed analysis of the 

observed movements, applied reasoning and provision of results in a manner that is intuitive and 

understandable for the potential end-users.  
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3. Decision support system for assessment of patients 

with neurodegenerative disorders  

This thesis presents research and development of a new decision support system for the 

assessment of patients with neurodegenerative disorders. The system was developed following the 

recommendations for having a clinical DSS with excellent performances (Figure 3.1). The proposed 

DSS represents a suggestion clinical DSS – it is intended for clinical professionals working in the 

field of neurology, more specifically for specialists in movement disorders who seek assistance or 

consultation while assessing the patients.  

Analysis of relevant hand and leg movements represents the basis of this system. Data is 

recorded with lightweight and small wireless, wearable sensor systems, and analysed using advanced 

signal processing techniques and artificial intelligence algorithms. The developed system is a hybrid: 

it comprises both nonknowledge-based and knowledge-based reasoning. The choice of the reasoning 

depended on the system’s intended result: 1) outputting the diagnostic recommendation, and 2) 

evaluating the symptom severity.  

The first part of the support is dedicated to the identification of Parkinson’s disease, with the 

particular focus given to the recognition of PD in an early stage of disease development. For that 

purpose, the nonknowledge-based reasoning was applied. Data recorded during the walking is used 

as the input to this part of the system. The performed analysis consists of two steps: 1) gait 

segmentation using different signal processing techniques, and 2) the provision of diagnostic 

recommendations based on deep learning.  

The second part of the support utilizes knowledge-based reasoning for the assessment of 

symptom severity, more specifically, the severity of bradykinesia. The bradykinesia represents one 

of the essential parkinsonism signs. The severity of this symptom can be evaluated with four different 

repetitive hand and leg movement tests. The support for the assessment of symptoms is presented in 

two steps: 1) a method for analysing the amplitude of four repetitive movements, and 2) evaluation 

of symptom severity using new metrics for movement quantification and an expert system for the 

prediction of clinical scores.   

The output of the system comprises recorded and processed data, diagnostic 

recommendations, metrics for movement quantification, and predicted clinical scores evaluating the 
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severity of the bradykinesia symptom. The output of the support is presented in a manner that is 

simple, intuitive, and understandable for the potential end-users. 

Decision support system

Deep learning for supporting diagnosis

(described in Chapter 5)

Gait segmentation using signals 

recorded with wearable sensors

(described in Chapter 4)

Outputting the diagnostic recommendation Evaluating the symptom severity

Evaluation of bradykinesia severity based 

on new metrics and an expert system

(described in Chapter 7)

Amplitude analysis of repetitive 

movements using wearable sensors

(described in Chapter 6)

Nonknowledge-based 

decision support

Knowledge-based 

decision support

The output of the decision support system for interaction with a user

Representation of recorded and 

processed data with diagnostic 

recommendations

Representation of recorded and 

processed data with metrics for 

movement quantification and predicted 

clinical scores

 

Figure 3.1 The block diagram of the developed decision support system for the assessment of patients 

with neurodegenerative disorders.  
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4. Gait segmentation using signals recorded with 

wearable sensors 

Gait represents locomotion delivered through the motion of human limbs. Analysis of gait has 

become a significant tool for the clinical assessment of different disorders or injuries, allowing 

examination of therapy or surgery effects, disease progress and recovery. One of the essential 

processing steps of the gait analysis is gait segmentation. It is applied for dividing walking sequences 

to individual cycles or partitioning cycles to their sub-phases. Furthermore, gait segmentation enables 

analysis of important gait properties on the level of individual cycles (e.g., extraction of spatio-

temporal parameters), detection of specific gait events, and assessment of gait intra-variability within 

longer walking sequences, which is important for the assessment of gait disturbances in patients with 

neurodegenerative disorders, and especially parkinsonism.   

Each gait cycle or stride has two main phases: stance and swing [108]. The stance phase 

represents the period when a limb is in contact with the ground. It starts with an initial contact, usually 

identified with a heel strike (HS), and lasts until the foot leaves the ground, typically associated with 

a toe-off (TO). During the swing phase, the limb advances with the foot lifted in the air. Contrary to 

the stance phase, the swing begins with a TO and ends with initial contact. Two intervals at the 

beginning and end of the stance phase represent periods when both feet are in contact with the floor 

(double support). In between those two intervals, only one limb contacts the ground, providing single 

support. After the initial contact, initial double support begins the stance phase. When the opposite 

limb starts swinging (contralateral TO), the body is supported only by the original limb on the ground. 

By finishing the swing phase, the opposite limb strikes the ground (contralateral HS), which 

represents the beginning of the terminal double support period, which lasts until the original limb is 

lifted for a new swing (ipsilateral TO). In the normal gait cycle, the swing phase constitutes about 

40% of the complete gait cycle, whereas the stance phase accounts for the other 60% (out of which 

10% belong to the individual double support periods and 40% to the single support period).  

Although recognition of gait events and phases may seem straightforward and visually 

recognizable; reliable, and precise segmentation is not a trivial and straightforward task. Gait patterns 

can be very variable even in healthy subjects. The diversity of gait patterns becomes even more 

prominent in patients with motor impairment where altered motor control (due to some trauma or 

disorder) can significantly change the biomechanics of their movements. Therefore, developing a 

precise algorithm for automatic gait segmentation that can work for any subject (regardless of their 

health status and type of motor disability they may experience) represents a complicated task, and 

different solutions have been proposed to solve this problem. Setting a threshold for the detection of 
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specific gait events represents one of the most common gait segmentation techniques. This method 

has been implemented for discriminating the swing and stance phases from the signals acquired with 

force sensors [109]. Others used it for detecting event-related peaks [110] or identifying the mid-

stance period from accelerometer and gyroscope signals [111]. In another study, detection of signal 

local maximums and minimums was combined with a threshold optimization algorithm and a 

procedure that eliminated the false peaks and interpolated the missing ones [112]. Template-based 

methods were also applied for the segmentation of walking sequences into individual strides. In the 

latter case, recorded gait signals are compared to a template or reference signal for finding repeatable 

patterns and extracting time markers for their segmentation [113]–[115]. Dynamic Time Wrapping 

was used as a template-based method and applied to the gait data acquired during the short and 

controlled walking paths [114]. This approach gave a sensitivity of 97.7% and 75.5% for healthy 

subjects and PD patients, respectively, while allowing a time difference of 100 ms between extracted 

time markers and correct gait events [114]. Another template-based method was applied to the data 

recorded with different sensor configurations, including inertial sensors positioned on the heel, low 

back, and signals acquired with the optoelectronic system [115]. For all three settings, the time 

difference between the detected markers and the real events was in the range 20-28 ms. 

In a pilot study, presented in this Chapter, four different methods for gait segmentation were 

applied on inertial and force gait data recorded from healthy subjects and patients with PD, and 

compared for proposing the best segmentation technique [116]. The methods resulted in time markers 

that were related to specific gait events: heel strike or toe-off, and the results were validated using 

benchmark data.  

4.1. Method 

4.1.1. Experiment 

Fifteen PD patients (Gender: 9 male/6 female; Age: 62±7 years) and fifteen age- and gender-

matched healthy controls (HC) (Gender: 8 male/7 female; Age: 63±7 years) were included in this 

study. All participants were asked to walk with their natural pace along a 15-meter long and a 3-meter 

wide hallway. The selected environment provided participants time and space to perform the 

requested task most naturally. Four trials were recorded per each subject. Few minutes of rest were 

given between the consecutive trials since fatigue may influence the performance. All participants 

performed the walking task using their shoes.  

Patients were recruited from the Clinic of Neurology, Clinical Centre of Serbia, School of 

Medicine, University of Belgrade, Belgrade, Serbia, whereas healthy subjects were selected among 

patients’ company or clinic’s workers. All testing was performed during one day at the Clinic. The 

study was carried out under the ethical standards of the Declaration of Helsinki and approved by the 

Ethical Committee, School of Medicine, University of Belgrade. All subjects provided written 

consent prior to participation in the study.  

4.1.2. Instrumentation 

In this study, the custom-made wireless sensor system (SENSY) was used [117]. The system 

includes two inertial measurements units (IMUs) comprising 3-axial accelerometers (ADXL330, 

Analog Devices, Norwood, Massachusetts, USA) and 3-axial gyroscopes (LPR530, LPY530, Analog 
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Devices, Norwood, Massachusetts, USA), as well as two shoe insoles each with five force sensing 

resistors (FSR) placed under the 1st, 3rd, 5th metatarsal bones, big toe, and heel area. During the 

experiment, IMUs were positioned laterally on the feet. Shoe insoles were provided in the 

corresponding sizes for all subjects. Reference time markers were measured using the GAITRite 

electronic walkway (CIR Systems, Havertown, Pennsylvania, USA) with a 5.5 m long active area. 

Two systems were synchronized using the GAITRite trigger output, which was connected to an 

analog-to-digital input of an external sync box. The trigger was generated when the GAITRite 

recording started and stopped, producing synchronization impulses in the gait data acquired with the 

SENSY system. 

4.1.3. Data processing  

Signals were recorded with the sampling frequency 𝑓𝑠 = 100 Hz. Calibrated data was 

processed in custom-made scripts written in Matlab 7.6 R2008a (MathWorks, Natick, Massachusetts, 

USA). The raw force, accelerometer, and gyroscope signals were filtered using a 5-point moving 

average filter before any further processing. Examples of the recorded and processed signals are given 

in Figure 4.1.  

  
Figure 4.1 Examples of the 10 s long signals for one HC subject (left) and one PD patient (right). On 

the upper panel, GRFN sequence is presented, whereas the middle and lower panels show the 

accelerometer signal measuring anterior-posterior movement in the sagittal plane 𝑎𝑠𝑎𝑔 and the 

gyroscope signal measuring rotations in the sagittal plane 𝜔𝑠𝑎𝑔, respectively. 

4.1.3.1. Methods for gait segmentation  

4.1.3.1.1. Setting a threshold for FSR signals (M1) 

Force sensing resistors provide information about the force that ground exerts on a body 

during the contact of the foot with the ground, i.e., the ground reaction force (GRF). The typical 
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profile of the GRF signal for one foot, recorded with force sensors, is presented in Figure 4.2. The 

presented GRF is normalized with respect to body weight. When foot contacts the ground, the GRF 

signal begins to rise. The first peak in the signal (referred to as “impact peak”) represents the moment 

when body weight is transferred onto a limb that has just finished swinging forward and contacted 

the ground (“weight acceptance”). Afterwards, the complete foot is in contact with the ground 

providing single support (or one limb support) for the body weight. The moment when the foot starts 

to push and lift off the ground represents the second peak in the GRF signal (referred to as “active 

peak”). The value of the GRF signal falls to zero when the foot leaves the ground and begins the 

swing phase. Therefore, GRF provides essential information about the transitions between different 

gait phases, which makes it suitable for the gait segmentation problem and detection of specific gait 

events, such as HS and TO events.  

 

Figure 4.2 Presentation of a typical GRF profile, normalized with respect to a bodyweight 

(GRFN [%]). Different positions of a foot are illustrated during the corresponding phases of the GRF 

profile. The example is given for one HC subject. 

Firstly, the FSR signals from heel, toe, and metatarsal areas of one foot were averaged and 

normalized with respect to the maximum of the averaged signal. The obtained signal represented the 

normalized ground reaction force (GRFN).  

In order to detect moments that represent HS and TO events in the gait cycle, a threshold 

𝑇𝐻𝐺𝑅𝐹 was applied to the normalized ground reaction force GRFN. A binary sequence 𝑏𝐺𝑅𝐹  was 

obtained. For samples 𝑖 when GRFN was valued below the threshold 𝑇𝐻𝐺𝑅𝐹, the binary sequence was 

given the zero value, i.e. 𝑏𝑇𝐻(𝑖) = 0 (corresponding to the swing phase). Similarly, for samples 𝑖 

when GRFN was valued above the threshold 𝑇𝐻𝐺𝑅𝐹, the binary sequence was assigned with ones, i.e. 
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𝑏𝐺𝑅𝐹(𝑖) = 1 (corresponding to the stance phase). Time markers corresponding to HS and TO events 

were detected from the calculated binary sequence. The transitions from 0 to 1, i.e., when 𝑏𝐺𝑅𝐹(𝑖) =

0 and 𝑏𝐺𝑅𝐹(𝑖 + 1) = 1 (from the swing to the stance phase) were detected as the HS events (later 

referred to as the M1a method). Similarly, the transitions from 1 to 0, i.e., when 𝑏𝐺𝑅𝐹(𝑖) = 1 and 

𝑏𝐺𝑅𝐹(𝑖 + 1) = 0 (from the stance to the swing phase) were marked as TO events (later referred to as 

the M1b method).  

The threshold value was determined as the lowest value that allowed the detection of all 

observed gait events. It was established empirically, as the 10% of the maximum value of the 

normalized ground reaction force GRFN sequence, i.e. 𝑇𝐻𝐺𝑅𝐹 = 0.1. 

In Figure 4.3, an example is provided for this segmentation method. A solid black line shows 

the calculated normalized ground reaction force GRFN. A binary sequence 𝑏𝐺𝑅𝐹 is calculated using 

the threshold 𝑇𝐻𝐺𝑅𝐹 = 0.1 (marked with a dotted grey line in Figure 4.3). The transitions from the 

succeeding gait phases were detected as HS and TO events, using the computed binary sequence 

𝑏𝐺𝑅𝐹.  

 

Figure 4.3 Presentation of the GRFN signal (marked with a solid black line) and the calculated binary 

function 𝑏𝐺𝑅𝐹 (represented with a dotted grey line). The detected HS and TO markers are shown with 

blue and red circles, respectively. An example is given for one PD patient.  

4.1.3.1.2. Detection of peaks from accelerometer and gyroscope signals (M2) 

The segmentation method based on peak detection was applied to the accelerometer (later 

referred to as M2a method) and gyroscope signals (later referred to as M2b method). The signals were 

normalized prior to peak detection. The applied technique is previously introduced in the literature 

and tested using several datasets [112]. 

M2a method was applied on the accelerometer signal measuring anterior-posterior motion in 

the sagittal plane 𝑎𝑠𝑎𝑔. Prominent positive peaks were detected from the selected accelerometer 

signal. These peaks could be related to HS events of individual gait cycles. Similarly, M2b method 

was applied on the gyroscope signal measuring rotation in the sagittal plane 𝜔𝑠𝑎𝑔. From the selected 

signal, deep negative valleys were detected. These valleys could be related to TO events of the 

individual gait cycles. The orientation of the gyroscope signal was inverted before further processing.  

The peaks were detected using a thresholding procedure. All peaks valued above some 

threshold 𝑇𝐻𝑝𝑒𝑎𝑘 were extracted from the signal. In order to find the optimal threshold, the value of 

the threshold 𝑇𝐻𝑝𝑒𝑎𝑘 varied from 0.2 to 0.8 (with a step of 0.01). It was showed that higher threshold 



 

 

 

25 

 

values (closer to 1) allow detection of a fewer number of peaks, whereas very low thresholds (below 

0.2) cause the detection of many false peaks [112]. 

The peak detection procedure was repeated for each threshold value from the selected range. 

The gait cycle duration was calculated as the difference between the samples at which two succeeding 

peaks were located. The variance of the gait cycle duration was then calculated for each threshold 

value. The optimal threshold THpeak−opt for detection of peaks was selected as the value that, from 

the applied range of values, achieved minimal variance of the calculated gait cycle duration (as shown 

in Figure 4.4).  

 
Figure 4.4 Variance of the gait cycle duration as a function of the threshold value. The threshold value 

achieving minimal variance of the gait cycle duration is selected as an optimal threshold 𝑇𝐻𝑝𝑒𝑎𝑘−𝑜𝑝𝑡 

(marked with a red triangle). 

By applying the optimal threshold 𝑇𝐻𝑝𝑒𝑎𝑘−𝑜𝑝𝑡, peaks were detected from the signal and 

duration of each individual gait cycle 𝑑𝑖 was calculated using the samples representing two 

consecutive detected peaks. The initial potential cycle (IPC) was found and defined as the cycle that 

fulfilled the criterium 0.9�̅� < 𝑙𝑒𝑛𝑔𝑡ℎ(𝐼𝑃𝐶) < 1.1�̅�, where �̅� represented the average duration of the 

detected gait cycles. This cycle was observed as the correctly detected cycle, and it was used for 

examination of all other detected peaks. For all other cycles that fulfilled the criterium 0.9�̅� < 𝑑𝑖 <

1.1�̅�, it was considered that peaks were correctly identified. For 𝑑𝑖 < 0.9�̅�, false peaks were detected, 

and those peaks were eliminated from further analysis. Similarly, 𝑑𝑖 > 1.1�̅� indicated that some 

peaks were missed, and they were linearly interpolated between the detected peaks.  

The final sequence of samples at which the detected peaks were located represented the 

sequence of time markers that were used for gait segmentation. An example of normalized 

accelerometer and gyroscope signals with detected time markers is presented in Figure 4.5.  
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Figure 4.5 Upper panel: Presentation of the normalized accelerometer signal measuring anterior-

posterior motion in the sagittal plane 𝑎𝑠𝑎𝑔−𝑁 with detected markers (marked with blue squares) and 

true HS events (marked with blue circles). Lower panel: Presentation of the normalized gyroscope 

signal measuring rotation in the sagittal plane 𝜔𝑠𝑎𝑔−𝑁 with detected markers (marked with red 

diamonds) and true TO events (marked with red circles). An example is given for one PD patient. 

4.1.3.1.1. Template-based method – Recognition of gait patterns from accelerometer 

signals (M3) 

Template-based methods compare walking sequences with a reference (template) signal for 

finding resembling and repeatable patterns that correspond to individual strides. The method M3 was 

presented in the literature and applied to the accelerometer signal measuring anterior-posterior 

movement in the sagittal plane 𝑎𝑠𝑎𝑔 [115]. 

In order to define a template signal, the autocorrelation function (AC) of the analysed signal 

was calculated. The AC was then filtered using a 4th order lowpass filter with a cut-off frequency set 

to twice the value of the AC dominant frequency. The template signal length (TL) was then calculated 

as the temporal distance between the two most prominent AC peaks valued above 0.5 [115]. A shorter 

sequence was extracted from the analysed signal – beginning at 115% of TL from the start and ending 

at 115% of TL before the end of the signal. Within this sequence, peaks (separated for at least 40% 

of TL samples) were detected and used for the extraction of shorter segments. The template signal 

was obtained by averaging the obtained segments.   

The template signal was slid along the analysed signal and compared with the signal segment 

with the same length as the template signal. A sliding step was set to one sample. The similarity of 

these signals was measured using two metrics [115]: 1) standard deviation of the amplitude 

difference, and 2) correlation coefficients of the template signal and the short window of the observed 

signal. The ratio of these two calculated sequences was calculated, and it represented a new 
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characteristic that was used for the detection of time markers (later referred to as “coefficient signal”). 

Peaks separated for at least 60% of TL distance are detected from the coefficient signal and considered 

as time markers for the gait segmentation. The obtained time markers were then shifted for 15% of 

TL and compared with the HS events [115].  

An example of the analysed accelerometer signal is presented in Figure 4.6, together with the 

extracted template signal, coefficient signal, and time markers. 

 

 

Figure 4.6 Upper panel: Presentation of the analysed accelerometer signal measuring anterior-

posterior motion in the sagittal plane 𝑎𝑠𝑎𝑔 with extracted template signal. Lower panel: Presentation 

of the calculated coefficient signal with detected peaks (marked with blue squared markers) and 

correct HS events (marked with blue circles). An example is given for one PD patient. 

4.1.3.1.2. Pattern recognition from gyroscope signals using Dynamic Time Wrapping (M4) 

Dynamic Time Wrapping (DTW) represents a signal analysis method that finds an optimal 

alignment of different time sequences [118]. DTW provides a measure of similarity between analysed 

time series by performing “elastic” transformation to find similar patterns within data. In terms of the 

gait segmentation problem, this analysis method can be implemented as a template-based method, 

where the analysed signal is compared with a “representative stride” for the identification of 

individual strides [114].  

DTW definition 

Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑁 ∈ ℕ and 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛), 𝑀 ∈ ℕ represent time series that 

are being compared. These time series are sampled at equidistant time steps. Distance matrix (or local 

cost matrix) 𝐶𝑙 ∈ ℝ𝑁𝑥𝑀 is calculated as the pairwise distances between the analysed time series 𝑋 

and 𝑌 [119]: 
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 𝐶𝑙 ∈ ℝ𝑁𝑥𝑀: 𝑐𝑖𝑗 = ‖𝑥𝑖 − 𝑦𝑗‖, 𝑖 ∈ [1: 𝑁], 𝑗 ∈ [1:𝑀] (4.1) 

An alignment path (also called warping path) is found through the areas with low cost 

(distance), i.e., through the valleys of the calculated distance matrix. It defines the correspondence of 

the elements of the 𝑋 time series to the elements of the 𝑌 time series, following some specified 

conditions. The formal definition of the warping path is given as [119]: 

 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛), 𝑝𝑙 = (𝑝𝑖, 𝑝𝑗) ∈ [1:𝑁] × [1,𝑀], 𝑙 ∈ [1: 𝐾] (4.2) 

and it must satisfy the following criteria [119]: 

1. Boundary condition: The first and last points of the warping path must coincide with the first 

and last elements of the local cost matrix, i.e. 𝑝1 = (1, 1) and 𝑝𝐾 = (𝑁,𝑀). 

2. Monotonicity condition: Time samples of the warping path points must be monotonously 

aligned: 𝑛1 ≤ 𝑛2 ≤ ⋯ ≤  𝑛𝐾 and 𝑚1 ≤ 𝑚2 ≤ ⋯ ≤  𝑚𝐾. 

3. Step size condition: The warping path is limited to small shifts in time: 𝑝𝑙+1 − 𝑝𝑙 ∈

{(1,0), (0,1), (1,1)}. 

The distance function (or cost function) can be calculated from the warping path that is 

computed from the local cost matrix, and it is given as [119]: 

 𝑐𝑝(𝑋, 𝑌) = ∑𝐶𝑙

𝐿

𝑙=1

(𝑥𝑛1
, 𝑦𝑚1

) (4.3) 

The optimal warping path (later referred to as 𝑝∗) is the warping path with a minimal distance 

or cost related to the alignment. The procedure for finding the optimal warping path is 

computationally challenging since it requires that all possible warping paths are tested so the optimal 

one could be found. Because of that, an accumulated cost matrix or global cost matrix 𝐷 is calculated 

from all possible warping paths.  

The elements in the first row of 𝐷 are calculated as [119]: 

 𝐷(1, 𝑗) = ∑ 𝐶𝑙(𝑥1, 𝑦𝑘), 𝑗 ∈ [1:𝑀]

𝑗

𝑘=1

 (4.4) 

The element in the first column of 𝐷 is computed as [119]: 

 𝐷(𝑖, 1) = ∑ 𝐶𝑙(𝑥𝑘, 𝑦1), 𝑖 ∈ [1: 𝑁]

𝑖

𝑘=1

 (4.5) 

All other elements in 𝐷 are found as [119]: 

 

𝐷(𝑖, 𝑗) = 𝑚𝑖𝑛{𝐷(𝑖 − 1, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1)} + 𝐶𝑙(𝑥𝑖 , 𝑦𝑗),  

𝑖 ∈ [1: 𝑁], 𝑗 ∈ [1:𝑀] 

(4.6) 
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When the accumulated cost matrix is calculated, the distance function is calculated as the 

optimal warping path by implementing the backtracking procedure from the last element of 𝐷        

𝑝∗ = (1,1) to the first element of the 𝐷 𝑝∗ = (𝑁,𝑀). 

In this study, DTW was applied for recognition of gait patterns from the gyroscope signal 

describing rotations in the sagittal plane 𝜔𝑠𝑎𝑔 [114]. Gyroscope signals from 10 randomly selected 

subjects were segmented into individual strides using a peak detection algorithm. The extracted 

strides were then averaged, which provided the pattern of the representative stride. The previously 

described procedure was applied for finding the accumulated cost matrix and the distance function as 

the measure of similarity between the analysed signal and the representative stride. Local minima 

from the calculated distance function were detected using a thresholding technique [114]. The 

threshold was set to 5% of the function maximum. The extracted local minima defined time markers 

for the segmentation of gait into individual strides. The obtained time markers were related and 

compared with TO events.  

4.1.3.2. Evaluation of the implemented methods 

Extracted time markers were compared with the reference markers that corresponded to the 

real HS and TO events and that were obtained using the GAITRite platform. In order to have a 

reliable, consistent, and repeatable pre-processing basis for the stride-based gait analysis, the gait 

segmentation should be related to some specific event or change in the analysed signal. In the case of 

the inertial-based gait segmentation methods M2-M4, detected time markers did not represent the 

exact HS and TO events. Because of that, the efficiency of the segmentation methods was evaluated 

using the following metrics: 

1) Sensitivity: 

 𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∙ 100 [%] (4.7) 

2) Precision: 

 𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∙ 100 [%] (4.8) 

3) Absolute error: 

 𝐴𝑒 = 𝑚𝑑𝑒𝑡 − 𝑚𝑟𝑒𝑓 [𝑚𝑠] (4.9) 

where TP, FN, and FP represented the number of true positive, false negative, and false positive 

events, respectively. If the time difference between the detected and reference time markers laid in 

the range ±50 ms (for M1) and ±100 ms (for M2-M4), the detected markers were considered as TP 

events. Lower temporal boundaries were applied to the first method since it was expected (based on 

the definition of the implemented segmentation techniques) that the M1 method would detect events 

that were closer (in the context of time) to the real events compared to other methods. FNs represented 

imprecisely detected or completely missed events. Falsely identified events were considered as FPs. 

Based on the Equations (4.7) and (4.8), Sensitivity 𝑆𝑒 gave the percent of precisely detected events 
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with respect to the total number of actual events, whereas the Precision 𝑃𝑟 provided the measure of 

the share that correctly identified events had in the total number of detected events. In Equation (4.9), 

𝑚𝑑𝑒𝑡 and 𝑚𝑟𝑒𝑓 represented the detected and reference time markers. Absolute error 𝐴𝑒 represented 

the temporal difference of the identified markers and the real events. It was calculated for each 

detected event that was marked as true positive. By using this metric, segmentation consistency was 

examined on the level of each individual gait cycle, which represents a very important term for having 

an applicable and reliable segmentation method in the stride-based analysis.  

4.2. Results 

One hundred and twenty recordings from 30 subjects (444 strides in total) were included in 

the analysis. In Table 4.1, Sensitivity 𝑆𝑒 and Precision 𝑃𝑟 results are presented. The results are shown 

separately for all four segmentation methods and both PD and HC groups, summarized for both legs 

and averaged for all subjects in the group. Results for the Absolute error 𝐴𝑒 metric are shown in 

Figure 4.7 using the boxplot representation. The results are presented for all four segmentation 

methods and both PD and HC groups, separately. Examples of correctly and wrongly detected HS 

events are shown in Figure 4.8. 

The M1 and M3 methods provided comparable results, with the highest values for Sensitivity 

𝑆𝑒 and Precision 𝑃𝑟 metrics (for both groups) compared to other methods. The poorest results were 

obtained for the M4 technique. The methods M2-M4 applied to the inertial data showed lower 

consistency in the obtained values of the Absolute error 𝐴𝑒 evaluation metric, compared to the method 

M1.  

Table 4.1 Segmentation results, presented through descriptive statistics (average±std) of the 𝑆𝑒 and 

𝑃𝑟 metrics, for all segmentation methods and both subject groups, separately. 

 

PD – Parkinson’s disease patients; HC – Healthy controls; M1a – Gait segmentation method based on force data for 

detection of HS events; M1b – Gait segmentation method based on force data for detection of TO events; M2a – Peak 

detection algorithm for detection of HS related peaks; M2b – Peak detection algorithm for detection of TO related peaks; 

M3 – Template-based detection of HS events; M4 – Template-based detection of TO events; 𝑆𝑒 – Sensitivity; 𝑃𝑟 – 

Precision. 

Method Metrics PD HC 

M1a 
𝑆𝑒 [%] 91.1±0.07 99.6±0.01 

𝑃𝑟 [%] 99.6±0.01 99.9±0.02 

M1b 
𝑆𝑒 [%] 91.1±0.07 99.6±0.01 

𝑃𝑟 [%] 99.6±0.01 99.9±0.02 

M2a 
𝑆𝑒 [%] 87.9±0.06 93.3±0.05 

𝑃𝑟 [%] 97.7±0.01 98.8±0.01 

M2b 
𝑆𝑒 [%] 90.2±0.06 91.6±0.09 

𝑃𝑟 [%] 96.5±0.05 99.6±0.02 

M3 
𝑆𝑒 [%] 91.1±0.03 98.6±0.02 

𝑃𝑟 [%] 94.9±0.02 99.8±0.01 

M4 
𝑆𝑒 [%] 85.7±0.05 87.7±0.08 

𝑃𝑟 [%] 95.5±0.05 99.4±0.02 
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Figure 4.7 Boxplot representations of the Absolute error 𝐴𝑒 evaluation metric obtained for all four 

segmentation methods. 

 

 

Figure 4.8 Presentation of two strides long GRFN signal (upper panel) and two strides long normalized 

accelerometer signal 𝑎𝑠𝑎𝑔−𝑁 (lower panel), with correctly detected HS (marked with a blue circle), 

one precisely detected peak (marked with a blue square), one imprecisely detected HS (marked with 

a blue star), and one wrongly detected HS (marked with a blue cross). The area of a missed peak is 

marked with a dashed blue ellipse. An example is given for one PD patient. 
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4.3. Discussion 

In this pilot study, four methods were applied for segmenting the walking sequences into 

individual strides. The selected and implemented methods differed in terms of applied analysis 

(thresholding techniques, peak detection, template-based analysis) and type of analysed signals 

(signals recorded with force or inertial sensors). The methods were examined and validated on the 

data acquired from both healthy subjects and PD patients.  

The first method was based on FSR signals, and it used thresholding for the detection of HS 

and TO events. This method provided the best results with the highest values for the Sensitivity 𝑆𝑒 

and Precision 𝑃𝑟 metrics compared to the other three methods. It is an expected result since FSR 

signals are easiest to interpret and transform into characteristic gait phases and events. However, by 

applying a universal threshold, some gait events can be overlooked or falsely detected (in Figure 4.8, 

small ridge during the swing phase caused false-positive events), which consequently influences the 

efficiency of the method.  

In order to provide a complete analysis of the gait, FSR sensors must be combined with some 

other types of sensors (such as inertial sensors), since they can provide only information about the 

temporal and force gait characteristics. Furthermore, these sensors are sensitive to breaking and 

temperature (which may cause changes in thresholds as well). New shoe insoles should be provided 

for each examined patient, and placing individual sensors on shoe insoles can be time-consuming. 

Besides, patients with impaired motor functions may perform gait patterns differently (e.g., not 

starting the stance phase with a heel strike), which would consequently reduce the clinical 

applicability of the introduced gait segmentation method.  

On the other hand, inertial sensors are easy to use and apply in clinical settings, providing 

significant information about kinematic characteristics of the gait. In this study, three segmentation 

methods were implemented on the signals acquired with inertial sensors. The techniques were 

selected as the segmentation techniques that had great potential for clinical applications. The 

template-based method M3 applied to the accelerometer data provided results that were comparable 

with the method M1. The other two inertial-based methods M2 and M4, provided poorer results with 

decreased Sensitivity 𝑆𝑒 and Precision 𝑃𝑟 for up to 12%. Furthermore, the methods applied to the 

inertial data had wider distributions of the Absolute error 𝐴𝑒 feature, which was especially visible for 

PD patients (as shown in Figure 4.7). This result showed that time differences between the detected 

and actual gait events varied from stride to stride and between different subjects. Therefore, these 

methods allow the detection of some specific changes in the signals, not concrete gait events, which 

makes them less reliable than methods based on force data.  

Methods using a reference signal for finding repeatable gait patterns among signals, such as 

template-based methods implemented here, can be applied for both regular and impaired gait patterns, 

but in that case, the shape of the gait pattern must be uniform without prominent stride to stride 

variability. These methods would not provide reliable results for patients experiencing gait 

disturbances with highly expressed intra-variability. Gait patterns showing prominent peaks are 

suitable for applying peak detection algorithms. However, they are not applicable to the signals 

describing altered gait patterns that do not have expressed or repeatable peaks.  
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In order to have a gait segmentation method that is suitable and applicable for clinical settings, 

the applied technique must provide reliable, reproducible and automatized analysis that requires 

minimal technical skills for use, and that can be applied for all types of gait disturbances. Therefore, 

analysed methods must be additionally examined for other types of gait disturbances to exploit their 

practical capabilities entirely.  
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5. Deep learning for supporting diagnosis 

In the clinical practice, several different tests are simultaneously considered for identifying 

patients with PD since no test can provide a definitive PD diagnosis. Because of that, it was decided 

that support should be developed utilizing nonknowledge-based reasoning. For that purpose, DL 

models were selected, designed and examined. These models allow automatic recognition of patterns 

in data, which makes them suitable for resolving this kind of problem. The DL models are developed 

based on data recorded during the walking task with the wireless and wearable sensor system. 

Walking represents a basic everyday human activity. Furthermore, changes in the normal gait pattern 

may indicate the presence of a motoric impairment in patients with neurodegenerative disorders. Gait 

disturbances are also one of the most incapacitant and identifiable signs of parkinsonism. In this 

Chapter, a new method that utilized DL models for the provision of an objective and automatic 

recognition of PD patients based on gait data is presented. 

5.1. Overview of artificial neural networks 

Artificial neural networks (ANNs) represent the core of the DL; therefore, in order to 

comprehend DL, one should understand the underlying ANN principles first. ANNs represent ML 

algorithms that are inspired by the biological functions of the human brain. Perceptron is a basic type 

of the artificial neuron that consists of external inputs, one internal input (also called “bias”), one 

output, and a step function [120]. The perceptron is fed with an input feature vector 𝒙 =

(𝑥1, 𝑥2, … , 𝑥𝑛), which is multiplied with a set of weights 𝑾 = (𝑤1, 𝑤2, … , 𝑤𝑛): 

 𝑧 = ∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 (5.1) 

where 𝑧 represents the weighted sum of the input. Usually, the bias feature (𝑥0 = 1) is added to the 

network [120]: 

 𝑠 = 𝑧 + 𝑏 = ∑𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

 (5.2) 

with 𝑠 representing the state of the perceptron, and 𝑏 the bias parameter. Usually, the state is 

represented as 𝑠 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=0 , where 𝑤0 = 𝑏. 
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The resulting state value is compared with the threshold, and the output value is obtained: 

 𝑎 = {
1        if ∑𝑤𝑖𝑥𝑖

𝑛

𝑖=𝑜

> 0 

−1   otherwise                  

 (5.3) 

The model of the perceptron is presented in Figure 5.1.  

1 

state 𝑠 

𝑠 = ∑𝑤𝑖𝑥𝑖

𝑛

𝑖=0

 

𝑤𝑛  

𝑤2 

𝑤1 

𝑎 

activation 

function 

𝑓(𝑠) 

𝑥1 

𝑥𝑛  

𝑥2 

.

.

.

𝑤0 = 𝑏 

 
Figure 5.1 The general model of the perceptron. 

The values of the weight and bias parameters are learned during the training phase. The 

perceptron predicts the output for one training sample pair (𝒙, 𝑦) at a time where 𝒙 represents the 

input vector for that sample, and 𝑦 corresponds to its label [120]. In order to find the optimum values 

of the parameters, the perceptron learning rule is applied – for the misclassified samples, the error 

between the predicted and actual output is calculated, and used for updating the values of the 

perceptron parameters, as follows: 

 𝑤𝑖
′ = 𝑤𝑖 + ∆𝑤𝑖 = 𝑤𝑖 + 𝜂(𝑎 − 𝑦)𝑥𝑖 (5.4) 

where 𝑤𝑖 represents the weight value from the previous iteration, 𝑤𝑖
′ is the updated weight value, 

and 𝜂 marks the learning rate. The learning rate controls to what extent the parameter values are 

modified, and usually, it is set as some small value from the range of 0-1. The large values of the 

learning rate might prevent the algorithm from converging towards the optimal value, whereas too 

small values might require more training iterations and therefore result in a very slow algorithm. The 

initial weights are given some random values. The procedure is repeated until the algorithm converges 

towards the optimum.  

 Single perceptron with the step activation function can only learn linear patterns, and the 

algorithm fails to converge if given training examples are not linearly separable. Although stacking 

multiple perceptrons in layers may help with resolving some more complex tasks, other architectures 

and neurons are usually applied for finding more complex non-linear patterns among data.  
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5.1.1. Feed-forward neural networks  

Within ANNs, units (or artificial neurons) are usually organized in layers [120]. Typical ANN 

consists of an input layer, an output layer, and one or more hidden layers. The input layer takes the 

external information from the environment and passes it to the network, whereas the output layer 

provides resulting data to the environment [120]. Units of the hidden layers are connected to the units 

from other layers and do not have connections with the environment. The abovementioned 

architecture of the network is called a deep feed-forward neural network or just a feed-forward neural 

network (FFNN). FFNNs are fully connected and do not contain any loops, i.e., all neurons from one 

layer are connected to all neurons in the succeeding layer, without giving any connections to the 

neurons from the previous or current layer. Units of the input layer represent features, which can be 

scalars, vectors, or multidimensional matrices. Input data is often normalized and scaled into some 

range of values, i.e. [0,1] or [1,1], prior to the development of an ANN model. This procedure usually 

accelerates the learning process and helps with algorithm converging [15].  

In order to represent complex non-linear patterns, non-linear activation functions are applied 

in artificial neurons. The most common non-linear activation functions are sigmoid, hyperbolic 

tangent, rectified linear unit, soft-sign, and softmax [15]. 

The sigmoid (or logistic) function is given as follows [120]: 

 𝑓(𝑠) =
1

1 + 𝑒−𝑚𝑠
 (5.5) 

where 𝑠 corresponds to the state of the artificial neuron, and 𝑚 is a constant value that controls the 

steepness of this activation function. The sigmoid function squashes a large range of input values into 

a continuous range from 0 to 1. The sigmoid activation function is presented in Figure 5.2, upper left 

panel.  

The hyperbolic tangent function is given as follows [15]:  

 𝑓(𝑠) = tanh(𝑠) =
𝑒2𝑠 − 1

𝑒2𝑠 + 1
 (5.6) 

The output of the hyperbolic tangent function is squashed into the range from -1 to 1 (the S-shape). 

The function is continuous, monotonous and differentiable. The hyperbolic tangent activation 

function is presented in Figure 5.2, upper right panel.  

 The rectified linear unit (later referred to as “ReLU”) is given as follows [15]: 

 𝑓(𝑠) = max (0, 𝑠) (5.7) 

The function is continuous, but not differentiable for 𝑠 = 0. The ReLU activation function is 

presented in Figure 5.2, lower left panel.  

The soft-sign function is given as follows:  
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 𝑓(𝑠) =
𝑠

|𝑠| + 1
 (5.8) 

The soft-sign function is an alternative and closely related to the hyperbolic tangent function. The 

difference is that the soft-sign converges polynomially, in contrast to the hyperbolic tangent function, 

which converges exponentially. The soft-sign activation function is presented in Figure 5.2, lower 

right panel.  

The softmax function is given as follows [15]: 

 𝑓(𝑠) =
𝑒𝑠𝑘

∑ 𝑒𝑠𝑘𝐾
𝑘=1

,       𝑘 = 1,… , 𝐾 (5.9) 

where 𝐾 represents the number of units in the layer. The softmax function is usually applied in the 

output layer for classification tasks that include multiple target classes, where each neuron outputs 

the estimated probability of the corresponding class.  

 
Figure 5.2 Presentation of the most common activation functions that are applied in the neural 

networks: sigmoid (or logistic) function (upper left panel), hyperbolic tangent function (upper right 

panel), rectified linear unit function (lower left panel) and soft-sign function (lower right panel). 
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5.1.2. Backpropagation algorithm  

The following denotation is adopted for describing the neural network learning algorithm. The 

layers in the network are indexed with 𝑙, and the total number of layers in the network is represented 

with 𝐿. The number of training examples is denoted with 𝑀. One training example is given with 

(𝒙, 𝑦), where 𝒙 represents the feature vector, and 𝑦 is the target label of that example. Sometimes, 

the target is also represented as a vector, where different vector elements correspond to different 

classification groups. In such case, 𝑦 takes the value of 1 for the correct classification group and the 

zero value for the others. A set of parameters connecting layers 𝑙 − 1 and 𝑙 is denoted with 𝑾(𝑙−1). 

The output 𝒂(𝑙) of a layer 𝑙 is given as [121]: 

 
𝒂(𝑙) = 𝑓(𝑙)(𝒔(𝑙)) = 𝑓(𝑙)(𝑾(𝑙−1)𝒂(𝑙−1)) 

(5.10) 

where the layer input and state are denoted by 𝒂(𝑙−1) and 𝒔(𝑙) respectively, and 𝑓(𝑙) marks the 

activation function. The number of units in the output layer is marked with 𝐾. The measure of the 

overall error can be calculated with the loss function (or cost function) as follows: 

 
𝐽(𝑊) = − ∑ 𝑦𝑘log (

𝑘∈𝐾

𝑎𝑘
(𝐿)),    𝑘 = 1, … , 𝐾   

(5.11) 

In Equation (5.11), a cross-entropy function is used for calculating the overall classification error; 

however, depending on the observed task, other functions can be applied as well, including mean 

absolute error (or 𝐿1 loss), mean square error (or quadratic loss or 𝐿2 loss), mean bias error, hinge 

loss, and others [15]. 

Error backpropagation is the most commonly used learning algorithm in ANNs. Initially, 

network parameters are given some small random values. The input training example is propagated 

forward through the network, and the output is calculated for that training example as [121]: 

 
𝒂(𝐿) = 𝑓(𝐿) (𝑾(𝐿−1)𝑓(𝐿−1) (𝑾(𝐿−2) ⋯𝑓(2)(𝑾(1)𝒂(1)))) 

(5.12) 

where 𝒂(1) = 𝒙. The algorithm propagates the error backward, and the error gradient is used for 

updating the values of the network parameters (weights and biases) for each layer. Because of that, 

the algorithm is also called “gradient descent”. The goal of the algorithm is to obtain the optimum 

values of the network parameters, so the error of the algorithm is minimized, i.e., to compute 

min
𝑊

𝐽(𝑊). The derivative of the loss function in terms of the neural network input is given with the 

following chain rule [121]: 

 

𝑑𝐽

𝑑𝑎(𝐿)
∙
𝑑𝑎(𝐿)

𝑑𝑠(𝐿)
∙

𝑑𝑠(𝐿)

𝑑𝑎(𝐿−1)
∙
𝑑𝑎(𝐿−1)

𝑑𝑠(𝐿−1)
∙
𝑑𝑠(𝐿−1)

𝑑𝑎(𝐿−2)
⋯

𝑑𝑎(2)

𝑑𝑠(2)
∙
𝜕𝑠(2)

𝜕𝑎(1)

=
𝑑𝐽

𝑑𝑎(𝐿)
∙ (𝑓(𝐿))′ ∙ 𝑾(𝐿−1) ∙ (𝑓(𝐿−1))′ ∙ 𝑾(𝐿−2) ⋯(𝑓(2))′ ∙ 𝑾(1) 

(5.13) 

where operator ′ and ⋅ denote derivative and Hadamard product (or element-wise product), 

respectively. The gradient ∇ represents the transpose of the derivative represented in the Equation 

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
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(5.13). Therefore, although the entries are the same, the order of multiplication is reversed, and 

matrices are transposed [121]:  

 ∇𝑥𝐽 = (𝑾(1))𝑇 ∙ (𝑓(2))′⋯ (𝑾(𝐿−2))𝑇 ∙ (𝑓(𝐿−1))′ ∙  (𝑾(𝐿−1))𝑇 ∙ (𝑓(𝐿))′∇𝑎(𝐿)𝐽 (5.14) 

The new quantity can be introduced and defined as the gradient of the input at the level of the layer 𝑙 

[121]: 

 
𝜹(𝑙) = (𝑓(𝑙))

′
∙ (𝑾(𝑙))𝑇 ∙ (𝑓(𝑙+1))

′
⋯(𝑾(𝐿−2))𝑇 ∙ (𝑓(𝐿−1))

′
∙  (𝑾(𝐿−1))𝑇 ∙ (𝑓(𝐿))

′

∙ ∇𝑎(𝐿)𝐽 
(5.15) 

It can also be interpreted as the error at the level of the layer 𝑙. The delta is a vector with a length that 

equals the number of units in that layer. This quantity can be calculated recursively as [121]:  

 𝜹(𝑙) = (𝑓(𝑙))
′
∙ (𝑾(𝑙))𝑇 ∙ 𝜹(𝑙+1) (5.16) 

The gradient of the parameters connecting the layers 𝑙 and 𝑙 + 1 [121]: 

 ∇𝑊(𝑙)𝐽 = 𝜹(𝑙+1)(𝒂(𝑙))𝑇 (5.17) 

The gradient ∇𝑊(𝑙)𝐽 is influenced by the factor  𝒂(𝑙) since the parameters 𝑾(𝑙) connect units from the 

layers 𝑙 and 𝑙 + 1 and affect the layer 𝑙 + 1 proportionally to its input  𝒂(𝑙). The parameters connecting 

the layers 𝑙 and 𝑙 + 1 are updated according to the following formula [121]: 

 
𝑾(𝑙) = 𝑾(𝑙) − 𝜂∇𝑊(𝑙)𝐽 

(5.18) 

where 𝜂 represents the learning rate. The weights are updated for the specified number of repetitions 

(also called iterations) until the network reaches the best solution for the output values, or until it 

reaches its final iteration. The backpropagation algorithm is illustrated on the example of one simple 

FFNN with one hidden layer in Figure 5.3.  

When parameter updating is performed after each training example, the algorithm is called 

“stochastic gradient descent”. Sometimes, the input data is divided into batches prior to the learning 

process. A batch size represents a number of input examples that have been fed to the network before 

updating the network parameters. The error is calculated for each example in the batch. After feeding 

all batch examples, the gradient of the cumulative error is applied for updating the network 

parameters. The batch size is observed as a hyperparameter. Batch gradient descent is an algorithm 

that uses all training samples at once. The mini-batch gradient descent represents the version of this 

algorithm that uses smaller portions of the input examples (the number of examples in one batch can 

take a value between 1 and the total number of examples in the input set). Division of data to batches 

causes an algorithm to have one more hyperparameter: an epoch. The epoch is an interval during 

which the algorithm has processed all training examples to update the model parameters.  
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𝑾(1) = 𝑾(1) − 𝜂∇𝑊(1)𝐽 = 

𝑾(1) − 𝜂𝜹(2)(𝒂(1))𝑇  

Input layer Hidden layer Output layer

𝒂(2) = 𝑓(2)(𝑾(1)𝒂(1)) 𝒂(1) = 𝒙 𝒂(3) = 𝑓(3)(𝑾(2)𝒂(2)) 

𝐽(𝑊) = − ∑ 𝑦𝑘 log⁡(𝑎𝑘
(3))
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Figure 5.3 Illustration of the backpropagation algorithm on the example of one simple feed-forward 

neural network with an input layer, one hidden layer, and an output layer.  

5.1.3. Performance evaluation 

Generalization represents the central problem in ML, and it is defined as the ability of 

algorithms to perform well on previously unseen data [15]. Because of that, prior to the learning 

process, input data is divided into training data, used for fitting the model, and test data, used for 

examining the performance of the designed model and its ability to generalize [15]. When dividing 

data to training and test sets results with a too-small test set (implying statistical uncertainty in test 

results), then alternative strategies can be applied to provide a more accurate estimation of the model 

performance. The most common approach includes dividing original input data to 𝑘 randomly 

selected non-overlapping splits, also referred to as the 𝑘-fold cross-validation. In each trial, one data 

split is used for testing the model, whereas the other 𝑘 − 1 folds are applied for training. The 

procedure is repeated until every split or fold is used as the test set precisely one time. The 

performance is measured on test data and then averaged for all trials.  

In the literature, different performance measures are introduced and applied. Binary 

classification tasks are usually evaluated using the following metrics [16]: 

 

1) Accuracy: 
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 𝐴𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
⋅ 100 [%] (5.19) 

2) Sensitivity: 

 𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
⋅ 100 [%] (5.20) 

3) Specificity: 

 𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
⋅ 100 [%] (5.21) 

 

In these Equations, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 represent the number of examples that were classified as 

true positives, true negatives, false positives, and false negatives, respectively. Sometimes, precision, 

F1-score, and area under the curve are used as well.  

5.1.4. Regularization 

As shown in the example of the FFNNs, during the learning process, training error is 

computed, and the algorithm tries to minimize the error. However, for the model to generalize well, 

it is also necessary for a test error (error calculated on test data) to be small, and that a gap between 

the training and test errors is minimized [15]. Two problems can emerge during the learning process: 

underfitting and overfitting. Underfitting represents the inability of the model to obtain a low training 

error. The big gap between the two errors implies that the model is overfitting.  

There are different techniques for preventing algorithms from underfitting or overfitting. 

Underfitting usually suggests that the model is too simple for the observed task. Increasing the 

complexity of the model or number of iterations can help with the underfitting problem. However, 

overfitting represents a more complex problem, and it expresses the inability of the model to 

generalize well. Regularization represents a set of techniques that are being applied to mitigate the 

overfitting problem [15]. In further sections, there will be a more detailed explanation of the 

regularization techniques that have been used in this thesis. 

5.1.4.1. Parameter Norm Penalties 

The most common regularization strategy includes adding a norm penalty Ω(𝑊) to the loss 

function, as follows [15]:  

 
𝐽(𝑊) = 𝐽(𝑊) + 𝜆Ω(𝑊) 

(5.22) 

where 𝐽(𝑊) is a regularized loss function, and 𝜆 ∈ [0,∞) is the hyperparameter controlling the 

contribution of the norm penalty. Smaller values of the 𝜆 hyperparameter cause model to be less 

regularized and vice versa. By minimizing the loss function 𝐽(𝑊), the algorithm also minimizes the 

norm penalty function, which consequently shrinks the weight vector at each iteration before 

performing the gradient update and prevents the weights from achieving high values [15]. Typically, 

the norm penalty is chosen as the function that penalizes the weight parameters. The most common 

is the 𝐿2 norm penalty or weight decay: 
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Ω(𝑊) =

1

2
∑‖𝑾(𝑙)‖

2

2
𝐿−1

𝑙=1

 
(5.23) 

Other functions can be applied as the norm penalty, including 𝐿1 or a combination of 𝐿1 and 

𝐿2 norm penalties [15].  

5.1.4.2. Dropout 

Dropout represents a computationally inexpensive but powerful regularization technique. It 

randomly removes some portion of layer units [122]. The most effective manner of removing a unit 

from the network includes multiplying it with a zero. The architecture of the network changes from 

iteration to iteration, and an ensemble of all subnetworks that are formed in this manner is trained 

[122]. The models share the parameters – the parameters learned in the previous iteration are 

transferred to a new subnetwork. By applying dropout, the layer cannot rely on only a few input 

features since they are not always present during the training. In this way, the layer learns to use all 

inputs, which prevents the network from overfitting [122]. Dropout is usually used together with a 

mini-batch gradient algorithm. With every new training example, a binary mask is applied to the layer 

units [15]. The probability of removing the layer units is a hyperparameter that needs to be selected 

before the training. Typically, a probability of 0.5 is used for hidden layers. 

5.1.4.3. Dataset Augmentation 

One of the best strategies to prevent a network from overfitting is to feed it with a larger 

amount of data [15]. When collecting more data requires many resources, data augmentation can be 

a useful tool for creating bigger datasets. For two-dimensional data, data augmentation techniques 

often imply to some transformation of the original images (image rotations, adding some noise, and 

others). In the case of one-dimensional time-series data, augmentation strategies applied in the 

literature typically include cropping data to shorter time-series. 

5.1.4.4. Batch normalization 

During the training process, the layer parameters change, which consequently alters the 

distribution of the next layer inputs as well. Because of that, a lower learning rate and cautious 

initialization of the network parameters are required, which consequently slows down the learning 

process. This phenomenon is called “internal covariate shift,” and it can be resolved by normalizing 

the layer inputs [123]. The normalization becomes the part of the network model – it is performed for 

each batch of data during the training. The use of batch normalization allows a less strict selection of 

learning rate and network parameter values.  

In general, batch normalization is not considered as a regularization technique; however, it 

was shown that it could act as the regularization strategy and improve the generalization abilities of 

the network.  
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5.1.5. Long short-term memory network 

A recurrent neural network (RNN) represents a dynamic system that is capable of processing 

time series [15]. RNNs have a looping mechanism (connections) that propagate data from earlier time 

steps to the current. For each time step, the information is preserved within the unit’s internal state.  

The standard RNNs suffer from a problem called “short-term memory”, i.e., they cannot carry 

information for more than approximately ten time steps [120]. With every time step, a backpropagated 

error tends to grow or shrink, and with a sufficiently large number of time steps, it explodes or 

vanishes. Exploding gradients cause network weights to oscillate, whereas, with vanishing gradients, 

the network takes a lot of time for training or it does not train at all. One possible way for solving this 

problem is a gradient-based method called a long short-term memory neural network [120].  

Long short-term memory (LSTM) network represents a special type of RNN, capable of 

learning relationships for more than a thousand time samples [124]. One LSTM unit consists of a 

memory cell, input gate, forget gate, and output gate. The memory cell captures the information for 

different time steps, whereas the gates control the information flow through the memory cell.  

The parameters (weight and biases) of the forget gate regulate the amount of information that 

is discarded from the cell. The forget gate activation vector is computed as [120]: 

 
𝒂𝒇 = 𝑓(𝑾𝒇𝒙𝒕 + 𝒖𝒇𝒉𝒕−𝟏) 

(5.24) 

where 𝑾𝒇 and 𝒖𝒇 represent the weight vector of the input and recurrent connections of the forget 

gate, respectively. The input feature vector for a time step 𝑡 is denoted with 𝒙𝒕, whereas the 𝒉𝒕−𝟏 

represents a hidden state vector obtained as a result of that LSTM unit from the previous time step. 

The activation function is marked with 𝑓. 

The input gate controls the flow of new information to the memory cell. Firstly, the input gate 

activations vector is computed as [120]: 

 
𝒂𝒊 = 𝑓(𝑾𝒊𝒙𝒕 + 𝒖𝒊𝒉𝒕−𝟏) 

(5.25) 

where 𝑾𝒊 and 𝒖𝒊 represent the weight vector of the input and recurrent connections of the input gate, 

respectively. In this way, the LSTM unit decides what values are updated. Afterwards, new candidates 

for a cell state vector values are found by calculating a cell input activation vector [120]: 

 
𝒄�̃� = 𝑓(𝑾𝒄𝒙𝒕 + 𝒖𝒄𝒉𝒕−𝟏) 

(5.26) 

where 𝑾𝒊 and 𝒖𝒊 represent the weight vector of the input and recurrent connections of the cell input, 

respectively. Afterwards, the cell state vector is updated as follows [120]:  

 
𝒄𝒕 = 𝒂𝒇 ⋅ 𝒄𝒕−𝟏 + 𝒂𝒊 ⋅ 𝒄�̃� (5.27) 

where 𝒄𝒕−𝟏 represents the cell state vector from the previous time step, and the operator ⋅ denotes the 

Hadamard product (or element-wise product). The output gate regulates the amount of information 

used for calculating the output activation of the LSTM unit. The activation vector of the output gate 

is computed as [120]: 

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
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𝒂𝒐 = 𝑓(𝑾𝒐𝒙𝒕 + 𝒖𝒐𝒉𝒕−𝟏) 

(5.28) 

where 𝑾𝒐 and 𝒖𝒐 represent the weight vector of the input and recurrent connections of the output 

gate, respectively. The output vector of the LSTM unit or hidden state vector represents the final 

output of the LSTM unit at the time step 𝑡, and it is computed as: 

 
𝒉𝒕 = 𝒂𝒐 ⋅ 𝑓(𝒄𝒕) 

(5.29) 

The learning algorithm applied in the LSTM networks represents the combination of two 

algorithms, backpropagation through time and real-time recurrent learning [120]. 

5.1.6. Convolutional neural network 

The convolutional neural network (CNN) represents a special type of FFNNs that can process 

raw data with a grid-like topology, including both a 1-dimensional grid of time samples (or time-

series) and a 2-dimensional grid of pixels (or images) [15]. 

In general, convolution is an operation defined with the following formula [15]: 

 
𝑠(𝑡) = (𝑥 ∗ 𝑦)(𝑡) = ∫𝑥(𝑎)𝜔(𝑡 − 𝑎)𝑑𝑎 

(5.30) 

In Equation (5.30), any two functions of a real-valued argument can be used. The first 

argument (the function 𝑥 in the abovementioned Equation) is typically referred to as the “input”. The 

second argument (the function 𝜔 in the abovementioned Equation) is denoted as the “kernel” or 

“filter”. Sometimes, the output of the convolution operation is called the “feature map”. The discrete 

convolution is defined as [15]: 

 
𝑠(𝑡) = (𝑥 ∗ 𝑦)(𝑡) = ∑ 𝑥(𝑎) ∙ 𝜔(𝑡 − 𝑎)

∞

𝑎=−∞

 
(5.31) 

 

where functions 𝑥 and 𝜔 are defined on some finite number of 𝑡, and operator ∙ represents the 

Hadamard product (or element-wise product). Discrete convolution over more than one axis is 

defined as [15]: 

 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑∑𝐼(𝑚, 𝑛) ∙ 𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚

= ∑∑𝐼(𝑖 − 𝑚, 𝑗 − 𝑛) ∙ 𝐾(𝑚, 𝑛)

𝑛𝑚

 
(5.32) 

where 𝐼 and 𝐾 represent 2-dimensional input and kernel, respectively.  

Within CNNs, kernels are organized within convolutional layers, and they are defined by their 

height 𝐻𝐾, width 𝑊𝐾 and stride 𝑆𝐾 (observed as network hyperparameters). The height and width 

determine the size of the filter, whereas the stride represents the size of a step for crossing the input 

both vertically and horizontally. The output of one convolutional layer represents a feature map. 

Sometimes a padding technique is applied to pixels/samples near the input edges: the original input 

is extended with the additional pixels/samples 𝑃 so the resulting feature map can take some specific 

size. The size of the resulting feature map is defined as:  

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
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𝑊𝑠 =

𝑊𝐼 − 𝑊𝐾 + 2𝑃

𝑆𝐾
+ 1 

(5.33) 

 
𝐻𝑠 =

𝐻𝐼 − 𝐻𝐾 + 2𝑃

𝑆𝐾
+ 1 

(5.34) 

where 𝑊𝐼 and 𝐻𝐼 represents the width and height of the input. The number of kernels that are applied 

within one convolutional layer defines the number of channels (or depth) of the resulting feature map. 

In these Equations, stride values used for traversing the input horizontally and vertically can differ. 

In the case of 1-dimensional input, the resulting feature map has a size of 1𝑥𝑊𝑠, where 𝑊𝑠 is 

calculated using the same formula (5.33), and the depth of the feature map is defined by the number 

of applied kernels. The illustration of the CNN learning process in the case of 1-dimensional input 

data is given in Figure 5.4.  

Time samples

Kernel size

Input 

features

Extracted patch of 

the input data

Element wise product 

with kernels

Depth of the resulting 

feature map

Size of the resulting feature map  
Figure 5.4 Illustration of the CNN learning process in the case of 1-dimensional input data.  

Other important properties of the CNNs include [15]: 

1. Sparse connectivity or sparse weights – This property arises from the fact that the kernel is 

usually much smaller than the input, e.g., the input can have thousands of elements (pixels or 

time samples), but small features can occupy only a few dozens of elements. In this way, a 

smaller number of parameters needs to be stored and trained, which reduces the number of 

required operations and memory requirements, and improves the statistical efficiency of the 

network.  

2. Parameter sharing – Each pixel/sample of the kernel is used at every or almost every position 

of the input (depending on the selected values for the stride 𝑆𝐾 and padding 𝑃). This means 

that one set of parameters is learned at different positions of the input.  

3. Equivariant representations – This property refers to the equivariance to translation, causing 

the output to change in the same manner as the input. When 1-dimensional input is processed, 
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convolution gives a “timeline,” showing when different features emerge in the input. If some 

features are moved later in the input, the same features will emerge later in the output as well.  

Within multilayer convolutional neural networks, the output feature map of one layer is fed 

to the next layer as the input. A typical convolutional neural network consists of three layers: a 

convolutional layer, a non-linear layer, and a max-pooling layer [15]. The convolutional layer 

produces a set of linear activations, which then runs through a non-linear activation function (usually 

ReLU). In the end, a pooling layer is used to merge similar features. The result of the pooling is 

computed as the summary statistics of a local patch of the feature maps’ pixels/samples. The most 

common pooling layer calculates the maximum value of nearby outputs, and it is called the max-

pooling. Other commonly used statistics include average, weighted average or 𝐿2 norm of a 

neighbouring local patch [15]. The pooling layer makes the output invariant to a small translation of 

the input, which is useful for the cases when the existence of a feature is essential, but not its precise 

location. The size of the output of the max-pooling layer can be calculated using the same Equations 

(5.33) and (5.34). 

5.2. Method 

5.2.1. Experiment 

The study comprised forty-eight subjects in total: thirty-three patients with PD (Gender: 17 

female/16 male; Age: 64.3±7.9 years) and fifteen age- and gender-matched HC subjects (Gender: 7 

female/8 male; Age: 62.5±6.9 years). The patients were initially recruited at the Clinic of Neurology, 

Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia, in 2015. 

Healthy controls were selected among healthy staff members or persons accompanying the patients 

at the Clinic of Neurology. Neurologists (specialists for movement disorders) diagnosed PD patients 

using the UK Parkinson’s Disease Society Brain Bank criteria [38]. Parkinsonism signs were assessed 

with the UPDRS scale [42]. The H&Y scale was applied for the evaluation of disease severity [35]. 

The performed assessment showed that all PD patients were in an early or mild stage of disease 

development. The criteria for H&Y scores (H&Y≤2) and disease duration (<5 years) were applied 

for distinguishing patients in the early stage of PD development. Fifteen out of thirty-three PD 

patients (Gender: 9 female/6 male; Age: 62.0±9.8 years) met the set criteria, and they were also 

observed as patients in the early stage of PD development (later referred to as “PDearly”). The clinical 

data of both PD and PDearly patient groups are presented in Table 5.1.  

The clinical diagnosis of PD has lower reliability, especially if it is given in the early stage of 

disease development [125]. For that reason, diagnostic follow-up was performed by two neurology 

specialists (with more than ten years of experience) in 2020, 5 years after the initial inclusion of PD 

patients. The physicians confirmed the diagnosis that was given before or at the beginning of the 

study for all observed patients (Table 5.1, last row), increasing the reliability of the labels for 

classification tasks. All thirty-three PD patients were included in further analysis.  
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Table 5.1 Clinical features of PD patients presented through descriptive statistics (average±std, 

median), with separately presented information for patients in the early stage of PD.  

Clinical features Statistics PD PDearly 

H&Y 
Average±std 2.0±0.8 1.5±0.5 

Median 2.5 1.5 

Disease duration 

(years) 

Average±std 9.2±6.5 3.4±1.3 

Median 7 3.25 

UPDRS  

Total 

Average±std 78.9±33.0 43.8±16.9 

Median 85 40 

UPDRS  

III 

Average±std 40.5±16.2 24.4±8.4 

Median 39 23 

UPDRS  

gait 

Average±std 1.5±0.9 1.0±0.8 

Median 2 1 

Confirmed 

diagnosis 
No. of cases 33/33 15/15 

PD – Parkinson’s disease patients; PDearly – Patients in the early stage of Parkinson’s disease development; H&Y – 

Hoehn and Yahr scale; UPDRS – Unified Parkinson’s disease rating scale; UPDRS III – Unified Parkinson’s disease 

rating scale, Part III – Motor examination; UPDRS gait – Unified Parkinson’s disease rating scale, scores given for the 

evaluation of the severity of gait disturbances.  

The participants were asked to complete a walking task, which was captured and analysed 

under four different conditions [126]:  

1. Regular or baseline walking (later referred to as “BASE”) – walking along a straight path with a 

regular, usual rhythm.  

2. Motor dual-task (later referred to as “MOTOR”) – walking along a straight path with a regular, 

usual rhythm while carrying a glass of water, trying not to spill it.  

3. Cognitive dual-task (later referred to as “COGNITIVE”) – walking along a straight path with a 

regular, usual rhythm while performing a mathematical task – serial subtractions of the number 

“7” from the number “100”. The mathematical task was given by the examiners, who took care 

that the participants provided the correct answers.  

4. Combined dual-task (later referred to as “COMBINED”) – walking along a straight path with a 

regular, usual rhythm, while carrying the glass of water and performing the described 

mathematical task, in parallel. 

For all subjects, four walking sequences were captured per each walking condition with few 

minutes of break between the successive trials. The exception was one PD patient who performed 

only two walking sequences per each condition because of particularly evidenced fatigue during the 

experiment. The subjects performed the walking task in their shoes.  

The included patients did not experience any freezing of gait or fall episodes during the 

experiment. The measurements were conducted in a 15-meter long and 3-meter wide hallway that did 

not contain any obstacles, narrow passages, or floor patterns that could affect the walking of patients. 

In that manner, the participants were provided with a clear space and time to walk at their natural 

pace.  
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For all subjects, the measurements were conducted during one day at the Clinic of Neurology, 

Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia. The study 

was performed following the ethical standards of the Declaration of Helsinki and approved by the 

Ethical Committee, School of Medicine, University of Belgrade. All participants gave their written 

informed consent to participation in the study. 

5.2.2. Instrumentation 

In this study, the wireless sensor system SENSY was applied for recording the walking task 

[117]. The system comprises two IMUs, and two shoe insoles, each with three force sensing resistors 

(FSR) positioned below the area of the 2nd and 4th metatarsal bones and heel area, respectively 

(illustrated with gray circles on Figure 5.5). The IMUs incorporated a 3-axial analog accelerometer 

(ADXL330, Analog Devices, Norwood, Massachusetts, USA) and a 3-axial gyroscope sensor 

(LPR530, LPY530, Analog Devices, Norwood, Massachusetts, USA). During the experiment, IMUs 

were placed laterally on the subject’s feet (illustrated with a gray rectangle in Figure 5.5). Shoe insoles 

were provided in a corresponding size for each participant and positioned in their shoes during the 

measurements. The sensors were connected to their central units, which collected and wirelessly sent 

signals to a remote computer (proprietary communication protocol based on IEEE 802.15.4 standard). 

The data was acquired with a sampling frequency 𝑓𝑠 = 100 Hz, using a custom-made software 

developed in LabWindows/CVI 9.0 (National Instruments, Austin, Texas, USA).  

 
Figure 5.5 Illustration of the used SENSY system and its position during the experiment, with the 

program for data acquisition running on the remote computer. 

5.2.3. Data processing 

Data processing was executed in custom-made scripts written in Matlab 9.6 R2019a 

(MathWorks, Natick, Massachusetts, USA). A single GPU, Cuda device, GeForce GTX 1050 Ti 

(Nvidia Corporation, Santa Clara, California, USA) was used for training and testing of developed 

models.  
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All recorded signals were initially filtered using the same 5-point moving average filter for 

all subjects. The normalized ground reaction force GRFN was calculated from the recorded and 

filtered FSR signals, using the same procedure described in Chapter 4.  

An example of the pre-processed force, accelerometer, and gyroscope signals is presented in 

Figure 5.6. The example is provided for one PD patient in the early stage of disease development 

(H&Y=2, diseased for two years). The presented signals are recorded from the more affected (right) 

leg during the BASE task.  

The analysed walking sequences had 14 feature dimensions that represented the normalized 

ground reaction force GRFN, three accelerometer axes 𝑎𝑥,𝑦,𝑧 and three gyroscope axes 𝜔𝑥,𝑦,𝑧 from 

both legs. The initial dataset which consisted of the whole non-cropped and pre-processed 14-

dimensional walking sequences (later referred to as “ORIGINAL”) was used as an input for further 

data processing.  

 
Figure 5.6 Presentation of the pre-processed signals: the normalized ground reaction force GRFN 

(upper panel), three accelerometer axes 𝑎𝑥,𝑦,𝑧  (middle panel) and three gyroscope axes 𝜔𝑥,𝑦,𝑧 (bottom 

panel) from the more affected leg. The example is given for one PD patient in the early stage of 

disease development. 

5.2.3.1. Gait segmentation 

Segmentation of walking sequences was performed using the gait segmentation method M1b 

that was already presented in Chapter 4. This method was applied to the calculated normalized ground 

reaction force GRFN. The moments representing toe-off events from the left leg were detected and 

used in further analysis as the time markers for segmenting the gait into individual strides.  
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5.2.3.2. Data augmentation problem 

In this study, two strategies were developed and applied: stride-based and time-based data 

augmentation. These techniques were applied to the ORIGINAL dataset. In addition to providing 

more data for training and testing, the introduced augmentation techniques allowed examination of 

the influence that a length of the walking sequences might have on the performance of the developed 

models.  

5.2.3.2.1. Stride-based data augmentation 

The extracted time markers were applied to the ORIGINAL dataset for providing shorter 14-

dimensional walking sequences. The data augmentation was executed along the following lines:  

1) Cropping to 14-dimensional walking segments that include eight successive strides (later 

referred to as “STRIDE-8”). The neighbouring walking segments were shifted by a length of 

one stride. 

2) Cropping to 14-dimensional walking segments that include five successive strides (later 

referred to as “STRIDE-5”). The neighbouring walking segments were shifted by a length of 

one stride. 

3) Cropping to 14-dimensional walking segments that include two successive strides (later 

referred to as “STRIDE-2”). The neighbouring walking segments were shifted by a length of 

one stride. 

Based on the detailed analysis of the ORIGINAL database, it was established that the shortest 

recorded walking sequence comprised nine strides; therefore, the upper limit for data augmentation 

was set to eight strides, which provided no less than two cropped segments per any recorded walking 

sequence.  

The increased intra-variability (sometimes referred to as a stride-to-stride variability) 

represents one of the most notable characteristics of the parkinsonian gait [125]. In order to observe 

these essential gait characteristics, at least two successive strides should be contained within one 

cropped walking segment, which was selected as a lower limit for segmenting the original walking 

sequences.  

5.2.3.2.2. Time-based data augmentation 

In the case of time-based data augmentation, data was cropped on a time level. The data 

augmentation was executed along the following lines:  

1) Cropping to 8 s long 14-dimensional walking segments (later referred to as “TIME-8”). The 

neighbouring walking segments were shifted by a length of 1 s. 

2) Cropping to 5 s long 14-dimensional walking segments (later referred to as “TIME-5”). The 

neighbouring walking segments were shifted by a length of 1 s. 

3) Cropping to 2 s long 14-dimensional walking segments (later referred to as “TIME-2”). The 

neighbouring walking segments were shifted by a length of 1 s. 

The selection of cropping limits was performed using the same principle as for the previous 

augmentation strategy. The shortest walking sequence within the ORIGINAL database was 9.25 s 

long; therefore, the upper limit for data augmentation was set to 8 s, which provided no less than two 

cropped segments per any recorded walking sequence. The lower limit for cropping the walking 
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sequences was set based on the value of the typical gait frequency of 1 Hz [126]. For a typical gait 

and sampling frequency of 100 Hz, two strides should be comprised in a 2 s long walking sequence, 

which was set as a lower limit for gait augmentation. 

By using both augmentation strategies, seven datasets were developed and fed to the designed 

deep learning models in total: ORIGINAL, STRIDE-8, STRIDE-5, STRIDE-2, TIME-8, TIME-5, 

and TIME-2.  

5.2.3.3. Classification of PD patients and healthy controls 

Two classification tasks were observed and analysed in this study:  

1) classification of all patients with PD and HC subjects (later referred to as “PD-HC”);  

2) classification of PDearly patients and HC subjects (later referred to as “PDearly-HC”).  

For this purpose, two deep learning models were designed and validated using the developed 

datasets: long short-term memory network and convolutional neural network.  

5.2.3.3.1. Long short-term memory network 

Different architectures of the LSTM network were tested to find a network topology that 

provides the best results for the observed classification tasks. The architecture of the final designed 

network is shown in Figure 5.7.  

The designed network had one LSTM layer with 100 hidden neurons, one fully connected 

(FC) layer with 100 hidden neurons, and a softmax layer. The Xavier initialization scheme was 

applied for the initialization of values of both input and recurrent weights [129]. For the gates, the 

sigmoid activation function was used, while the soft-sign function was applied as the activation 

function for updating the memory cell and hidden states. A dropout layer was applied after both the 

LSTM and FC layers to prevent the LSTM network from overfitting, with the probability of dropping 

out the hidden units of 0.5.  

The Adaptive moment estimation (ADAM) solver was applied for training. The cross-entropy 

was used as a loss function. The network was trained for 30 epochs, with a mini-batch size of 128. 

For the case when stride-based datasets were used for training, one mini-batch could contain walking 

segments of different lengths. Because of that, the input data was sorted in an ascending order prior 

to any model training and testing. During the training and testing process, the walking segments 

belonging to one mini-batch were cropped to the length of the shortest walking segment from the 

corresponding mini-batch. The 𝐿2 norm penalty, with regularization parameter 𝜆 = 0.05, was added 

to the loss function so the complex models could be penalized. The learning rate was given the initial 

value 𝜂 = 0.001; after every five epochs, the learning rate was decreased for a factor of 0.2. 

Furthermore, a limitation of value 1 was applied to the gradient values, to prevent the gradients from 

exploding/vanishing. In this study, input data was not normalized, since it was shown that data 

normalization reduced the performance of the LSTM network, indicating that the amplitude of the 

input data carried crucial information that contributed to more precise recognition of gait 

disturbances.  

The LSTM network was trained and tested on all developed datasets: ORIGINAL, STRIDE-

8, STRIDE-5, STRIDE-2, TIME-8, TIME-5, and TIME-2. 
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Figure 5.7 The topology of the developed LSTM network. Marks 𝑥1, 𝑥2, … , 𝑥14 represented 14 input 

feature dimensions, namely GRFN, 𝑎𝑥,𝑦,𝑧 and 𝜔𝑥,𝑦,𝑧 signals from both legs. Labels 𝑦1 and 𝑦2 

corresponded to two groups being classified. 

5.2.3.3.2. Convolutional neural network 

The second DL model was designed using the CNN model. The final network consisted of 14 

convolutional blocks of the same architecture, marked as 𝐶1, 𝐶2, … 𝐶14. The convolutional blocks were 

fed with the individual dimensions of the 14-dimensional input data, corresponding to the normalized 

ground reaction force GRFN, three accelerometer axes 𝑎𝑥,𝑦,𝑧 and three gyroscope axes 𝜔𝑥,𝑦,𝑧 from 

both legs. Each convolutional block comprised two parts:  

1) convolutional layer (CONV-1) with 16 filters size of 1x10 samples; followed by a batch 

normalization layer, ReLU activation function layer, and a max-pooling layer (POOL-1) with 

a pooling patch size of 1x2 samples;  

2) convolutional layer (CONV-2) with 32 filters size of 1x10 samples, followed by a batch 

normalization layer, ReLU activation function layer, and a max-pooling layer (POOL-2) with 

a pooling patch size of 1x2 samples.  

The features learned by the convolutional blocks were merged and fed as the input to the FC 

layer with 100 hidden neurons. A dropout layer with a probability of 0.5 for dropping out the hidden 

units was put after the FC layer, and followed by a softmax function layer. The topology of the 

designed CNN network is presented in Figure 5.8. The batch normalization layer and ReLU activation 

function layers were not illustrated in this Figure to simplify the illustration.  

The same hyperparameters were used, as in the case of the LSTM network. The data was not 

normalized prior to network training and testing. The CNN network was trained and tested on three 

time-based datasets: TIME-8, TIME-5, and TIME-2. 
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Figure 5.8 The topology of the developed CNN network. Marks 𝑥1, 𝑥2, … , 𝑥14 represented 14 input 

feature dimensions, namely GRFN, 𝑎𝑥,𝑦,𝑧 and 𝜔𝑥,𝑦,𝑧 signals from both legs. Labels 𝑦1 and 𝑦2 

corresponded to two groups being classified. Marks C1, C2, … , C14 represented the convolutional 

blocks, which were fed with a corresponding input feature dimension.  

5.2.3.4. Evaluation  

A 5-fold stratified subject-wise cross-validation was used to evaluate the performance of the 

developed models. Firstly, participants from each subject group were randomly split into five folds, 

as equally as possible. This manner of data partitioning assured that data was divided on a subject 

level and that data from one subject was always placed in the same fold. Furthermore, in this way, all 

folds contained data from both subject groups that were observed for a specific classification task.  

The standard 𝑘-fold cross-validation procedure was applied for validating the models. One 

fold (out of 5 folds) was used for testing, whereas the other four folds were applied for training. The 

procedure was rerun five times, each time with a different fold used for testing the models. The results 

obtained for five repetitions were averaged to provide final quantification of the model performance.  

The performance of the developed DL models was evaluated using the Accuracy 𝐴𝑐, 

Sensitivity 𝑆𝑒, and Specificity 𝑆𝑝 metrics, which were calculated following the formulas (5.19)-

(5.21). The Accuracy represented the percentage of the correctly classified walking segments with 

respect to the total number of the observed segments. The Sensitivity measured the proportion of the 

accurately categorized walking segments belonging to the diseased individuals. In contrast, the 

Specificity represented the percentage of the walking segments of the healthy participants that were 

correctly recognized.  



 

 

 

54 

 

5.3. Results 

5.3.1. Data augmentation 

The ORIGINAL dataset comprised 760 non-cropped walking sequences in total, each 

sequence had 14 feature dimensions representing the normalized ground reaction force GRFN, three 

accelerometer axes 𝑎𝑥,𝑦,𝑧 and three gyroscope axes 𝜔𝑥,𝑦,𝑧 from both legs. The initial dataset was 

augmented using two approaches: stride-based and time-based augmentation, which resulted in 6 new 

datasets. The results of the performed augmentation are presented in Table 5.2, separately for different 

datasets and different subject groups.  

Table 5.2 The size of the developed datasets expressed as the number of analysed walking segments, 

and presented for each subject group separately, and in total. 

Dataset 
PD 

[# of segments] 
PDearly 

[# of segments] 
HC 

[# of segments] 
Total 

[# of segments] 

ORIGINAL 520 240 240 760 

STRIDE-8 5,571 2,150 1,113 6,684 

STRIDE-5 7,131 2,870 1,833 8,964 

STRIDE-2 8,691 3,590 2,553 11,244 

TIME-8 8,693 3,542 1,646 10,339 

TIME-5 10,523 4,262 2,366 12,889 

TIME-2 12,083 4,982 3,086 15,169 

PD – Parkinson’s disease patients; PDearly - Patients in the early stage of Parkinson’s disease development; HC – 

Healthy controls; ORIGINAL – Dataset with original non-cropped walking segments; STRIDE-8 – Dataset with 8 strides 

long walking segments; STRIDE-5 – Dataset with 5 strides long walking segments; STRIDE-2 – Dataset with 2 strides 

long walking segments; TIME-8 – Dataset with 8 s long walking segments; TIME-5 – Dataset with 5 s long walking 

segments; TIME-2 – Dataset with 2 s long walking segments.  

In the case of the stride-based datasets, the number of observed strides was uniform for all 

subjects; however, the duration of the walking segments varied between the participants. In the 

STRIDE-8, STRIDE-5, and STRIDE-2 datasets, the shortest segments were 6.7 s, 4.1 s, and 1.6 s 

long, respectively, whereas the longest duration among all walking segments was 24.3 s, 16.9 s, and 

12 s, respectively. Furthermore, the average duration of the walking segments was 9.8 s, 6.1 s, and 

2.4 s, respectively, for these three datasets. In contrast, for the time-based datasets, the duration of 

walking segments was uniform for all subjects, but the number of observed strides varied between 

the subjects. With this augmentation technique, 6.25, 3.9, and 1.6 strides were on average included 

within one walking segment from the TIME-8, TIME-5, and TIME-2 datasets, respectively.  

5.3.2. Model complexity 

The developed CNN model, with 5,362,848 parameters in total, was more complex compared 

to the LSTM network, which required training of only 56,301 parameters. 
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5.3.3. Model performance  

The results obtained for the LSTM network are presented in Table 5.3. All datasets gave 

comparable results for the recognition of all PD patients. The accuracy varied for just a few percent, 

with slightly better results in favour of the time-based datasets compared to the stride-based datasets. 

The ORIGINAL dataset gave the worst results, showing that a lower number of walking segments 

for training and testing had a significant impact on the model performance. The TIME-8 dataset 

provided the best results, with 𝐴𝑐, 𝑆𝑒, and 𝑆𝑝 of 91.63%, 94.58%, and 75.15%, respectively (shown 

in the grey-shaded cells in Table 5.3, third column).  

Table 5.3 Classification results for the LSTM network, presented through 𝐴𝑐, 𝑆𝑒, and 𝑆𝑝 metrics for 

all developed datasets.  

Dataset Metric PD-HC PDearly-HC 

ORIGINAL 

𝐴𝑐 [%] 85.26 80.00 

𝑆𝑒 [%] 89.39 77.50 

𝑆𝑝 [%] 76.25 82.50 

STRIDE-8 

𝐴𝑐 [%] 88.28 71.84 

𝑆𝑒 [%] 90.19 68.56 

𝑆𝑝 [%] 75.75 78.38 

STRIDE-5 

𝐴𝑐 [%] 89.55 66.04 

𝑆𝑒 [%] 91.63 59.11 

𝑆𝑝 [%] 79.05 74.58 

STRIDE-2 

𝐴𝑐 [%] 87.20 67.04 

𝑆𝑒 [%] 91.30 59.10 

𝑆𝑝 [%] 72.65 76.66 

TIME-8 

𝐴𝑐 [%] 91.63 74.29 

𝑆𝑒 [%] 94.58 71.77 

𝑆𝑝 [%] 75.15 79.59 

TIME-5 

𝐴𝑐 [%] 91.20 73.94 

𝑆𝑒 [%] 92.51 66.53 

𝑆𝑝 [%] 76.57 88.53 

TIME-2 

𝐴𝑐 [%] 87.60 71.46 

𝑆𝑒 [%] 90.67 66.84 

𝑆𝑝 [%] 76.69 76.20 

PD-HC – Classification of all Parkinson’s disease patients and healthy controls; PDearly-HC – Classification of patients 

in the early stage of Parkinson’s disease development and healthy controls; ORIGINAL – Dataset with original non-

cropped walking segments; STRIDE-8 – Dataset with 8 strides long walking segments; STRIDE-5 – Dataset with 5 strides 

long walking segments; STRIDE-2 – Dataset with 2 strides long walking segments; TIME-8 – Dataset with 8 s long 

walking segments; TIME-5 – Dataset with 5 s long walking segments; TIME-2 – Dataset with 2 s long walking segments; 

𝐴𝑐  – Accuracy; 𝑆𝑒 – Sensitivity; 𝑆𝑝 – Specificity.  

 

The early PD recognition confirmed that the time-based datasets outperformed the stride-

based datasets. Furthermore, longer walking segments contributed to a more accurate classification 
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of two subject groups. Contrary to the result obtained for the first classification task, the ORIGINAL 

dataset provided the best results, with 𝐴𝑐, 𝑆𝑒, and 𝑆𝑝 of 80.00%, 77.50%, and 82.50%, respectively 

(shown in the grey-shaded cells in Table 5.3, last column). This result indicated that the length of the 

walking segment had a significant impact on the performance of the model, even though in the latter 

case, the notably smaller number of walking segments was used for training and testing.  

Furthermore, the ratio of the calculated 𝑆𝑒 and 𝑆𝑝 parameters differed for the two 

classification tasks. In the case of PD-HC classification, higher sensitivity and lower specificity were 

achieved. On the other hand, early PD recognition resulted in higher specificity and lower sensitivity.  

For the PD-HC classification task, the CNN model gave the best result in the case of the 

TIME-8 dataset with 𝐴𝑐, 𝑆𝑒, and 𝑆𝑝 of 92.49%, 94.15%, and 83.93%, respectively, followed by the 

TIME-5 dataset with 𝐴𝑐, 𝑆𝑒, and 𝑆𝑝 of 91.21%, 95.50%, and 74.16%, respectively, and the TIME-2 

dataset with 𝐴𝑐, 𝑆𝑒, and 𝑆𝑝 of 88.47%, 94.23%, and 65.25%, respectively. Similar results were 

obtained for the PDearly-HC classification - the TIME-8 dataset provided the best results with 𝐴𝑐, 

𝑆𝑒, and 𝑆𝑝 of 83.26%, 85.18%, and 75.65%, respectively, followed by the TIME-5 dataset with 𝐴𝑐, 

𝑆𝑒, and 𝑆𝑝 of 80.27%, 85.01%, and 77.67%, respectively, and the TIME-2 dataset with 𝐴𝑐, 𝑆𝑒, and 

𝑆𝑝 of 77.43%, 81.29%, and 76.98%, respectively.  

The best classification results of the two models are compared in Table 5.4. For both 

classification tasks, CNN gave better results compared to the LSTM network (shown in the grey-

shaded cells in Table 5.4).  

Furthermore, the analysis of the obtained results showed that the models did not perform 

poorly for individual subjects but for different walking segments (no matter to whom they belonged), 

indicating that no subject influenced the performance of the networks.   

Table 5.4 The best classification results for the LSTM and CNN models, presented through 𝐴𝑐, 𝑆𝑒, 

and 𝑆𝑝 metrics. 

Metric 
PD-HC PDearly-HC 

LSTM CNN LSTM CNN 

𝑨𝒄 [%] 91.63 92.49 80.00 83.26 

𝑺𝒆 [%] 94.58 94.15 77.50 85.18 

𝑺𝒑 [%] 75.15 83.93 82.50 75.65 

PD-HC – Classification of all Parkinson’s disease patients and healthy controls; PDearly-HC – Classification of patients 

in the early stage of Parkinson’s disease development and healthy controls; LSTM – Long short-term memory network; 

CNN – Convolutional neural network; 𝐴𝑐 – Accuracy; 𝑆𝑒 – Sensitivity; 𝑆𝑝 – Specificity.  

5.3.4. Influence of walking conditions on networks’ performance 

The influence of the walking conditions on the performance of the developed deep networks 

was also explored. It was evaluated as the percent of walking segments that were correctly classified 

with regard to the total number of walking segments that were observed for each walking condition. 

The results are shown in Figure 5.9, for both classification tasks, both models, and three time-based 

datasets.  
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Figure 5.9 The influence of the walking conditions on the performance of the developed DL models 

for PD recognition (left) and early PD recognition (right), expressed as a percent of accurately 

classified walking segments per each walking condition.  

The walking segments recorded during the COGNITIVE and COMBINED tasks were in 

larger percent correctly classified compared to the BASE and MOTOR tasks. These results were 

confirmed for both classification tasks and all three datasets. The differences between the tasks were 

less expressed for the PD-HC classification task. In contrast, this discrepancy was up to 15% for the 

classification of healthy subjects and early PD patients. For most of the observed cases, the walking 

segments recorded during the MOTOR task were in a smaller percent accurately classified compared 

to other tasks. 

5.4. Discussion 

In this Chapter, a new method was developed and presented for providing objective and 

automatic recognition of Parkinson’s disease patients. The particular focus was given to the 

recognition of PD in the early stage of disease development. The developed support utilized 

nonknowledge-based reasoning. For that purpose, DL models, more specifically long short-term 

memory network and convolutional neural network, were designed and fed with gait data. The 

networks were developed and evaluated for two classification tasks, including classification of all PD 

patients and healthy controls, and classification of early PD patients and healthy subjects. It was also 

examined how the duration of the walking segments, augmentation strategy, and walking conditions 

influenced the performance of these models.  

Gait data was recorded with a wearable wireless inertial and force sensor system. The used 

sensors are lightweight, small, affordable, and can be applied at any time and place. These important 

properties make them appropriate for clinical practice that requires a fast and accurate diagnostic 

assessment of a large number of patients, but also for applications in the everyday environment and 

patients’ self-management.  

The processed gait data had 14 feature dimensions: the normalized ground reaction force 

GRFN, three accelerometer axes 𝑎𝑥,𝑦,𝑧 and three gyroscope axes 𝜔𝑥,𝑦,𝑧 from both legs. Two 
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augmentation strategies were applied to the original walking sequences: the stride and time-based 

augmentation techniques. Six new datasets were developed, and together with the dataset comprising 

the original walking sequences, were fed to the designed deep learning models. 

LSTM network represents a special type of recurrent neural network that can find long term 

dependencies in time-series data. In this study, a LSTM model was developed and validated using all 

seven datasets. In the case of recognition of all PD patients, time-based datasets provided slightly 

better results compared to the ORIGINAL and stride-based datasets. The TIME-8 dataset provided 

the best results with 𝐴𝑐, 𝑆𝑒, and 𝑆𝑝 of 91.63%, 94.58%, and 75.15%, respectively (shown in the third 

column, the grey-shaded cells in Table 5.3). Although walking segments were sorted by their length 

prior to the model training and testing, the LSTM network required that data comprised in one mini-

batch was equalized in its length during the learning process. In the case of stride-based datasets, this 

could cause some information loss and, therefore poorer performance of models that were developed 

using these datasets. In contrast, recognition of the early-stage PD was more affected by the length 

of the walking segments. The results showed increased accuracy using longer walking segments for 

training and testing. Among the seven datasets, the best result was obtained for the ORIGINAL 

dataset (shown in the last column, grey cells in Table 5.3) with 𝐴𝑐, 𝑆𝑒, and 𝑆𝑝 of 80.00%, 77.50%, 

and 82.50%, respectively. This dataset comprised the whole non-cropped walking segments, and 

therefore the fewest samples for training and testing (as shown in Table 5.2). Furthermore, the ratio 

between the sensitivity and specificity parameters showed some discrepancy between the two 

classification tasks, with lower sensitivity and higher specificity for the early PD recognition. In the 

latter case, some patients had less prominent or almost undeveloped gait disturbances, which could 

cause their walking segments to be confused with those belonging to healthy individuals.  

A deep learning model based on convolutional neural networks was also designed. CNN 

represents a powerful technique for the extraction of meaningful representations from two- or one-

dimensional data. Three time-based datasets were fed to the CNN model. The CNN model 

outperformed the LSTM model for both classification tasks. The best result was obtained for the 

TIME-8 dataset (shown in grey cells in Table 5.4) with 𝐴𝑐, 𝑆𝑒, and 𝑆𝑝 of 92.49%, 94.15%, and 

83.93%, respectively for the PD-HC classification task, and 𝐴𝑐, 𝑆𝑒, and 𝑆𝑝 of 83.26%, 85.18%, and 

75.65%, respectively for the PDearly-HC classification task. These results show the high applicability 

of CNN models for PD recognition.  

The gait disturbances represent one of the most incapacitant PD signs; however, this symptom 

is less prominent in the early stage of the disease development. This fact was supported by the results 

obtained in this study, showing that a larger number of strides or longer walking sequences should be 

analysed in order to capture early changes in the gait pattern caused by PD. The CNN network would 

probably provide even better results with data acquired from a larger number of patients due to its 

complexity and ability to process big data. On the other hand, the LSTM network is much simpler, 

and it would probably benefit from longer walking segments, especially for the early PD recognition.  

The influence of the dual-task paradigm was also examined on the ability of the designed 

models to recognize PD. In the literature, the dual-task paradigm is usually applied to examine the 

interplay between gait and cognition [130]. It was shown that it could influence and alter gait patterns 

even in healthy subjects [131], [132]. This effect is even more prominent for PD patients, significantly 

increasing the variability of their gait pattern. The presented results showed that COGNITIVE and 

COMBINED tasks contributed to an accurate recognition of PD in larger percent compared to the 
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BASE and MOTOR walking. In the case of the identification of all PD patients, the differences were 

smaller, indicating that in advanced stages, walking of PD patients is disturbed to the same extent 

regardless of the condition under which the gait was recorded. In contrast, classification of early PD 

patients and healthy controls was influenced a lot more by the dual-task paradigm, showing that tasks 

including some mental occupation while walking (i.e., COGNITIVE and COMBINED) contribute to 

a more accurate early PD recognition (with differences up to 15%). In contrast, walking segments 

recorded during the MOTOR task were accurately classified with the smallest percent, which 

indicated that motor occupation probably altered the gait pattern of both early PD patients and healthy 

individuals.   

Since a small number of subjects were included in the study, a 5-fold stratified subject-wise 

cross-validation was applied for the evaluation of models’ performance to provide meaningful 

interpretations of the obtained results. Subject-wise cross-validation indicated that all data from one 

subject was put in the same fold. Therefore, during the testing phase, the predictions were made for 

data belonging to a subject that was previously unseen by the models. This type of evaluation is 

especially important since deep learning models can pick up some complex predictors, which in the 

case of a record-wise validation, could capture a relationship between the data and identity of the 

subjects and provide high but unrealistic accuracy [133].  

Other gait databases were also applied in the literature for recognizing PD using deep learning 

algorithms. Some systems showed high accuracy results in this field [63], [95]; however, none of 

these studies considered early PD identification, and to the knowledge of the author, there are no 

other available results for the early PD recognition using deep learning models and gait data recorded 

with wearable, wireless sensors. Furthermore, both developed models outperformed deep learning 

solutions that are using other types of data for recognizing PD in the early stage [68].  
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6. Amplitude analysis of repetitive movements using 

wearable sensors 

In clinical practice, several motor tests (defined within the UPDRS scale) are applied for 

assessing the severity of bradykinesia symptom, including finger-tapping, hand opening/closing, 

hand pronation/supination, and toe-tapping (or foot-tapping) [41], [42]. As part of the test, patients 

are instructed to perform a specified movement with the biggest amplitude and, as fast as possible, 

for some number of repetitions, e.g., ten times [59], [60], or for some short time interval, typically 

10-15 s [58], [72], [81], depending on the version of the UPDRS scale that is followed. Afterwards, 

these movements are evaluated with a score that is given based on the specifically defined 

instructions. The evaluation criteria are the same for these four movements: neurologists observe the 

amplitude, speed, amplitude decrement, and the number of occasional interruptions that may occur 

during the test. The only difference in the evaluation process between these four tests relates to the 

way the amplitude of these movements is observed. Therefore, in order to provide an objective 

analysis and quantification of these movements, firstly, the amplitude of these movements should be 

determined.  

In this Chapter, the method for capturing and calculating the amplitude of the abovementioned 

hand and leg movements is defined and presented for each movement separately. The method is 

demonstrated on the example of one subject.  

6.1. Measurement protocol 

Subjects are told to sit comfortably in the chair, with their back put against the chair back. 

They are instructed to perform four motor tasks as following.  

Finger-tapping (FT) test: Subject’s hand is placed in front of the subject’s body, flexed, and 

supported at the elbow. Each recording contains a sequence of two tasks: 1) fingers are firmly closed 

and perform a 3D circular or zig-zag movement in the duration of 3-5 s, which is later used for auto-

calibration; 2) finger-tapping movement in the duration of 15 s or for 10 repetitions. Finger-tapping 

movement starts and ends with fingers closed in a “zero” position. The subject is instructed to tap 

his/her index finger and thumb as fast as with the largest amplitude possible. One cycle of the 

movement is presented in Figure 6.1. 
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Figure 6.1 Presentation of the repetitive finger-tapping test: the fingers are closed in a “zero” position 

(left), and the fingers are opened with the highest possible aperture (right).  

Hand opening-closing (HOC) test: Subject’s hand is placed in front of the subject’s body, flexed 

and supported at the elbow, so the palm faces the examiner. Each recording contains a sequence of 

two tasks: 1) palm is firmly closed and performs a 3D circular or zig-zag movement in the duration 

of 3-5 s, which is later used for auto-calibration; 2) hand opening-closing movement in the duration 

of 15 s or for 10 repetitions. HOC movement starts and ends with the hand closed in a fist (in a “zero 

position”). The subject is instructed to open and close his/her hand as fast as possible, with the largest 

possible amplitude. One cycle of the movement is presented in Figure 6.2. 

 

Figure 6.2 Presentation of the repetitive hand opening/closing test: the hand is closed in a “zero” 

position (left), and the hand is opened with the highest possible aperture (right).  

Hand pronation-supination (HPS) test: Subject’s hand is placed in front of the subject’s body, 

extended with a palm down at the initial position. Each recording contains a sequence of hand 
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pronation-supination movements in the duration of 15 s or for 10 repetitions. HPS movement starts 

and ends with palm oriented down at full supination. The subject is instructed to rotate palm up and 

down alternatively, as fast and as fully as possible. One cycle of the movement is presented in Figure 

6.3. 

 

Figure 6.3 Presentation of the repetitive hand pronation/supination test: the hand is rotated to full 

supination (left), and a hand is rotated to full pronation (right).  

Toe-tapping (TT) test: Subject’s feet are placed in front of the subject’s body, slightly bent at the 

knee with the heel placed on the ground, while sitting in a straight-back chair. Each recording contains 

a sequence of toe-tapping movement in the duration of 15 s or for 10 repetitions. TT movement starts 

and ends with the complete foot on the ground (both toes and heel are placed on the ground). The 

subject is instructed to tap his/her toes as fast as with the largest amplitude possible, while holding 

the heel on the ground. One cycle of the movement is presented in Figure 6.4.  

 

Figure 6.4 Presentation of the repetitive toe-tapping test: the foot is entirely placed on the ground 

(left), and the toes are lifted as high as possible while holding the heel on the ground (right). 
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6.2. Measurement system 

A wireless inertial sensor system is used for recording the four repetitive hand and leg 

movements. The system comprises two IMUs, each with a 3-axial gyroscope L3G4200 

(STMicroelectronics, Geneva, Switzerland) [75]. IMUs are connected to their sensor-control units 

(SCUs), placed on subjects’ forearm during the experiment. SCUs acquire and wirelessly transmit 

data to a remote computer. A custom-made software, developed in LabWindows/CVI 9.0 (National 

Instruments, Austin, Texas, USA) controls data acquisition. The position of the IMUs depends on the 

performed test, and it is organized in the following way: 

1) FT test: IMUs are positioned over the fingernails of the index finger and thumb. The adopted 

orientation of the local coordinate systems of the sensors is presented in Figure 6.1.  

2) HOC test: One IMU is positioned over the fingernail of the middle finger, whereas the other IMU 

is mounted on the same hand, placed over the middle of the 3rd metacarpal bone. The adopted 

orientation of the local coordinate systems of the sensors is presented in Figure 6.2.  

3) HPS test: One IMU is positioned over the fingernail of the middle finger. The adopted orientation 

of the local coordinate system of the sensor is presented in Figure 6.3.  

4) TT test: One IMU is positioned over the footbridge. The adopted orientation of the local 

coordinate system of the sensor is presented in Figure 6.4.  

IMUs are miniature (10x12mm) and lightweight (10 g), which allows subjects to perform the 

specified movements in a natural manner.  

6.3. Calculation of movement amplitude 

The method for calculating the amplitude of the repetitive movements is described for each 

movement individually in the following sections. 

6.3.1. Finger-tapping test 

The FT movement amplitude is defined as the aperture of the fingers during the repetitive 

finger-tapping. It is expressed as the angle of the relative rotation of the thumb and index finger. This 

movement is very complex, and although the precise instructions are provided within the clinical 

scale, patients may perform it with large inter-variability (rotations and translations of different finger 

joints) [134]. Their poor understanding of the given instructions and expressed disease symptoms can 

influence their ability to execute this movement correctly. Because of that, the FT movement is 

observed and analysed in a simplified manner: it is approximated as the scissor-like movement and 

observed only in terms of rotations of whole fingers (ignoring the movements of the finger joints) 

[134]. This approximation is in compliance with other suggested solutions in the literature [135].  

6.3.1.1. The angle of the relative rotation of fingers  

The approach for calculating the angle of the fingers’ relative rotation is introduced and 

described in [134]. The gyroscope sensors positioned on the fingers provide a measure of angular 

velocities in 3-dimensional space with respect to their local Cartesian coordinate systems. The local 

x-axis of the sensors is directed along the axis of the corresponding finger, whereas the y-axis and z-
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axis were directed transversally and perpendicular to the surface of the nail, respectively (as shown 

in Figure 6.1).  

By placing the two sensors on the thumb and index finger, their local Cartesian coordinate 

systems are relatively rotated to one another (Figure 6.1). In order to calculate the relative movement 

of the fingers, it is necessary to determine the mutual position of the sensors upon their placement on 

the fingers. Due to that fact, the auto-calibration sequence is performed at the beginning of each 

recording sequence [134]. During the short auto-calibration, fingers are firmly pressed against each 

other while performing fast circular or zig-zag movements in 3-dimensional space. In this way, a 

short sequence with very small or no relative motion between the fingers is obtained. Angular velocity 

vectors of two sensors are equal during the auto-calibration sequence [134]: 

 𝜔1⃗⃗⃗⃗  ⃗ = 𝜔2⃗⃗⃗⃗  ⃗ = �⃗⃗�  (6.1) 

where 𝜔1⃗⃗⃗⃗  ⃗ and 𝜔2⃗⃗⃗⃗  ⃗ represent vectors of the angular velocity of the thumb and index finger sensors, 

respectively. Since the Cartesian axes of these two sensors are not parallel, components of the angular 

velocity differ between the two sensors [134].  

The relative movement is observed from the index finger coordinate system since the index 

finger performed significantly larger swings than the thumb. In addition, it is shown that in such 

cases, signal processing is more numerically stable [134]. In order to transform components of the 

angular velocity of the thumb into the index finger coordinate system, a rotational matrix [𝑹] was 

introduced [136]: 

 [

𝜔2𝑥

𝜔2𝑦

𝜔2𝑧

] = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] [

𝜔1𝑥

𝜔1𝑦

𝜔1𝑧

] (6.2) 

where (𝜔2𝑥, 𝜔2𝑦, 𝜔2𝑧) and (𝜔1𝑥, 𝜔1𝑦, 𝜔1𝑧) represent components of the angular rotation of the thumb 

and index finger sensors, respectively, whereas 𝑟𝑖𝑗 , 𝑖, 𝑗 = 1,2,3 represent elements of the rotational 

matrix [𝑹]. The matrix should be time-invariant during the calibration process. For each time step, 

connections between the components of 𝜔1⃗⃗⃗⃗  ⃗ and 𝜔2⃗⃗⃗⃗  ⃗ are described with three relations, each involving 

three elements of the rotational matrix [𝑹]. The goal of the auto-calibration is to estimate the elements 

of the rotational matrix and approximate the initial relative rotation of these two local coordinate 

systems. By taking the components of 𝜔1⃗⃗⃗⃗  ⃗ and 𝜔2⃗⃗⃗⃗  ⃗ at three different time steps, a system of three linear 

equations can be formed and used for computation of the matrix elements [134]. Unfortunately, there 

are several problems with this approach. Firstly, these equations could be ill-conditioned. Besides, 

the obtained matrix may not be orthonormal because of the sensor imperfections, which would require 

additional processing [134]. 

There are several alternative solutions to this problem. This method implements the procedure 

based on the Euler angles since it represents a more physically understandable and intuitive approach 

compared to quaternions [134]. Transformation of one Cartesian coordinate system to another can be 

performed by three subsequent rotations [136], as shown in Figure 6.5. The angles of these three 

rotations represent the Euler angles.  



 

 

 

65 

 

The transformation of the coordinate system (𝑥1, 𝑦1,𝑧1) to the other coordinated system 

(𝑥2, 𝑦2,𝑧2) starts with a counter-clockwise rotation about the 𝑧1-axes for an angle 𝜙. The resulting 

coordinate system is marked with (𝑥1
′ , 𝑦1

′ , 𝑧1
′). Afterwards, the new coordinate system is rotated 

counterclockwise about the 𝑥1
′ -axes for an angle 𝜃, which again results with another coordinate 

system, later referred to as (𝑥1
′′, 𝑦1

′′, 𝑧1
′′). In the last rotation, the second intermediate coordinate 

system is rotated counterclockwise about the 𝑧1
′′-axes for the angle 𝜓. With this final rotation, a 

desired coordinate system (𝑥2, 𝑦2,𝑧2) is obtained. Therefore, the Euler angles completely describe the 

rotation of the coordinate system (𝑥2, 𝑦2,𝑧2) with respect to the coordinate system (𝑥1, 𝑦1,𝑧1) [136].  

𝑧1, 𝑧1
′  

𝑦1
′  

𝑦1 

𝑥1
′  𝑥1 𝜙 

𝑦1 𝑦1 

𝑥1 𝑥1 

𝑧1 𝑧1 

𝑧2 

𝑦2 

𝜙 

𝜃  𝜃  

𝑥2 

𝑦1
′ ′  

𝑥1
′′  

𝑧1
′′  

𝜙 

𝜓 

 
Figure 6.5 Rotations that are defining the Euler angles. 

In further annotation, the matrix describing the complete transformation of the coordinate 

system will be marked with [𝑹]. The matrix [𝑹] is equal to the product of three matrices, which 

correspond to the three rotations. The first rotation is described by [136]: 

 [𝒙𝟏
′ ] = [𝑹𝝓][𝒙𝟏] (6.3) 

where 𝒙𝟏
′  and 𝒙𝟏 represent the column matrices. Similarly, it is performed for the other two rotations 

[136]: 

 [𝒙𝟏
′′] = [𝑹𝜃][𝒙𝟏

′ ] (6.4) 

and 

 [𝒙𝟐] = [𝑹𝝓][𝒙𝟏
′′] (6.5) 

The complete transformation is described with the following equation [136]: 
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 [𝒙𝟐] = [𝑹][𝒙𝟏] = [𝑹𝝓][𝑹𝜃][𝑹𝝓][𝒙𝟏] (6.6) 

The matrices [𝑹𝝓], [𝑹𝜃] and [𝑹𝝓] have the form described in the Equations (6.7)-(6.9) [136]: 

 [𝑹𝝓] = [
cos𝜙 sin𝜙 0

− sin𝜙 cos𝜙 0
0 0 1

] (6.7) 

 

 [𝑹𝜽] = [
1 0 0
0 cos 𝜃 sin 𝜃
0 −sin 𝜃 cos 𝜃

] (6.8) 

 

 [𝑹𝜓] = [
cos𝜓 sin𝜓 0

−sin𝜓 cos𝜓 0
0 0 1

] (6.9) 

 

Based on the Equations (6.7)-(6.9), the complete transformation matrix equal to [136]: 

[𝑹]

= [

cos𝜓 cos𝜙 − cos 𝜃 sin 𝜓 sin𝜙 cos𝜓 sin𝜓 + cos 𝜃 cos𝜓 sin𝜙 sin𝜓 sin 𝜃
− sin𝜙 cos𝜙 − cos 𝜃 sin𝜓 cos𝜙 −sin𝜓 sin𝜓 + cos 𝜃 cos𝜓 cos𝜓 cos𝜓 sin 𝜃

sin 𝜃 sin𝜙 − sin 𝜃 cos𝜓 cos 𝜃
] 

(6.10) 

This matrix is automatically orthonormal. In order to calculate angles 𝜙, 𝜃, and 𝜓, based on 

the Equations (6.2) and (6.10), an optimization function is obtained [134]: 

𝑓(𝜙, 𝜃, 𝜓) = (𝜔2𝑥 − (𝑟11𝜔1𝑥 + 𝑟12𝜔1𝑦 + 𝑟13𝜔1𝑧))
2

+ (𝜔2𝑦 − (𝑟21𝜔1𝑥 + 𝑟22𝜔1𝑦 + 𝑟23𝜔1𝑧))
2

+ (𝜔2𝑧 − (𝑟31𝜔1𝑥 + 𝑟32𝜔1𝑦 + 𝑟33𝜔1𝑧))
2
 

(6.11) 

This function is minimized using an algorithm that implements the Nelder-Mead simplex (direct 

search) method [137]. In this way, the estimation of the angles 𝜙, 𝜃, and 𝜓 is performed and 

afterwards, the initial rotational matrix is calculated.  

As already mentioned, each trial begins with the auto-calibration sequence, which is recorded 

prior to the finger-tapping sequence. Therefore, the initial rotational matrix is calculated for each 

recording individually and then applied for the finger-tapping sequence, which is captured 

immediately after the auto-calibration sequence.  

The relative rotation of the thumb with respect to the index finger is calculated as [134]: 

 𝜔𝑟⃗⃗ ⃗⃗  = 𝜔1⃗⃗⃗⃗  ⃗ − 𝜔2⃗⃗⃗⃗  ⃗ (6.12) 

By observing the Equations (6.2) and (6.12), the relative rotation 𝜔𝑟⃗⃗ ⃗⃗   is given as [134]: 

 [

𝜔𝑟𝑥

𝜔𝑟𝑦

𝜔𝑟𝑧

] = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] [

𝜔1𝑥

𝜔1𝑦

𝜔1𝑧

] − [

𝜔2𝑥

𝜔2𝑦

𝜔2𝑧

] (6.13) 
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Since, two local coordinate systems additionally rotate relative one to another during the FT 

movement, the rotational matrix [𝑹] is updated for each time step, as follows [134]:  

[𝑹𝒏] = [
cos Δ𝜙 −sin Δ𝜙 0
sin Δ𝜙 cos Δ𝜙 0

0 0 1

] [
cos 𝛥𝜃 0 sin 𝛥𝜃

0 1 0
−sin𝛥𝜃 0 cos 𝛥𝜃

] [
1 0 0
0 cos 𝛥𝜓 − sin𝛥𝜓
0 sin 𝛥𝜓 cos 𝛥𝜓

] [𝑹𝒏−𝟏] (6.14) 

where [𝑹𝒏−𝟏] represents the rotational matrix at the previous time step, and Δ𝜙 = 𝜔𝑟𝑥Δ𝑡, Δ𝜃 =

𝜔𝑟𝑦Δ𝑡 and Δ𝜓=𝜔𝑟𝑧Δ𝑡 represent the instantaneous rotations about the three axes of the index finger 

coordinate system. As shown in the Equation (6.14), relative rotation of the fingers is described with 

the rotations about three axes of the index finger coordinate system. However, in order to provide a 

simpler and more understandable representation, the FT amplitude is defined as the most dominant 

rotation of the relative motion of the fingers 𝜔𝑟𝑑 [134]. For most cases, it is expected that the 

dominant rotation is about the 𝑦2 axis of the index finger coordinate system. Otherwise, the coordinate 

system is rotated, so the dominant rotation is about a new 𝑦2 axis. The angle of the relative rotation 

𝛼 is calculated by integrating the dominant component of the relative angular velocity 𝜔𝑟𝑑 in a time-

stepping procedure [134].  

In some cases, the drift caused by integration is too big, which requires the approximation of 

the angle using some other approach. In the literature, it is shown that the elements in the second row 

of the matrix [𝑹] remain almost constant for all time steps [134]. Hence, in order to find the relative 

rotation of the fingers, it is enough to use the initial rotation matrix and to project the 𝜔1⃗⃗⃗⃗  ⃗ on the 𝑦2 

axis: 

 𝜔𝑟𝑑 ≈ 𝑟21𝜔1𝑥 + 𝑟22𝜔1𝑦 + 𝑟23𝜔1𝑧 (6.15) 

Once again, the angle of the relative rotation 𝛼 is calculated by integrating the angular velocity 

𝜔𝑟𝑑 in a time-stepping procedure. This method implements the second approach for the cases where 

drift exceeds the value of 40 degrees.  

By integrating the dominant component of the angular velocity 𝜔𝑟𝑑, a drift occurs regardless 

of the approach that is used for calculating the relative rotation of the fingers. The procedure for drift 

removal is described in the next section.  

6.3.1.2. Segmentation of movements to individual cycles 

 In order to remove the drift from the calculated angle sequence, it is necessary to detect 

moments when fingers are closed, i.e., when the angle between fingers equals to “zero.” Because of 

that, the segmentation of the finger-tapping movement is performed.  

One finger-tapping cycle (or tap) consists of two phases: fingers opening and fingers closing. 

During the opening phase, fingers are moving away from each other. This phase ends when fingers 

form the highest aperture for that cycle. Afterwards, the closing phase begins, and the fingers are 

moving towards each other. The closing phase ends with fingers closed in a “zero posture.”  

Ideally, the dominant component of the relative angular velocity 𝜔𝑟𝑑 of the finger-tapping 

movement would look like a periodic sine wave. The 𝜔𝑟𝑑 signal passes through a “zero” value two 

times per each cycle: when fingers are closed in a “zero posture,” and when fingers briefly stop after 
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forming the highest aperture, so they could start moving in the opposite direction. Based on the 

adopted orientation of the index-finger coordinate system (as shown in Figure 6.1), the peaks 

correspond to maximum closing angular velocity, whereas the signal valleys represent the maximum 

angular velocity during the opening phase. In an ideal movement, fingers are opening and closing 

with the same angular velocity, and the movement is smooth. However, the real finger-tapping 

movement is different.  

An example of the dominant component of the relative angular velocity 𝜔𝑟𝑑 (with marked 

finger-tapping phases) is presented in Figure 6.6. As shown, the maximum opening and closing 

angular velocities may differ. The rising edge of the signal is smooth, and there are no setbacks around 

zero, which means that fingers smoothly pass from the opening to the closing phase after achieving 

the maximum aperture for that cycle. On the other hand, during the closing phase, there is a short 

period when the signal stays around the “zero” value or stays in the “zero posture” (marked with a 

red ellipse in Figure 6.6). During that short period, fingers are closed, and they may slightly slip over 

one another. This effect is more visible for faster movements when subjects tap their fingers very fast 

and make a significant impact when closing. Although this movement pattern may be altered to some 

smaller or larger extent from subject to subject (slower and less smooth movements, longer or shorter 

“zero posture” segments, and others), this division into phases is maintained for all people.  

 

Figure 6.6 Presentation of the short 𝜔𝑟𝑑 sequence describing the finger-tapping movement, with 

marked movement phases. Samples corresponding to maximum closing and opening angular 

velocities (per one tap) are labelled with red stars. The red dot marks a moment when fingers achieve 

maximum angle or aperture during one tapping cycle, and red ellipse shows a short period during one 

cycle when fingers are closed in a “zero posture.” 

In order to provide automatized segmentation of signals, the observed signal is smoothed 

using a moving average filter with an adaptive span [138]. The span is calculated as (𝑓𝑠/𝑓0)/2, where 

𝑓𝑠 represented the sampling frequency, and 𝑓0 frequency is the basic tapping frequency extracted from 

the frequency spectrum. In this way, every signal is smoothed based on its intrinsic properties. The 

smoothed angular velocity is then normalized with respect to its maximum value and later referred to 

as 𝜔𝑟𝑑−𝑠𝑚𝑜𝑜𝑡ℎ−𝑁 (an example is shown in Figure 6.7). Two thresholds are applied to the normalized 
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filtered signal, valued at 0.1 and -0.1, respectively. All samples valued above 0.1 are declared as the 

areas where signal peaks should be located. A local maximum within one interconnected area is 

extracted from the original signal. The time marker indicating the maximum closing angular velocity 

(per one tap) is defined as the index of the sample at which this local maximum value is detected (red 

circles in Figure 6.7). The procedure is repeated for all interconnected areas.  

 

Figure 6.7 Detection of markers indicating the maximum opening and closing angular velocity and 

“zero posture” moments per one tap. The dominant component of the relative angular velocity 𝜔𝑟𝑑 

is normalized for the sake of the presentation and shown with a solid black line. The normalized 

smoothed angular velocity 𝜔𝑟𝑑−𝑠𝑚𝑜𝑜𝑡ℎ−𝑁 is represented with dark grey dashed line. Light grey 

dashed vertical lines mark areas where smoothed angular velocity takes values below -0.1 or above 

0.1 value. Red circles and squares mark moments where angular velocity achieves its maximum value 

during the closing and opening phase, respectively. Red crosses represent “zero posture” markers.  

Time markers representing the maximum closing angular velocity (per one tap) are extracted 

using the same procedure, by finding a local minimum within each interconnected area where the 

normalized smoothed angular velocity 𝜔𝑟𝑑−𝑠𝑚𝑜𝑜𝑡ℎ−𝑁 is below the -0.1 threshold (red squares in 

Figure 6.7). “Zero posture” markers (indicating moments when fingers are closed) are extracted using 

the maximum closing and opening angular velocity time markers. They are defined in the samples at 

which the normalized smoothed angular velocity 𝜔𝑟𝑑−𝑠𝑚𝑜𝑜𝑡ℎ−𝑁 passes through a “zero” value for the 

first time between each two succeeding maximum closing and opening angular velocity time markers 

(red crosses in Figure 6.7). The sequence of extracted “zero posture” time markers is complemented 

with two samples representing the beginning and end of the movement sequence.  

Time markers representing “zero posture” moments are applied for the drift removal. 

Polynomial approximation of the third order is fitted through the obtained time markers and 

subtracted from the drifted angle sequence. 
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6.3.2. Hand opening/closing test 

The HOC movement amplitude is defined as the aperture of the hand during the repetitive 

hand opening-closing. It is expressed as the angle of the relative rotation of the fingers and palm. This 

movement is even more complex than the FT movement. Hand opening-closing requires movement 

of all fingers, including rotations and translation of different joints. Besides, fingers may open and 

close inconsistently. Because of that, the following simplification of the movement is performed: all 

fingers are moving together and in the same manner, and HOC movements are observed only in terms 

of rotations of palm and whole fingers (ignoring the movements of the finger joints).  

6.3.2.1. The angle of the relative rotation of fingers and palm  

The same procedure for calculating the relative motion of the sensors is applied, as in the case 

of the FT test. The relative motion is observed from the middle-finger coordinate system since fingers 

perform much larger swings than a palm.  

The initial relative position of the sensors (upon their placement) is determined using the auto-

calibration sequence, which is recorded at the beginning of each HOC trial. The calculations are the 

same as for the FT test. The relative angular velocity of the palm with respect to the middle finger is 

observed: 

 𝜔𝑟⃗⃗ ⃗⃗  = 𝜔1⃗⃗⃗⃗  ⃗ − 𝜔2⃗⃗⃗⃗  ⃗ (6.16) 

where 𝜔1⃗⃗⃗⃗  ⃗ and 𝜔2⃗⃗⃗⃗  ⃗ represent the angular velocity vectors of the palm and middle-finger sensor, 

respectively. The dominant component of the relative angular velocity 𝜔𝑟𝑑 is automatically detected 

about the 𝑦2 axis of the index-finger coordinate system and used for further analysis. By integrating 

the 𝜔𝑟𝑑, the angle between the hand and the finger 𝛼 is obtained.  

6.3.2.2. Segmentation of movements to individual cycles 

One hand opening-closing cycle consists of two phases: hand opening and hand closing. The 

cycle starts with the hand closed in a fist (or a “zero posture”). Afterwards, the hand opening phase 

starts – the palm and fingers are moving away from each other. Although fingers perform significantly 

larger swing than a palm, there can be some small backward movement of the palm. The opening 

phase ends with an outstretched hand forming the highest aperture for that cycle. Afterwards, the 

closing phase begins – palm and fingers are moving towards each other. The closing phase ends with 

the hand closed in a fist or “zero posture.”  

The dominant component of the relative angular velocity 𝜔𝑟𝑑 of the ideal hand opening-

closing movement would look like a periodic sine wave. The 𝜔𝑟𝑑 signal passes through a “zero” 

value two times per each cycle: when the hand is closed in “zero posture” and when hand briefly 

stops after forming the highest aperture, so it could start moving in the opposite direction. Based on 

the adopted orientation of the middle-finger coordinate system (as shown in Figure 6.2), the peaks 

correspond to maximum angular velocity during the closing phase, whereas the signal valleys 

represent the maximum opening angular velocity. In an ideal movement, the hand is opening and 

closing with the same angular velocity, and the movement is smooth. However, the real hand opening-

closing movement is different.  
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An example of the dominant component of the relative angular velocity 𝜔𝑟𝑑 with marked 

movement phases is presented in Figure 6.8. The signal has a similar shape with the signal 

representing the finger-tapping movement. The maximum opening and closing angular velocities may 

differ. In the presented case, the rate of change of the angle is larger for the opening phase than for 

the closing phase. The rising edge of the signal is smooth, and there are no setbacks around zero, 

which means that hand smoothly passes from the opening to the closing phase after achieving the 

maximum aperture for that cycle. In contrast, during the closing phase, there is a short period when 

the signal stays around the “zero” value or stays in the “zero posture” (marked with a red ellipse in 

Figure 6.8). During that short period, the hand is closed in a fist. This effect is even more expressed 

than in the case of the finger-tapping movement and more prominent for faster movements, when 

subjects open and close their hand very fast and make a significant impact when closing. Although 

this movement pattern may be altered to some smaller or larger extent from subject to subject (slower 

and less smooth movements, longer or shorter “zero posture” segments, and others), this division into 

phases is maintained for all people.  

 
Figure 6.8 Presentation of the short 𝜔𝑟𝑑 sequence describing the hand opening-closing movement, 

with marked movement phases. Samples corresponding to maximum closing and opening angular 

velocities (per one cycle) are labelled with red stars. The red dot marks a moment when hand achieves 

maximum angle or aperture during one cycle, and red ellipse shows a period during one cycle when 

the hand is closed in a “zero posture.” 

Segmentation is performed in the same manner as for the finger-tapping movement [138]: 

firstly, the signal is smoothed using a span calculated based on the subject’s opening/closing 

frequency. Afterwards, areas with signal peak and valleys are detected. Based on the adopted 

orientation, these peaks and valleys correspond to maximum closing and opening angular velocities 

(per individual cycles), respectively, and the samples at which they are located are extracted as their 

markers. These markers are then used for finding the moments in which hand is closed in “zero 

posture.” These moments are then saved as time markers for movement segmentation or drift 

removal. The third-order polynomial fit is calculated through the extracted markers and removed 

from the drifted angle sequence.  
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6.3.3. Hand pronation/supination test 

The amplitude of the HPS movement is defined as the angle of rotation during the consecutive 

hand pronation and supination movements. It is expressed as the angle of the dominant rotation of 

the hand.  

6.3.3.1. The angle of the hand rotation 

The dominant component of the angular velocity 𝜔1𝑑 is automatically detected from the 

obtained vector of the angular velocity 𝜔1⃗⃗⃗⃗  ⃗ and used for further analysis. The dominant axis is about 

the 𝑧1 axis of the middle-finger sensor. The selected 𝜔1𝑑 is integrated for calculating the angle of the 

hand rotation 𝛼.  

6.3.3.2. Segmentation of movements to individual cycles 

One hand pronation-supination cycle consists of two phases: hand pronation and hand 

supination. The cycle starts with the hand rotated in full supination. Afterwards, the hand pronation 

phase starts – the hand is rotating around the axis oriented along the hand. The pronation phase ends 

with the hand rotated at the highest possible pronation. Afterwards, the supination phase begins and 

ends with hand rotated at full supination.  

The dominant component of the hand angular velocity 𝜔1𝑑 of the ideal hand pronation-

supination movement would look like a periodic sine wave. The 𝜔1𝑑 signal passes through a “zero” 

value two times per each cycle: when the hand is rotated at full supination and when the hand is 

rotated at full pronation. Based on the adopted orientation of the middle-finger coordinate system (as 

shown in Figure 6.3), the peaks and valleys correspond to maximum angular velocity during the 

supination and pronation phases, respectively. In an ideal movement, the hand is rotating with the 

same angular velocity in both directions, and the movement is smooth. However, the real repetitive 

hand pronation-supination movement is different.  

An example of the dominant component of the hand angular velocity 𝜔1𝑑 with marked 

movement phases is presented in Figure 6.9. The maximum angular velocities (marked with red star 

markers in Figure 6.9) may differ while rotating in two opposite directions. When hand stops with 

rotating at full supination or pronation, the hand may pause briefly and even perform a slight shake 

due to its inability to perform instant and smooth change of movement direction (shown with red 

circles in Figure 6.9). Although this movement pattern may be altered to a smaller or larger extent 

from subject to subject (slower and less smooth movements, longer or shorter stops while changing 

the direction of the movements, and others), this division into phases is maintained for all people.  

Segmentation is performed in the same manner as for the previous movements [138]: firstly, 

the signal is smoothed using a span calculated based on the subject’s pronation/supination frequency. 

Afterwards, areas with signal peak and valleys are detected. These peaks and valleys correspond to 

maximum angular velocities during supination and pronation (per individual cycles), respectively, 

and the samples at which they are located represent their markers. These markers are then used for 

finding the moments when the hand is rotated in full supination, which represents the beginning point 

of each HPS movement cycle. These moments are then saved as the time markers for movement 
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segmentation and drift removal. The third-order polynomial fit was calculated through the extracted 

markers and removed from the drifted angle sequence.  

 
Figure 6.9 Presentation of the short 𝜔1𝑑 sequence describing the hand pronation-supination 

movement, with marked movement phases. Samples corresponding to maximum pronation and 

supination angular velocities (per one cycle) are labelled with red stars. Red circles mark moments 

when the hand achieves maximum rotation in one direction. 

6.3.4. Toe-tapping test 

 The TT movement amplitude is defined as the angle that foot forms with the ground while 

holding the heel on the ground and tapping the toes. It is expressed as the angle of the dominant 

rotation of the foot.  

6.3.4.1. The angle of the foot rotation 

The dominant component of the angular velocity 𝜔1𝑑 is automatically detected from the 

obtained vector of the angular velocity 𝜔1⃗⃗⃗⃗  ⃗ and used for further analysis. The dominant axis is about 

the 𝑦1 axis of the foot sensor. The selected 𝜔1𝑑 is integrated for calculating the toe-tapping angle 𝛼.  

6.3.4.2. Segmentation of movements to individual cycles 

One toe-tapping cycle (or tap) consists of two phases: toe lifting and toe lowering. The cycle 

starts with the foot placed entirely on the ground. Afterwards, the toe lifting phases begins – the toes 

are lifted as high as possible while maintaining the heel on the ground. This phase ends with the toes 

lifted as high as possible, forming the highest angle with the ground. Afterwards, the toe lowering 

phase begins and ends when the foot makes full contact with the ground.  

The dominant component of the foot angular velocity 𝜔1𝑑 of the ideal toe-tapping movement 

would look like a periodic sine wave. The 𝜔1𝑑 signal passes through a “zero” value two times per 

each tapping cycle: when toes are lifted as high as possible and when the foot makes full contact with 

the ground. Based on the adopted orientation of the foot coordinate system (as shown in Figure 6.4), 
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the peaks and valleys correspond to maximum angular velocity during the toe lowering and lifting 

phases, respectively. In an ideal movement, toes are tapped with the same angular velocity during 

both cycles, and the movement is smooth. However, the real repetitive toe-tapping movement is 

different.  

An example of the dominant component of the relative angular velocity 𝜔1𝑑 with marked 

movement phases is presented in Figure 6.10. The maximum angular velocities while toe lifting and 

lowering phases (marked with red star markers in Figure 6.10) may differ. The foot smoothly changes 

the movement direction (shown with red dots in Figure 6.10). Although this shape may be altered to 

some smaller or larger extent from subject to subject (slower and less smooth movements, visible 

stop while the foot is in the full contact with the ground, and others), this division into phases is 

maintained for all people.  

 
Figure 6.10 Presentation of the short 𝜔1𝑑 sequence describing the toe-tapping movement, with 

marked movement phases. Samples corresponding to maximum toe lowering and lifting angular 

velocities (per one cycle) are labelled with red stars. The red dots mark moments when foot achieves 

maximum angle during one cycle or when the whole foot is on the ground.  

Segmentation is performed in the same manner as for the previous movements [138]. Firstly, 

the signal is smoothed using a span calculated based on the subject’s toe-tapping frequency. 

Afterwards, areas with signal peaks and valleys are detected. These peaks and valleys correspond to 

maximum angular velocities while the foot is lowering to the ground or lifting to the air (per 

individual cycles), respectively, and the samples at which they are located are extracted as their 

markers. These markers are then used for finding the moments when the foot is entirely placed on the 

ground, which represents the beginning point of each TT movement cycle. These moments are then 

saved as the time markers for movement segmentation and drift removal. The third-order polynomial 

fit was calculated through the extracted markers and removed from the drifted angle sequence.  



 

 

 

75 

 

6.4. Demonstration of the method on the example of one 

subject 

6.4.1. Method 

6.4.1.1. Experiment 

The method for measuring and calculating the amplitude of the repetitive hand and leg 

movements is demonstrated on the example of one healthy subject (Gender: Female, Age: 24). By 

following the previously introduced experimental setup and protocol, four repetitive movements were 

recorded: finger tapping, hand opening/closing, hand pronation/supination, and toe-tapping. In 

addition to regular movements (performed as fast as possible and with the biggest amplitude 

possible), the participant was requested to simulate different bradykinesia related motion 

characteristics that could be seen in patients with PD and related disorders. The simulation scenarios 

included: 1) performing as fast as possible and with the biggest amplitude possible (which 

corresponded to normal movement), 2) performing with smaller amplitudes and/or speed; 3) 

performing with decrementing amplitude; 4) performing with occasional hesitations and/or freezes.  

The participant was introduced to the simulation scenarios and practiced the endangered 

movements a few times before the recording. The tasks were performed in duration of 15 s to obtain 

longer movement sequences for analysis. Four trials were recorded for each hand and each movement. 

Few minutes of rest were given between the consecutive trials.  

6.4.1.2. Instrumentation 

The movements were recorded using the previously described wireless inertial sensor system. 

In addition, the OptiTrack motion capture system (MOCAP) with passive markers (NaturalPoint, 

Inc., Planar Systems, Beaverton, Oregon, USA) was used as the reference system. This system can 

track motions in a 3-dimensional space with a high precision, which makes it suitable for providing 

benchmark data.  

The applied configuration consisted of five Prime x22 cameras (distance resolution: 

±0.15mm). Marker clusters comprising three markers were designed and positioned over the IMUs. 

The local coordinate systems of two recording systems were aligned by placing sensors. The used 

marker clusters were small (bounding box around the marker clusters was 4x6 cm) and lightweight 

(3-4g), so they did not disturb the subject’s performance. The MOCAP system provided the measure 

of movement amplitude, which was expressed as the rotations of the local coordinate system about 

the corresponding axes of the adopted global coordinate system (the laboratory). The rotations were 

described with Euler angles. The obtained measurements were used for comparison with the results 

of the presented method for calculation of the movement amplitude. 

The testing was performed during one day in the Laboratory for eHealth and Biomedical 

Engineering of the Innovation Center, School of Electrical Engineering in Belgrade, following the 

ethical standards of the Declaration of Helsinki. The subject provided written informed consent prior 

to participation in the experiment.  

https://www.google.com/search?rlz=1C1CHBF_enRS734RS734&biw=1536&bih=674&sxsrf=ALeKk02Jvq6Ks5pmJPSP6HHHKOi0xEJNjg:1593547043601&q=optitrack&stick=H4sIAAAAAAAAAOPgE-LUz9U3MLUoNLVQ4tVP1zc0TDY3rioxtEzX0swot9JPzs_JSU0uyczP088vSk_My6xKBHGKrYpLk4ozUzITizJTixexcuYXlGSWFCUmZ-9gZQQA0TxS11YAAAA&sa=X&ved=2ahUKEwiIvN2rqarqAhUDixoKHTU3DA8QmxMoATAeegQICxAD
https://www.google.com/search?rlz=1C1CHBF_enRS734RS734&biw=1536&bih=674&sxsrf=ALeKk02Jvq6Ks5pmJPSP6HHHKOi0xEJNjg:1593547043601&q=optitrack&stick=H4sIAAAAAAAAAOPgE-LUz9U3MLUoNLVQ4tVP1zc0TDY3rioxtEzX0swot9JPzs_JSU0uyczP088vSk_My6xKBHGKrYpLk4ozUzITizJTixexcuYXlGSWFCUmZ-9gZQQA0TxS11YAAAA&sa=X&ved=2ahUKEwiIvN2rqarqAhUDixoKHTU3DA8QmxMoATAeegQICxAD
https://en.wikipedia.org/wiki/Beaverton,_Oregon
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6.4.1.3. Data processing 

The inertial sensor and MOCAP system recorded data with a sampling frequency 𝑓𝑠 =

200 Hz. Calibrated data was then processed in Matlab 9.6 R2019a (MathWorks, Natick, 

Massachusetts, USA).  

6.4.1.3.1. Comparison of two systems  

The amplitude of four repetitive movements was calculated based on the gyroscope 

measurements recorded with the inertial sensor system, using the previously described procedure. 

The calculated movement amplitude was marked as 𝛼. In the case of the MOCAP system, the 

dominant rotation was found for each movement. The angle of the dominant rotation was used for 

further processing (later referred to as 𝛼𝑀𝑂𝐶𝐴𝑃).  

Two systems were synchronized using the cross-correlation function. The lag with the 

maximum cross-correlation was found and used for shifting the two angle sequences. The similarity 

of the two angle sequences was measured with the root-mean-square error (RMSE): 

 𝑅𝑀𝑆𝐸 = √∑
(𝛼 − 𝛼𝑀𝑂𝐶𝐴𝑃)2

𝑁

𝑁

𝑛=1

 (6.17) 

where 𝑁 represents the length of the observed angle sequences.  

6.4.2. Results 

The examples of the recorded angle sequences describing the amplitude of repetitive 

movements are presented in Figures 6.11-6.14. The results are presented for both sensor systems and 

for all four movements.  

 
Figure 6.11 An example of the finger-tapping movement amplitude calculated using the inertial 

sensor system (marked with a black line) and the MOCAP system (marked with a red line).  

The example in Figure 6.11 shows a fast finger-tapping movement with changeable tapping 

amplitude and speed, with occasional “breaks” in the rhythmic performance.  
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Figure 6.12 An example of the hand opening-closing movement amplitude calculated using the 

inertial sensor system (marked with a black line) and the MOCAP system (marked with a red line).  

A hand opening-closing movement presented in Figure 6.12 is characterized by slow rhythm 

and high amplitude, with a slight decrease over time.  

 
Figure 6.13 The example of the hand pronation-supination movement amplitude calculated using the 

inertial sensor system (marked with a black line) and the MOCAP system (marked with a red line). 

The hand pronation-supination movement presented in Figure 6.13 is characterized by lower 

speed and high and uniform amplitude.  

 

Figure 6.14 An example of the foot-tapping amplitude calculated using the inertial sensor system 

(marked with a black line) and the MOCAP system (marked with a red line).  
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The example in Figure 6.14 shows a fast toe-tapping movement with a changeable amplitude 

and constant tapping speed, with one “break” in the rhythmic performance around the 4th second.  

The average RMSE was 4.87º, for all four movements and all recording conditions. The 

difference between the obtained results originated from the inability to align local coordinate systems 

of two measurement systems perfectly. 

6.5. Discussion 

This Chapter presents an objective and automatic method for capturing and calculating the 

amplitude of the bradykinesia-related repetitive hand and leg movements. The method utilizes a 

miniature and lightweight inertial sensor system for recording movements, which does not require a 

lot of time nor skills to be mounted on the patient’s hand or leg. The established measurement 

procedure is simple, easy to apply, and it follows the rules of the standardized clinical testing 

protocols. The method also comprises an algorithm for calculating the movement amplitude for each 

movement individually. The algorithm was previously defined and validated for the finger-tapping 

movement solely [134]. In this thesis, it is extended to other bradykinesia movements as well (hand 

opening-closing, hand pronation-supination, and toe-tapping). Furthermore, a new algorithm for the 

segmentation of movements to individual cycles is also presented, together with the detailed 

inspection and understanding of the observed movement patterns.  

The applicability of the proposed method was demonstrated on the example of one healthy 

subject. The participant performed all four movements following the designed measurement 

procedure. In addition to the normal performance (repeating the movements fast with the biggest 

amplitude), the subject imitated movement properties, which are characterizing the presence of 

bradykinesia in patients with neurodegenerative disorders. The results of the proposed method were 

compared with the reference data provided by the motion capture system. The systems showed high 

agreement, with an average root mean square error of 𝑅𝑀𝑆𝐸 = 4.87º, confirming the high 

applicability of the proposed method. The introduced method represents the basis for further and more 

detailed analysis of these movements, which will be discussed in the next Chapter.   
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7. Evaluation of bradykinesia severity based on new 

metrics and an expert system 

As already mentioned, the severity of the bradykinesia symptom is assessed using the 

repetitive hand or leg motor tests. A patient’s performance is visually observed and evaluated with a 

score from 0 to 4. The UPDRS evaluation criteria includes specifications on how patients should 

perform the movement, characteristics of the movements which should be observed, and decision 

rules defining how scores should be given. This information was determined by the experts in 

movement disorders and carefully selected for providing full insight into the development of the 

patient’s symptom and disease progression. In the case of bradykinesia related repetitive movements, 

finger-tapping, hand opening-closing, hand pronation-supination, and toe-tapping, the movements are 

evaluated in terms of the amplitude, amplitude decrement, speed, and number of hesitations and 

freezes that may appear during the performance. The score is given based on the patient’s ability to 

perform these repetitive movements as fast and as widely as possible, in which part of the movement 

sequence its amplitude starts to drop, and how many hesitations and freezes patients experience 

during the performance. The lowest scores are given for normal movements, whereas the higher 

values represent severe bradykinesia. Although the instructions given in the UPDRS clinical scale 

defined the scoring process, the evaluation outcome is severely depended on the examiner’s 

experience and knowledge.  

In order to provide an objective and detailed assessment of the bradykinesia symptom, a new 

method for evaluation of bradykinesia is presented in this Chapter [138]. The method for calculating 

the amplitude of these repetitive movements is defined and presented in Chapter 6. The method 

observes and focuses on crucial biomechanical movement properties, which can provide significant 

insight into patients’ state and severity of developed symptoms. New metrics for quantification of 

movement characteristics were obtained as a result of the conducted analysis. The developed 

parametrization was then used as the input to the expert system, which is implemented as a 

knowledge-based decision support tool for prediction of scores and evaluation of the bradykinesia 

severity in patients with parkinsonism. Expert system was designed to match the standardized clinical 

knowledge and evaluation criteria.  

The developed metrics and expert system were validated on the example of the finger-tapping 

movement that was recorded for several groups of subjects, including patients with different 

neurodegenerative diseases.  
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7.1. Method 

7.1.1. Experiment 

In this study, fifty-six subjects were included, including 13 patients (Gender: 7 male/6 female; 

Age: 62.23±10.79 years) with idiopathic PD, 17 patients (Gender: 5 male/12 female; Age: 

58.41±6.41 years) with MSA, 14 patients (Gender: 11 male/3 female; Age: 65.71±9.33 years) with 

PSP, and 12 HC controls (Gender: 4 male/8 female; Age: 58.40±7.78 years). The patients were 

recruited at the Clinic of Neurology, Clinical Centre of Serbia, School of Medicine, University of 

Belgrade, Belgrade, Serbia. Healthy controls were enlisted among healthy staff members or persons 

accompanying the patients at the Clinic of Neurology.  

Descriptive statistics of clinical data for the included patient groups are provided in Table 7.1. 

The signs of parkinsonism were assessed using the UPDRS scale [42], whereas the severity of the 

disease was evaluated using the H&Y scores [35].  

Table 7.1 Clinical features presented through descriptive statistics (average±std, median), for each 

included patient group separately.  

Data Statistics 
Group 

PD MSA PSP 

Age 

(years) 

Average±std 62.23±10.79 58.41±6.41 65.71±9.33 

Median 61 58 66.5 

H&Y 
Average±std 1.80±0.79 3.18±0.75 3.45±0.93 

Median 2 3 4 

UPDRS 

Total 

Average±std 42.60±16.93 77.73±13.70 74.45±20.08 

Median 36 79 79 

UPDRS 

III 

Average±std 24.60±9.07 46.64±9.08 42.91±13.14 

Median 19.5 45 45 

PD – Parkinson’s disease patients; MSA – Multiple system atrophy patients; PSP – Progressive supranuclear palsy 

patients; HC – Healthy controls; H&Y – Hoehn and Yahr scale; UPDRS – Unified Parkinson’s disease rating scale; 

UPDRS III – Unified Parkinson’s disease rating scale, Part III – Motor examination. 

The testing was performed following the measurement protocol that was presented in the 

previous Chapter. The participants were asked to sit comfortably in the chair with their back put 

against the chair back. During the experiment, their hands were placed in front, with arms flexed and 

supported at the elbow. All subjects were instructed to perform the finger-tapping test – to tap a thumb 

and index finger as quickly and as widely as possible for 15 s. At the beginning of each trial, a short 

auto-calibration sequence was recorded. Although the newest version of the UPDRS scale state that 

the finger-tapping test should be repeated precisely ten times [42], for this study, longer sequences 

were recorded to obtain enough data for analysis. Several trials were recorded per each hand and each 

subject, so that subjects could familiarize themselves with the instrumentation and measurement 

protocol. One minute of rest was given between the consecutive trials since fatigue might influence 

subjects’ performance.  

All trials were also captured with a commercial video camera that recorded hand in a close-

up view. For each subject and each hand, neurologists selected one representative trial for further 
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analysis. The selection criteria comprised participants’ understanding of the given instructions and 

duration of the finger-tapping sequence.  

For each subject, the testing was performed during one day at the Clinic of Neurology. The 

study was conducted following the ethical standards of the Declaration of Helsinki and approved by 

the Ethical Committee, School of Medicine, University of Belgrade. All subjects provided written 

informed consent prior to entering the study. 

7.1.2. Instrumentation 

In this study, the previously described measurement system was applied. The used wireless 

inertial sensor system consisted of two IMUs, each comprising a 3-axial gyroscope [75]. IMUs were 

placed over the fingernails of the thumb and index finger and connected to their SCUs (Figure 7.1). 

SCUs were positioned on the lower arm and acquired and wirelessly transmitted data to a remote 

computer. IMUs were lightweight and miniature, which allowed subjects to perform the requested 

task most naturally.  

 
Figure 7.1 Illustration of two small and lightweight inertial measurement units positioned over the 

fingernails of the thumb and index finger. 

7.1.3. Scoring by neurologists 

Recorded video files were visually examined and analysed by two neurology specialists that 

had more than ten years of experience working with movement disorders. The neurologists evaluated 

each recording with a score from 0 to 4. The scores were given based on their experience and 

knowledge, following the instructions that were provided in the UPDRS test, Part III–Motor 

examination, task 3.4 Finger tapping [42]. The scores were given separately for the right and left 

hand. The videos showed participants’ hands in a close-up view, which assured that specialists are 

blinded to the identity of the subjects during the evaluation.  

7.1.4. Data processing 

The data was recorded with a sampling frequency 𝑓𝑠 = 200 Hz. Calibrated data was processed 

and analysed in a custom-made script, written in Matlab 9.0 R2016a (MathWorks, Natick, 

Massachusetts, USA).  

The angular velocities from the thumb and index finger sensors were processed and 

transformed using the procedure described in Chapter 6. The relative rotation of the fingers was 

analysed from the index-finger coordinate system [134]. The relative angular velocity of the thumb 

with respect to the index finger was computed using the Equation (6.13). The dominant component 

of the relative angular velocity 𝜔𝑟𝑑 was automatically selected and used as the input to further 
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analysis of the finger-tapping movement. An example of the dominant component of the relative 

angular velocity 𝜔𝑟𝑑 is presented in Figure 7.2.  

 
Figure 7.2 Presentation of the dominant component of the relative angular velocity 𝜔𝑟𝑑 with extracted 

time markers indicating maximum closing angular velocity (shown with red circles), maximum 

opening angular velocity (marked with red squares), and moments when fingers are closed in a “zero 

posture” (represented with red crosses). An example is given for one MSA patient. 

The analysis of the finger-tapping movement consisted of segmentation to individual cycles 

or taps and calculation of relevant movement properties (as defined in the UPDRS test), including 

amplitude, amplitude decrement, speed, and the number of hesitations and freezes. In addition, 

smoothness and intra-subject (or tap-to-tap) variability were calculated for providing a more detailed 

analysis of the finger-tapping movement.  

7.1.4.1. Individual taps  

Characteristics of the finger-tapping movement were quantified and evaluated on the level of 

individual taps. Because of that, the segmentation of the finger-tapping movement sequence was 

performed using the dominant axis of the relative angular velocity 𝜔𝑟𝑑. The previously introduced 

segmentation technique was applied, as described in Chapter 6. The signal was smoothed using a 

moving average filter, with span (𝑓𝑠/𝑓0)/2, with 𝑓𝑠 representing the sampling frequency, and 𝑓0 being 

the basic finger-tapping frequency automatically calculated from the frequency spectrum. Time 

markers representing maximum closing and opening angular velocities were extracted from the 

smoothed signal. Time markers identifying moments when fingers were closed in a “zero posture” 

were detected between succeeding maximum closing angular velocity and maximum opening 

velocity markers. The detected “zero posture” markers were complemented with two additional 

markers identifying the first and last sample of the finger-tapping sequence (as shown with red crosses 

in Figure 7.2). The final sequence of time markers was then used for drift removal and segmentation 

of the finger-tapping movement sequence into individual taps.  

7.1.4.2. Amplitude  

The amplitude of the finger-tapping movement represents very important clinical criteria for 

the evaluation of the bradykinesia. The procedure for calculating the amplitude of the finger-tapping 

movement was described in detail in Chapter 6. The amplitude was defined as the angle of the relative 

rotation of the fingers. The angle was computed by integrating the dominant component of the relative 
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angular velocity 𝜔𝑟𝑑 in a time-stepping procedure [134]. The drift was removed using a third-order 

polynomial approximation, fitted through the extracted “zero posture” time markers. In these 

moments, the angle should be equal to zero, as shown with red crosses in Figure 7.2 and Figure 7.3. 

After removing the drift, the angle sequence 𝛼 was segmented into individual cycles/taps using the 

same time markers. For each individual tap, the maximum angle was found, and it was expressed in 

degrees. The extracted maximum angles were averaged over all cycles of the 15 s long finger-tapping 

sequence. The obtained average angle was marked with 𝛼𝑎𝑣 [º] and provided as the final parametric 

result.  

 
Figure 7.3 Presentation of the angle estimation procedure. The drifted angle sequence is represented 

with a dotted grey line, whereas a solid black line shows angle sequence after drift removal. Red 

crosses mark “zero posture” time markers, whereas the dotted red line represents polynomial fit 

applied for drift removal. An example is given for one MSA patient. 

7.1.4.3. Amplitude decrement 

Amplitude decrement is evaluated as the movement cycle at which the amplitude begins to 

decrease. In order to quantify amplitude decrement, inter-tap changes of the calculated tapping angles 

𝛼(𝑖) were observed. The maximum angle per each individual tap was compared with a threshold 

𝑇𝐻𝛼: if the angle was lower than the threshold value then this tap was considered as the tap with 

significant amplitude decrement. Indices of the first tap that fulfilled this criterion were selected as 

the parametric result and marked as 𝑖𝑑𝑒𝑐. 

The threshold was given the value of 𝑇𝐻𝛼 = 75% of the maximum angle among all taps that 

preceded the tap being analysed. This threshold value was heuristically established through extensive 

search and analysis of the used signal database. A range of threshold values was examined: from 50% 

to 90%, with a step of 5%. The selected threshold provided the best results among all tested values. 

The lower threshold values caused detection of the amplitude decrement later in the finger-tapping 

sequence, with a delay compared to the first real amplitude decrement. On the other hand, higher 

threshold values caused the detection of very small amplitude changes, which might appear due to 

the normal movement variability.  

An example of the detection of the amplitude decrement is given in Figure 7.4. In the example, 

the threshold 𝑇𝐻𝛼 was set based on the angle value of the first tap. The thresholding criteria were 

satisfied for all other taps in the finger-tapping sequence; however, the second tap was the first tap 

with an angle below the threshold value, and therefore, the result was 𝑖𝑑𝑒𝑐 = 2. 
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Figure 7.4 Procedure for detection of taps showing significant decrement in the angle amplitude 

values. Angle sequence is represented with a solid black line, whereas the extracted tapping angle 

amplitudes were marked with red triangles. The threshold 𝑇𝐻𝛼 for detection of amplitude decrement 

is represented with a dotted grey line. An example is given for one MSA patient. 

7.1.4.4. Hesitations and freezes 

Hesitations and freezes represent a very important part of the bradykinesia evaluation. They 

are demonstrated as breaks or irregularities of the regular movement rhythm, which can occasionally 

appear in the finger-tapping performance. In order to quantify these movement irregularities, the 

continuous wavelet transform (CWT) was applied. Wavelet analysis has already proven to be a useful 

tool for analysis of transient changes and spikes in rhythmic behaviour [139], [140], and as such, it 

was selected for detection and localization of disturbances in the rhythmic finger-tapping 

performance.  

CWT represents a time-frequency analysis method that is suitable for the analysis of signals 

with both faster and slower changes, which represents its main advantage compared to other time-

frequency analysis techniques (such as Short Time Fourier Transform) [17]. In order to determine the 

spectral characteristics of the signal, a probing function is applied. Various functions can be used as 

the probing function; however, all of them have one main characteristic - by translating and scaling, 

they adapt to the shape of the original signal. In this way, the concept of CWT is introduced. The 

basic wavelet function must take on an oscillatory form, which is why this analysis method is called 

the "wavelet" transform. CWT is defined with the Equation (7.1) [17]: 

 𝑊(𝑎, 𝑏) = ∫ 𝑥(𝑡)
1

√|𝑎|

∞

−∞

𝜓∗ (
𝑡 − 𝑏

𝑎
)𝑑𝑡 (7.1) 

where 𝑎 performs time scaling of the probing function 𝜓, and 𝑏 controls the translation of this 

function. The probing or wavelet function is marked with 𝜓, whereas 𝑥(𝑡) represents the signal, 

which is analysed. The normalization factor is denoted by 
1

√|𝑎|
, whereas the operator * indicates 

complex conjugation. Since the energy of the wavelet function is dependent on the scale, the 

normalization factor allows the energy of the wavelet function to be the same for each value of the 

parameter 𝑎. The result of the CWT 𝑊(𝑎, 𝑏) is represented with the correlation coefficients of the 

probing function and the signal being analysed. These coefficients are called wavelet coefficients. 
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Depending on the value of the parameter 𝑎, certain features of the wavelet function 𝜓 can be 

achieved [17]: 

• For |𝑎| > 1 function 𝜓 is stretched along the time axis, 

• For |𝑎| < 1 function 𝜓 is compressed along the time axis, 

• For |𝑎| < 0 function 𝜓 is flipped around the time axis. 

For 𝑎 = 1 and 𝑏 = 0, the wavelet function is given in its basic form, and it is called mother wavelet.  

By selecting the appropriate value of the scaling and translation parameters, the basic function 

can adjust to any change that occurs in the signal. Information about the frequency content of the 

signal is presented through the obtained coefficients. These coefficients have a stronger response to 

the changes that are on the same scale as the wavelet function, or that resemble it. Therefore, CWT 

maps the signal to the time-scale domain. Small scales correspond to high frequencies, which make 

them suitable for describing fast changes in signals, and vice versa. 

If the wavelet function is appropriately selected, the original signal can be reconstructed from 

the obtained coefficients, using the following Equation [17]:  

 𝑥(𝑡) =
1

𝐶
∫ ∫ 𝑊(𝑎, 𝑏)𝜓𝑎,𝑏

∞

𝑏=−∞

∞

𝑎=−∞

(𝑡)𝑑𝑎 𝑑𝑏 (7.2) 

where 𝐶 represents admissibility condition, and it is given as [17]: 

 𝐶 = ∫
|𝜓(𝜔)|2

|𝜔|

∞

−∞
dω (7.3) 

 The wavelets are well localized, but not perfectly localized in either scale and time domain. 

The time range of the wavelet can be specified as [17]:  

 ∆𝑡𝜓 = √
∫ (𝑡 − 𝑡0)2 |𝜓(

𝑡
𝑎)|

2

𝑑𝑡
∞

−∞

∫ |𝜓(
𝑡
𝑎)|

2

𝑑𝑡
∞

−∞

 (7.4) 

where 𝑡0 represents center time or the first moment of the wavelet. The time range is defined as the 

square root of the second moment of the wavelet about its time center, Equation (7.4) [17]. Time 

center can be calculated as:  

 𝑡0 = √
∫ 𝑡 |𝜓(

𝑡
𝑎
)|

2

𝑑𝑡
∞

−∞

∫ |𝜓(
𝑡
𝑎)|

2

𝑑𝑡
∞

−∞

 (7.5) 

The frequency range is given similarly:  

 ∆𝜔𝑡𝜓 = √
∫ (𝜔 − 𝜔0)2|Ψ(𝜔)|2𝑑𝜔

∞

−∞

∫ |Ψ(𝜔)|2𝑑𝜔
∞

−∞
𝑎

 (7.6) 
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where Ψ(𝜔) is a representation of the wavelet function 𝜓(
𝑡

𝑎
) in a frequency domain, and 𝜔0  

represents its center frequency. Similarly, the center frequency can be calculated as [17]: 

 𝜔0 = √
∫ 𝜔|𝜓(𝜔)|2𝑑𝜔

∞

−∞

∫ |𝜓(𝜔)|2𝑑𝜔
∞

−∞

 (7.7) 

The time and frequency ranges of the specific wavelet function family can be obtained by 

using the Equations (7.5) and (7.7). By scaling the wavelet function with the parameter 𝑎, the time 

range is modified as ∆𝑡𝜓(𝑎) = |𝑎|∆𝑡𝜓. Similarly, the frequency range is changed as ∆𝜔𝜓(𝑎) =

∆𝜔𝜓/|𝑎|. The product of the time and frequency range is constant and does not depend on the scale. 

Additionally, the two ranges are inversely related: increasing the time range ∆𝑡𝜓(𝑎) decreases the 

frequency range ∆𝜔𝜓(𝑎), and vice versa. The correlation between these ranges defines the time-

frequency resolution of the CWT [17]. 

In this study, CWT was applied to the dominant component of the relative angular velocity 

𝜔𝑟𝑑. The fast Fourier transform-based algorithm was used. The mother wavelet function was selected 

from the complex Morlet family. The center frequency was set to 1 Hz, and the time-frequency 

resolution was given a value of 0.7. A matrix of complex CWT coefficients was obtained as a result 

and used for further analysis. CWT maps the signal into the time-scale domain. The signal 

representation in the time-scale domain is called a scalogram. It is a colour-coded representation of 

the calculated CWT coefficients. An example of a scalogram is given in Figure 7.5, together with the 

analysed signal. In the shown example, the jet colour map is applied. Lower values of the CWT 

coefficients are presented with colder colours, with dark blue hue for the lowest values. Warmer 

colours are used for higher values, with vibrant yellow for presenting the highest coefficients.  

 
Figure 7.5 The dominant component of the relative angular velocity 𝜔𝑟𝑑 (upper panel), and a 

scalogram of the calculated CWT coefficients, presented using the jet colourmap (lower panel). An 

example is given for one PSP patient. 
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By summing the values of the CWT coefficients perpendicular to the time axis, a new 

characteristic was obtained and referred to as a cross-sectional area (𝐶𝑆𝐴𝑇). Afterwards, 𝐶𝑆𝐴𝑇 was 

normalized and expressed as a percentage of the 𝐶𝑆𝐴𝑇 maximum value. By calculating the introduced 

characteristic, temporal changes of the finger-tapping activity were described. The samples of the 

𝐶𝑆𝐴𝑇 characteristic were compared with two thresholds: 𝑇𝐻50 = 50% of the average 𝐶𝑆𝐴𝑇 value, 

and 𝑇𝐻25 = 25% of the average 𝐶𝑆𝐴𝑇 value. Samples valued below the threshold 𝑇𝐻25 were 

considered as part of freezing sequences. Similarly, samples with values above the threshold 𝑇𝐻25, 

but below the threshold 𝑇𝐻50 were assigned to hesitation sequences. A limitation was applied to the 

detected hesitation sequences: if a hesitation sequence lasted at least three times longer than the 

person’s average finger-tapping cycle duration then this sequence was observed as a freezing 

sequence. Furthermore, sequences shorter than one half of the person’s average finger-tapping cycle 

duration were discarded from further analysis. The number of hesitation sequences 𝐻𝑛𝑢𝑚 and the 

number of freezing sequences 𝐹𝑛𝑢𝑚  were provided as the final parametric results. By using the 

thresholds that were based on the average value of the 𝐶𝑆𝐴𝑇 characteristic, adaptive thresholding was 

achieved, and detection of signal irregularities was adjusted to the inherent properties of each 

individual signal. In this way, the signal parts with noteworthy power drops (compared to the average 

performing power) were determined as irregularities. The threshold values were verified and tested 

through an extensive analysis of the used signal database. Additionally, neurologists visually 

inspected video recordings and confirmed all detected irregularities.  

An example of the introduced 𝐶𝑆𝐴𝑇 characteristic is given in Figure 7.6, together with the 

analysed signal. The threshold values were presented with horizontal lines of different texture and 

greyscale colour: solid light grey marked the average 𝐶𝑆𝐴𝑇 value, dashed darker grey showed 𝑇𝐻50 

threshold, whereas the darkest grey dotted line represented 𝑇𝐻25. Detected irregularities were 

bounded with dotted red vertical lines and labelled with “H” for hesitations, and “F” for freezes.  

 
Figure 7.6 Procedure for detection of irregularities, presented with the dominant component of the 

relative angular velocity 𝜔𝑟𝑑 (upper panel), and the calculated 𝐶𝑆𝐴𝑇 characteristic (lower panel). The 

light grey solid horizontal line showed the average 𝐶𝑆𝐴𝑇  value. Thresholds 𝑇𝐻50 and 𝑇𝐻25 were 

marked with dashed and dotted grey horizontal lines, respectively. Similarly, red vertical lines bound 

areas detected as hesitations (“H”) and freezes (“F”). An example is provided for one PSP patient. 
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7.1.4.5. Speed 

The speed of repetitive movements represents an important criterion for the evaluation of 

bradykinesia symptom. In the case of the finger-tapping movement, neurologists evaluate how fast 

subjects tap their fingers. For faster movements, a larger number of repetitions is executed during the 

15 s long finger-tapping test, and vice versa. In this sense, speed can be evaluated by observing the 

number of performed taps and their duration. Still, this approach only gives a rough estimate of speed, 

which can be very variable from tap to tap. Because of that, in this study, changes in the tapping 

rhythm were observed on the level of each individual sample. In order to achieve that, the calculated 

matrix of the CWT coefficients was used for the detection of the most prominent frequency for each 

time step. A vector of the CWT coefficients (corresponding to one sample) was extracted from the 

matrix. The dominant frequency was computed as the frequency at which the highest coefficient was 

located for that time sample. This procedure was repeated for all time samples. In this way, a new 

sequence was obtained describing the change of the dominant finger-tapping frequency over time (or 

instantaneous finger-tapping frequency) and referred to as 𝑓(𝑖). The final parametric result was 

calculated as the average value of the extracted sequence of the tapping frequency and marked as 𝑓𝑎𝑣
(𝑖)

. 

An example of the procedure for calculating the introduced metric is shown in Figure 7.7. The 

scalogram of the analysed signal is presented, together with the procedure for detecting the 

instantaneous finger-tapping frequency. On the smaller upper panel, the CWT coefficients for the 𝑖th 

time sample are presented. The dominant frequency is calculated from the extracted vector of 

coefficients using the described procedure and marked as 𝑓𝑖
(𝑖)

. 

 
Figure 7.7 Procedure for calculating the instantaneous finger-tapping frequency. A scalogram of 

CWT coefficients was presented on the lower panel. The vector of coefficients at the 𝑖𝑡ℎ sample was 

marked with dashed black line on the scalogram and then visualized on the smaller upper panel. The 

most prominent frequency (at which the highest coefficient was detected for 𝑖𝑡ℎ sample) was labelled 

with red dashed line (marked as 𝑓𝑖
(𝑖)

.). An example is provided for one PSP patient.  
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7.1.4.6. Additional movement characteristics 

Previously introduced parametrization described essential properties of the finger-tapping 

movement. These movement characteristics are observed and evaluated in clinical practice by 

neurologists, and they are of crucial importance for the evaluation of patients’ state, symptom 

severity, and disease progression. Therefore, the abovementioned analysis and introduced metrics 

represent a foundation of the analysis for the evaluation of bradykinesia severity (later referred to as 

“basic feature set”). However, during the extensive analysis of the used signal database, some other 

movement properties were noticed. Because of that, a more detailed and profound analysis of the 

finger-tapping movement was performed (later referred to as “additional feature set”) [141], [142].  

7.1.4.6.1. Movement intra-variability 

By observing movement sequences of different subjects, it was shown that some subjects 

performed the finger-tapping test more consistently from tap to tap compared to others. The amplitude 

and the rhythm of their finger-tapping was uniform, and without movement irregularities during the 

period of 15 s. On the other hand, there were some subjects who performed the finger-tapping test 

very differently throughout the recorded movement sequence: significant changes of tapping 

amplitude or rhythm, or appearance of several hesitations or freezes. Therefore, those subjects 

performed the finger-tapping movement with more expressed intra-variability. In order to quantify 

movement variability from tap to tap, a method based on Welch’s estimation of power spectral density 

(PSD) was applied to the dominant component of the relative angular velocity 𝜔𝑟𝑑 [143]. This method 

applies the fast Fourier transform to the shorter segments of the analysed signal and estimates the 

power spectral density by averaging modified periodograms of these shorter segments. It was already 

applied in the literature for the assessment of intra-gait variability [144].  

Prior to estimating the power spectral density, the analysed signal was standardized by 

dividing it with its standard deviation. In this study, PSD estimation was performed using a window 

size of 800 samples, with an overlap of 50% between the consecutive windows. FFT length was set 

to be two times the power of 2 higher of the signal length. For the most prominent peak, two features 

were extracted: 1) width of the peak – calculated at the half of the peak’s maximum amplitude 

(referred to as 𝑤𝑃𝑆𝐷 [Hz]); 2) slope of the peak – calculated from the point located at the half of the 

peak’s maximum amplitude to the point of the maximum peak’s amplitude (referred to as 

𝑠𝑃𝑆𝐷 [psd/Hz]) [144]. Smaller values of the slope and higher values of the width feature indicate 

greater intra-variability and vice versa. Two examples are presented in Figure 7.8. Recorded 

movement sequences are presented on the left, whereas their power spectral densities and calculated 

metrics are shown on the right. The patient on the upper panel had a consistent finger-tapping 

performance. The second patient performed more variably from tap-to-tap, with significant amplitude 

and rhythm changes after the 7th second. For both patients, the calculated metrics confirmed these 

conclusions, with the higher peak width 𝑤𝑃𝑆𝐷 and lower peak slope 𝑠𝑃𝑆𝐷 for the second patient 

compared to the first patient.  
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Figure 7.8 Presentation of the dominant component of the relative angular velocity 𝜔𝑟𝑑 (on the left) 

with the calculated power spectral density function and derived features (on the right). In the graphs 

on the right, red lines mark peak slopes, whereas blue lines show peak width. Examples are provided 

for one PD patient (upper panel), and one MSA patient (lower panel). 

7.1.4.6.2. Movement smoothness 

Another specific movement characteristic was observed in the recorded signals. It was noticed 

that some patients performed the finger-tapping movement with certain “shaking” while opening and 

closing the fingers, usually as a consequence of another parkinsonian symptom – tremor. These 

changes were different from the standard hesitations and freezes. While hesitations and freezes caused 

breaks in the subject’s normal finger-tapping rhythmicity, these new changes did not alter the 

rhythmicity, but they changed the shape of the finger-tapping pattern. In those cases, finger taps were 

bumpier and less smooth compared to others. An example of a short finger-tapping sequence 

containing such changes is shown in Figure 7.9. Red ellipse shows one of these “bumps” that may 

appear in the signal.  

Smoothness generally represents a very important movement property, and it was observed in 

many studies. In the literature, different solutions were presented for evaluating the smoothness. In 

this study, two techniques were applied to the dominant component of the relative angular velocity 

𝜔𝑟𝑑.  

One of them is the Spectral Arc (SPARC) method [145]. SPARC method was already 

implemented for evaluating the smoothness of different sensorimotor behaviour [146], [147]. It is 

based on the calculation of the arc length of the Fourier spectrum of the analysed signal. The arc 

length is computed within the selected frequency range [145]. The final measure of the signal 

smoothness is expressed as the negative logarithm of the calculated arc length. In this study, arc length 

was calculated in the frequency range from 0.05 Hz to 20 Hz, since it was shown that significant 
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frequency content of the finger-tapping movement does not exceed the limit of 20 Hz. Using the 

markers of the maximum opening and closing angular velocity (red circular and squared markers in 

Figure 7.9), rising and decreasing edges of individual taps were extracted from the analysed signal. 

The SPARC measure was calculated separately for the rising and decreasing edges, and the result 

represented the sum of these two SPARC measures. The procedure was repeated for each individual 

finger-tapping cycle. The final measure of smoothness was given as the average value of the 

smoothness values obtained for the individual cycles and referred to as 𝑠𝑆𝑃𝐴𝑅𝐶. Higher values of the 

parameter indicated smoother movements, and vice versa. 

Other smoothness measure observed the analysed signal in the time domain. Once again, 

rising and decreasing edges of the finger-tapping sequence were extracted using the maximum 

opening and closing angular velocity markers. For each edge, a count of smaller bumps or peaks was 

detected. The obtained values for the rising and decreasing edges were summed for each individual 

finger-tapping cycle, and then averaged for all individual cycles, providing the final measure of the 

signal smoothness, marked as 𝑠𝑃𝐸𝐴𝐾𝑆. 

 
Figure 7.9 Short sequence of the dominant component of the relative angular velocity 𝜔𝑟𝑑, with three 

consecutive taps. Red circular markers show maximum closing angular velocity per each tap, whereas 

red squares represent maximum opening angular velocity per each tap. Red ellipse shows a “bump” 

in the signal. An example is given for one MSA patient.  

7.1.5. Expert system for prediction of motor scores 

Due to the nature of the observed problem, an expert system was developed for the prediction 

of clinical scores. The presented expert system utilized the basic feature set (previously defined in 

this Chapter), theoretical knowledge in this field, and a set of expert rules that completely objectified 

the instructions provided within the UPDRS scale for assigning the scores. 

The basic feature set evaluated movement characteristics that were observed in the clinical 

practice, including the finger-tapping amplitude (quantified with 𝛼𝑎𝑣), the finger-tapping speed 

(quantified with 𝑓𝑎𝑣
(𝑖)

), the amplitude decrement (quantified with 𝑖𝑑𝑒𝑐), and the number of hesitations 

(quantified with 𝐻𝑛𝑢𝑚) and freezes (quantified with 𝐹𝑛𝑢𝑚). These features were provided in a form 
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that was completely understandable and intuitive for the physicians. The additional feature set 

evaluated other movement characteristics (intra-variability and smoothness), which provided a more 

detailed assessment and insight into disease and symptoms progress. However, these features were 

not observed within the expert system since they quantified movement properties that were not 

analysed nor included in the instructions provided in the UPDRS test.  

7.1.5.1. Knowledge base 

In clinical practice, the finger-tapping movement is used and examined as part of the 

bradykinesia severity assessment. The knowledge base was developed according to the detailed 

instructions and evaluation criteria from the UPDRS scale, Part III – Motor examination, task 3.4 

Finger tapping [42] are presented in Table 7.2.  

Table 7.2 The evaluation criteria for the finger-tapping test, as provided in the UPDRS scale, Part III 

– Motor examination, task 3.4 Finger tapping.   

Score 
Movement characteristic 

Rhythm Amplitude decrement Interruptions 

0 – Normal 
Fast movement with 

large amplitude 
None None 

1 – Slight Slight slowing 
Amplitude decrements around 

the tenth tap 
1 – 2 hesitations 

2 – Mild Mild slowing 
Amplitude decrements midway 

through a 10-tap sequence 
3 – 5 hesitations 

3 – Moderate Moderate slowing 
Amplitude decrements after the 

first tap 

More than 5 hesitations 

or at least one freeze 

4 – Severe 
Cannot or can only barely perform movement due to highly expressed slowing, 

interruptions or decrements 

Although clinical knowledge is unambiguously determined for certain criteria (amplitude 

decrement and hesitations/freezes), this is not the case for movement speed and amplitude (they are 

evaluated based on examiner’s experience). Furthermore, the instructions indicate that the lowest 

score is assigned to “normal” finger-tapping movements, without deeper explanations and numerical 

values that could describe this type of movement in detail. Therefore, the knowledge base was 

extended with some additional information that was collected and extracted using the unsupervised 

learning process and basic feature set.  

The first step was to define feature values that could be considered as “normal” or reference. 

Because of that, the subset of the input feature set corresponding to healthy subjects with no signs of 

bradykinesia (scored with 0 by both neurologists) was extracted.  

During the examination of the signals and video recordings, it was noticed that subjects 

performed the finger-tapping movement in two ways. One batch of subjects performed the finger-

tapping test with the largest amplitude at the highest possible speed that allowed such wide tapping. 

Others tapped their fingers at their fastest pace, but with lower amplitudes. The selected subset of 

healthy subjects was divided into two clusters using the 𝑘-means algorithm: cluster 𝐶1– „wider and 
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slower, “ and cluster 𝐶2– „narrower and faster“ finger-tapping performance. The 𝑘-means algorithm 

divides data to exactly 𝑘 clusters that are defined by their centroids [148]. Firstly, 𝑘 initial centroids 

are chosen, and each observation is assigned to the closest cluster based on the calculated point-to-

centroid distances. The observations are reassigned to a different cluster if that decreases sum of 

squares of all point-to-centroid distances within one cluster. New centroids are then calculated as the 

average of all observations within the corresponding clusters. The procedure is repeated when cluster 

assignments stop changing, or the algorithm reaches maximum number of iterations.  

The clustering was performed using the features describing the finger-tapping amplitude and 

speed (𝛼𝑎𝑣 and 𝑓𝑎𝑣
(𝑖)

, respectively). The coordinates of the two cluster centers were then applied for 

discriminating the two types of finger-tapping performance. Fifty percent of the observations were 

randomly selected from all three patient groups and assigned to the testing group. Each testing 

observation was then assigned to one of these two clusters based on the calculated Euclidian distance 

between the cluster centers and the coordinate pair (𝛼𝑎𝑣, 𝑓𝑎𝑣
(𝑖)) of that observation.  

The scores given by the specialists were provided as the final score evaluating the overall 

regularity of the finger-tapping movement. Therefore, these scores did not provide information about 

the individual aspects and characteristics of the examined finger-tapping performance. Because of 

that, the unsupervised learning algorithm was applied for analysing the intrinsic properties of the 

features and finding a natural grouping among analysed data. By using the 𝑘-means algorithm, the 

values of one of the features (𝛼𝑎𝑣 or 𝑓𝑎𝑣
(𝑖)

) assigned to one of two clusters (𝐶1 or 𝐶2) were additionally 

split into four clusters, which corresponded to 0-3 scores. Although a finger-tapping movement can 

be evaluated with five scores, the data was divided into four clusters, because the highest score is 

given to patients that can barely perform the task, and such movement is affected by several types of 

disruptions simultaneously. The decision boundaries were then calculated using the coordinates of 

the cluster centers (𝑐1, 𝑐2, 𝑐3, 𝑐4) as follows:  

 𝑏𝑖 =
𝑐𝑖+𝑐𝑖+1  

2
; 𝑖 = 1,2,3  (7.8) 

where and 𝑐𝑖 and 𝑐𝑖+1 represented centers of two neighbouring clusters, and 𝑏𝑖 represented the 

calculated boundary separating the two succeeding scores. The procedure was repeated for both 

features 𝛼𝑎𝑣 and 𝑓𝑎𝑣
(𝑖)

 and both clusters 𝐶1 and 𝐶2, separately (1: 𝐶1 and 𝛼𝑎𝑣, 2: 𝐶2 and 𝛼𝑎𝑣, 3: 𝐶1 and 

𝑓𝑎𝑣
(𝑖)

, 4: 𝐶2 and 𝑓𝑎𝑣
(𝑖)

). This clustering resulted in four sets of decision boundaries, each comprising 

three values. The decision boundaries were chosen from those four sets for each observation 

individually. Decision boundaries for the features 𝑖𝑑𝑒𝑐 and 𝐻𝑛𝑢𝑚, 𝐹𝑛𝑢𝑚 features were defined to match 

the specifications given within the UPDRS scale (as presented in Table 7.2). 

7.1.5.2. Inference process 

The inference process started with calculating the patient’s data with the previously described 

procedure for the extraction of basic features. Afterwards, the patient’s speed and amplitude data is 

assigned to one of these two clusters, based on the Euclidian distance of the coordinate pair (𝛼𝑎𝑣, 𝑓𝑎𝑣
(𝑖)

) 

to the centers of the clusters 𝐶1 and 𝐶2: if the coordinate pair is closer to the center of the cluster 
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𝐶1, then this observation was assigned to the cluster 𝐶1, and vice versa. The decision boundaries 

(𝑏𝛼1,2,3 and 𝑏𝑓1,2,3) were then selected for the corresponding cluster.  

A block diagram of the developed and implemented reasoning is presented in Figure 7.10. 

The first part of the decision-making process consisted of four blocks (marked with dashed black 

lines). The inputs to these four blocks were 𝛼𝑎𝑣, 𝑓𝑎𝑣
(𝑖)

, 𝑖𝑑𝑒𝑐 and 𝐻𝑛𝑢𝑚, 𝐹𝑛𝑢𝑚 features. Each block 

implemented a defined set of rules and calculated a score for one individual movement characteristic: 

amplitude, speed, amplitude decrement, and movement interruptions. Therefore, the outputs from 

these blocks included four sub-scores: 𝑆𝛼, 𝑆𝑓 , 𝑆𝑑𝑒𝑐 , and 𝑆𝐻𝐹, respectively. If the sub-score “3 – 

Moderate” was obtained for at least three out of four movement characteristics, then the final score 

𝑆𝐹𝑇 was set to “4 – Severe”. Otherwise, the final score 𝑆𝐹𝑇 was computed as the maximum obtained 

sub-score among the four sub-scores evaluating the individual movement properties.  
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Figure 7.10 Block diagram of the developed and implemented reasoning. The decision-making 

process was divided into four blocks (marked with dashed black rectangles). The inputs to these four 

blocks were features: 𝛼𝑎𝑣, 𝑓𝑎𝑣
(𝑖)

,  𝑖𝑑𝑒𝑐 and 𝐻𝑛𝑢𝑚, 𝐹𝑛𝑢𝑚, respectively. Each block implemented a 

different set of rules and calculated a sub-score for one individual movement characteristic 

(amplitude, speed, amplitude decrement, and movement interruptions, respectively). The final score 

was calculated based on the sub-score values.  
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7.1.6. Statistical analysis and evaluation of the expert system 

The agreement between the scores given by two neurologists was calculated using Cohen’s 

kappa coefficient, which provided a measure of the intra-rater reliability. For each feature, two groups 

were compared using the corresponding statistical test. The test was applied based on data 

distribution. If both groups being compared satisfied the normal distribution, the independent t-test 

for two samples was applied. Otherwise, the Mann-Wilcoxon test was used. The normality of the data 

was found by observing several parameters simultaneously, including data skewness and kurtosis z-

values, the Shapiro-Wilk test 𝑝-value, and histograms, normal Q-Q plots and box plots. For 𝑝 < 0.05, 

the null hypothesis that two groups had the same mean rank was rejected. In that case, it was found 

that the two groups were showing statistically significant differences. Statistical analysis was 

performed in IBM SPSS Statistics v26.0 (IBM, Armonk, New York, U.S.A.). 

In order to evaluate the efficiency of the proposed method, the scores given by the expert 

system were compared to those provided by the two specialists. The results were presented using the 

confusion matrix and the accuracy metric. The accuracy 𝐴𝑐 [%] was calculated as the percentage of 

scores that were equally signed by the expert system and neurologists. Confusion matrix (or a 

contingency table) represents an evaluation approach that contains information about the true and 

predicted scores [149]. It is usually presented as a matrix, where cells on the main diagonal represent 

the percentage of correctly assigned scores, and other cells mark the error or percentage of incorrectly 

predicted scores. Two evaluation scenarios were analysed: using all observations (later referred to as 

“Case I”) and using only observations that were equally scored by both neurologists (later referred to 

as “Case II”). 

7.2. Results 

In this study, 111 recordings were analysed in total, which included 26 recordings from 13 

PD patients, 34 recordings from 17 MSA patients, 27 recordings from 14 PSP patients, and 24 

recordings from 12 healthy controls. Examples of the recorded finger-tapping movement are given in 

Figure 7.11, for one subject from all four participant groups.  

HC subject tapped with the highest speed and the biggest amplitude. This movement was 

much more vigorous compared to the performance of the three patients (the fastest tap is accentuated 

with red colour). Also, HC performed the finger-tapping consistently throughout the 15 s of the test. 

Although they were in the same stage of the disease development (H&Y=2), three patients had very 

different finger-tapping movement patterns. Among all three patients, the PD patient had the most 

vigorous performance, with some changes in the standard rhythmicity (or insecurities) around the 

12th and 14th s (marked with red ellipses). The finger-tapping pattern of the PD patient had the most 

similar shape with HC. In contrast, MSA had a consistent tapping, but the corrupted pattern – it 

contained a lot of bumps in the signal (marked with red rectangle), as a consequence of the hand 

tremor which was visible during the recording. The most changeable movement was seen in the PSP 

patient. This patient performed the finger-tapping with very variable rhythm and amplitude. The 

shape of the finger-tapping changed throughout the sequence (the point of visible change of rhythm 

is marked with red dashed line): at the beginning, his/her taps looked more like normal finger-tapping, 

whereas later in the sequence, his/her taps were more irregular with expressed bumps and insecurities 

while performing the movement (shown with red rectangle).  
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Figure 7.11 Representation of the dominant component of the relative angular velocity 𝜔𝑟𝑑, recorded 

during the repetitive finger-tapping movement. Examples are given for one PD patient (first panel), 

one MSA patient (second panel), one PSP patient (third panel), and one HC subject (fourth panel). 

Three patients were in the second stage of disease severity (H&Y=2).  

Descriptive statistics (average±std) for the basic and additional feature sets are shown in Table 

7.3 and Table 7.4, for each subject group separately. Table 7.5 presents the results of the performed 

statistical analysis.  
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Table 7.3 Descriptive statistics (average±std) for the basic feature set, presented for each subject 

group separately. 

Feature PD MSA PSP HC 

𝒇𝒂𝒗
(𝒊) [𝑯𝒛] 2.04±0.87 1.71±1.26 2.37±1.11 3.32±0.89 

𝜶𝒂𝒗 [°] 63.08±8.54 56.27±36.11 44.87±31.74 80.48±26.55 

𝒊𝒅𝒆𝒄 [#] 5.00±5.66 4.03±4.74 5.62±4.88 11.00±10.99 

𝑯𝒏𝒖𝒎 [#] 0-4 0-7 0-4 / 

𝑭𝒏𝒖𝒎 [#] 0 0-2 0-1 / 

PD – Parkinson’s disease patients; MSA – Multiple system atrophy patients; PSP – Progressive supranuclear palsy 

patients; HC – Healthy controls.  

 

HC performed finger-tapping movement with the highest speed and amplitude, as shown with 

𝛼𝑎𝑣 and 𝑓𝑎𝑣
(𝑖)

 parameters. The slowest tapping was detected in MSA patients, whereas PSP patients 

performed the finger-tapping with the highest frequency. However, the amplitude in PSP patients was 

significantly lower compared to PD patients, who performed the widest finger taps. This 

disproportion in the values for the tapping amplitude and speed for the PD and PSP groups confirmed 

the need for distinguishing two types of the finger-tapping movement (described by clusters 𝐶1 and 

𝐶2). Results for the amplitude decrement provided comparable results between three groups. HC also 

experienced some decrease in the tapping amplitude; however, this was noticeable much later in the 

finger-tapping sequence (on average after the 10th tap). None of the HC subjects experienced any 

movement irregularities. On the other hand, patients from all three groups showed some episodes of 

hesitations (the largest number of hesitations in one movement sequence was seen in the MSA group). 

Freezes were detected only in patients with atypical forms of parkinsonism (MSA and PSP patient 

groups).  

Table 7.4 Descriptive statistics (average±std) for the additional feature set, presented for each subject 

group separately. 

Feature PD MSA PSP HC 

𝒘𝑷𝑺𝑫 [Hz] 0.48±0.17 0.46±0.15 0.51±0.18 0.42±0.06 

𝒔𝑷𝑺𝑫 [psd/Hz] 3.07±1.79 3.20±1.75 2.59±1.59 3.90±1.24 

𝒔𝑺𝑷𝑨𝑹𝑪 -6.91±0.63 -7.60±1.52 -6.59±0.58 -6.55±0.24 

𝒔𝑷𝑬𝑨𝑲𝑺[#] 2.83±1.60 5.75±4.31 2.43±1.60 1.52±0.38 

PD – Parkinson’s disease patients; MSA – Multiple system atrophy patients; PSP – Progressive supranuclear palsy 

patients; HC – Healthy controls.  

The features 𝑤𝑃𝑆𝐷 and 𝑠𝑃𝑆𝐷 showed that HC subjects performed the finger-tapping test with 

the smallest tap-to-tap variability. For PD and MSA patients, comparable results were obtained. The 

most prominent intra-variability was established in PSP patients, who, on average, had the highest 

value for the peak’s width and the lowest value for the peak’s slope, compared to the other three 

subject groups. Both features for smoothness quantification showed that HC performed the finger-

tapping movement with the utmost easiness. Among all patient groups, MSA patients had the 

bumpiest and the least smooth performance.  
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Table 7.5 The results of the performed statistical analysis for comparison of two groups and features 

from both feature sets, separately.  

Feature 
Compared groups 

PD-MSA PD-PSP PD-HC MSA-PSP MSA-HC PSP-HC 

𝜶𝒂𝒗 0.230 0.017 0.053 0.221 0.009 0.001 

𝒇𝒂𝒗
(𝒊)

 0.033 0.239 <0.001 0.008 <0.001 0.005 

𝒊𝒅𝒆𝒄 0.496 0.164 0.113 0.009 0.023 0.663 

𝑯𝒏𝒖𝒎 0.862 0.836 / 0.710 / / 

𝑭𝒏𝒖𝒎 / / / 0.430 / / 

𝒘𝑷𝑺𝑫 0.849 0.212 0.824 0.106 0.727 0.025 

𝒔𝑷𝑺𝑫 0.925 0.317 0.090 0.223 0.070 0.005 

𝒔𝑺𝑷𝑨𝑹𝑪 0.029 0.005 0.012 <0.001 0.001 0.802 

𝒔𝑷𝑬𝑨𝑲𝑺 0.006 0.282 <0.001 0.001 <0.001 0.016 

PD-MSA – Comparison of the PD and MSA groups; PD-PSP – Comparison of the PD and PSP groups; PD-HC – 

Comparison of the PD and HC groups; MSA-PSP – Comparison of the MSA and PSP groups; MSA-HC – Comparison 

of the MSA and HC groups; MSA-PSP – Comparison of the MSA and PSP groups; PD – Parkinson’s disease patients 

MSA – Multiple system atrophy patients; PSP – Progressive supranuclear palsy patients; HC – Healthy controls. 

Features showing the most expressed statistically significant differences between the 

compared groups were those describing the finger-tapping speed and movements smoothness (𝑓𝑎𝑣
(𝑖)

, 

𝑠𝑆𝑃𝐴𝑅𝐶, 𝑠𝑃𝐸𝐴𝐾𝑆). For features describing movement variability, significant differences (𝑝 < 0.05) 

were seen only for the comparison of PSP patients, and HC subjects. 𝐻𝑛𝑢𝑚 and 𝐹𝑛𝑢𝑚 showed no 

differences between the compared groups.  

The scores given by the two neurologists are provided in Table 7.6, together with the results 

of Cohen’s Kappa statistics describing the agreement between the given scores. For patient groups, 

the scores are presented separately for the less and more-affected hand and averaged for all patients 

in the group. In the case of the HC group, the scores were averaged for both hands and all subjects.  

As shown in Table 7.6, there were some discrepancies between the results given by two 

neurologists (more prominent for MSA and PSP groups). This result is also confirmed by Cohen’s 

Kappa coefficient 𝜅 = 0.79, showing a moderate level of agreement between the scores given by the 

two neurologists.  
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Table 7.6. Descriptive statistics (average±std, median) for the finger-tapping scores given by two 

neurologists, presented separately for the less and more affected hand and each subject group. 

Group Statistics 
FTN1 scores FTN2 scores 

Less AH More AH Less AH More AH 

PD 
Average±std 1.67±0.89 2.17±0.94 1.75±0.97 2.17±0.94 

Median 2 2 2 2 

MSA 
Average±std 2.31±0.70 2.81±0.54 2.38±0.72 2.81±0.54 

Median 2 3 2.5 3 

PSP 
Average±std 2.17±0.94 2.62±0.77 2.08±0.79 2.77±0.73 

Median 2.5 3 2 3 

HC 
Average±std 0.44±0.63 0.50±0.73 

Median 0 0 

Total agreement κ=0.79 

PD – Parkinson’s disease patients; MSA – Multiple system atrophy patients; PSP – Progressive supranuclear palsy 

patients; HC – Healthy controls; FTN1 scores – Scores given by the first neurologist; FTN2 scores – Scores given by the 

second neurologist; Less AH – The less affected hand; More AH – The more affected hand.  

In Figure 7.12, the features representing the finger-tapping frequency 𝑓𝑎𝑣
(𝑖)

and angle 𝛼𝑎𝑣  are 

scattered as the function of the calculated scores. Two performance clusters are presented using 

markers of different colours and shapes. Both tapping frequency 𝑓𝑎𝑣
(𝑖)

 and angle 𝛼𝑎𝑣 features show a 

decline in values with higher scores, which is in agreement with the clinical UPDRS criteria for 

evaluation of the finger-tapping and related movements. Furthermore, movement sequences assigned 

to the cluster 𝐶1 are characterized by a lower tapping frequency 𝑓𝑎𝑣
(𝑖)

 and higher tapping angles 𝛼𝑎𝑣 

compared to the cluster 𝐶2. 

   

Figure 7.12 Dependence of feature 𝛼𝑎𝑣 values on calculated scores (left), and feature 𝑓𝑎𝑣
(𝑖)

 values and 

calculated scores (right). Observations from two different clusters are shown with colour- and shape-

coded representation: grey circles show observations from the cluster 𝐶1 (“wider and slower” finger-

tapping performance), and black crosses mark samples from the cluster 𝐶2 (“narrower and faster” 

finger-tapping performance). 
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The results of the expert system, expressed through the 𝐴𝑐 metric, are presented in Table 7.7, 

for each patient group separately, as well as summarized for all patients. In the left column, the results 

are shown for the first evaluation scenario, Case I, which included all observations (87 observations 

in total, PD: 26, MSA: 34, PSP: 27). The shown results were averaged for both raters. In the right 

column, the results are presented for the second evaluation scenario, Case II, including only the 

observations equally scored by both raters (76 observations in total, PD: 25, MSA: 29, PSP: 22). For 

both evaluation scenarios, results are also presented by a confusion matrix in Figure 7.13.  

Table 7.7 Results of the expert system presented through the 𝐴𝑐 metric, for each patient group and in 

total. The results are provided for two evaluation scenarios: 1) when all observations were included 

in the evaluation (Case I), and 2) when only observations equally scored by both neurologists were 

included in the evaluation (Case II). 

Group 
𝑨𝒄 [%] 

Case I Case II 

PD 82.69±2.72 84.00 

MSA 82.36±8.32 89.65 

PSP 83.76±7.86 90.91 

Total 83.33±6.50 88.16 

PD – Parkinson’s disease patients; MSA – Multiple system atrophy patients; PSP – Progressive supranuclear palsy 

patients. 
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Figure 7.13 Confusion matrix for Case I - all observations included in the evaluation (left), and Case 

II - only observation equally evaluated by both raters included in the evaluation (right). The fields on 

the diagonal present the percentage [%] of accurately assigned scores, whereas the fields outside the 

diagonal present the percentage [%] of wrongly predicted scores. 

The expert system provided scores that matched the scores estimated by the neurologists with 

good accuracy. For the first evaluation technique, Case I, with all observations included in the 

analysis, similar results were obtained for all three patient groups, showing accuracy above 82%. The 

results were improved for the second evaluation technique, Case II, when only observations equally 

scored by both raters were included, showing matching of almost 90% between the scores given by 

the expert system and those estimated by the neurologists. Furthermore, based on the results provided 
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in Figure 7.13, it can be seen that the scores provided by the expert system and the scores estimated 

by the neurologist did not exceed a difference of one score (except for one patient).  

Example results of the developed support for the evaluation of bradykinesia severity are 

presented in Figure 7.14. The finger-tapping amplitude sequence is presented, together with the 

detected movement disturbances (amplitude decrement and movement irregularities) and calculated 

features describing basic movement characteristics. For comparison, the example is provided for two 

patients (one MSA and one PSP patient) who were equally evaluated by both raters and developed 

expert system (score 𝑆𝐹𝑇). 

Amplitude decrease

 

𝑺𝑭𝑻 = 𝟑 

 

𝐻𝑛𝑢𝑚 = 4, 𝐹𝑛𝑢𝑚 = 1  

 

𝑖𝑑𝑒𝑐 = 5 

 

𝑓𝑎𝑣
(𝑖)

= 1.87 ± 1.58 Hz 

 

𝛼𝑎𝑣 = 23.49 ± 26.42 ° 

 

𝑺𝑭𝑻 = 𝟑 

 

𝐻𝑛𝑢𝑚 = 0, 𝐹𝑛𝑢𝑚 = 0  

 

𝑖𝑑𝑒𝑐 = 2 

 

𝑓𝑎𝑣
(𝑖)

= 1.86 ± 0.17 Hz 

 

𝛼𝑎𝑣 = 53.44 ± 15.01 ° 

ID: MSA11 ID: PSP14

 
Figure 7.14 Example results of the developed support for the evaluation of bradykinesia severity. It 

comprises a graphical representation of the calculated finger-tapping amplitude sequence with 

marked disruptions (amplitude decrement and rhythm irregularities), calculated features describing 

different movement characteristics, and the score provided by the expert system. The example is 

provided for one MSA patient (left), right hand, and one PSP patient (left), right hand. 

7.3. Discussion 

This chapter presents a new method for the evaluation of the bradykinesia symptom. The 

method was developed and validated on the example of the finger-tapping movement, which is a 

standardized motor test for the evaluation of bradykinesia severity. Results include a new 

parametrization that describes important biomechanical movement properties and completely 

quantifies clinical evaluation criteria. This parametrization included two feature sets: basic and 

additional. The basic feature set comprised metrics that quantified movement characteristics, which 

are visually observed in the clinical practice and used for evaluation of patients’ symptoms and degree 

of their motoric impairment. However, during the extensive analysis of the used signal database, some 

other movement properties were noticed and included in the analysis. The metrics quantifying 

movement variability and smoothness were developed and included as the additional feature set. 
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Although additional features target some movement characteristics that are not observed nor included 

in the clinical examination, the use of both feature sets enables more detailed movement analysis, 

providing deeper insight into the development of some other symptoms (such as tremor).  

The continuous wavelet analysis was used for describing temporal changes of the dominant 

finger-tapping frequency, which gave an estimation of the tapping speed on the level of one sample. 

It was also successfully applied for the detection and localization of movement irregularities 

(hesitations and freezes) that might endanger the normal movement rhythmicity. The amplitude was 

quantified with the tapping angle, which was calculated by integrating the dominant component of 

the relative angular velocity of two fingers, following the procedure described in the Chapter 6. 

Significant amplitude drops were detected using a thresholding technique, which represented a new 

way for quantifying the amplitude decrement criterion. Welch’s estimation of the power spectral 

density was used to evaluate the finger-tapping intra-variability. The width and slope of the most 

dominant peak in the power spectral density provided a measure of a tap-to-tap variability. Movement 

smoothness was assessed and quantified using two different measures: one implemented on a signal 

representation in the frequency domain as the length of the spectral arc length, and other calculated 

as the number of signal “bumps” in the time series.   

The designed parametrization and medical knowledge defined in the UPDRS scale 

represented the basis for the development of a new expert system for the prediction of clinical scales 

and severity of symptoms. The expert system implemented simple decision rules that objectified and 

matched the standardized UPDRS criteria. Decision boundaries for the tapping amplitude and speed 

criteria were defined using a clustering technique and the testing data that was obtained from healthy 

controls and randomly selected patients. In this way, decision boundaries were not defined 

empirically nor linearly; they were established based on natural grouping of some randomly selected 

testing data. This approach distinguished two types of the finger-tapping movement: “wider and 

slower” (cluster 𝐶1, grey circles in Figure 7.12) or “narrower and faster” (cluster 𝐶2, black crosses in 

Figure 7.12). Each movement type was described with two sets of boundaries. The reasoning process 

included selection of corresponding boundaries for each patient individually, based on the type of 

their movement. Decision boundaries for the other two movement properties (amplitude decrement 

and hesitations/freezes) completely matched decision rules defined in the UPDRS scale.  

The efficiency of the proposed expert system was evaluated for the entire range of finger-

tapping bradykinesia severity scores (0-4). In the literature, most studies included severity stages up 

to 3, indicating that the highest scores were given to patients that cannot execute the task at all. 

However, in this study, three patients that barely managed to perform the finger-tapping movement 

were included. Their performance was poor and influenced by multiple movement disruptions 

simultaneously (visible for one or both of their hands), and therefore evaluated with the highest 

bradykinesia severity score (4).  

The obtained results were compared with the scores provided by two neurology specialists. 

The expert system predicted the scores with overall accuracy 𝐴𝑐 of 83.33±6.50% (averaged for both 

raters). On the level of the individual patient groups, accuracy 𝐴𝑐 was 82.69±2.72%, 82.36±8.32%, 

and 83.76±7.86% for PD, MSA, and PSP groups, respectively. By analysing only observations that 

were equally evaluated by both neurologists, the accuracy of the expert system 𝐴𝑐 achieved 88.16%. 

On the level of the individual patient groups, the accuracy was 84.00%, 89.65%, and 90.91% for PD, 

MSA, and PSP patients, respectively. In the latter case, the expert system predicted the wrong scores 
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for only nine observations (out of 76 observations). The expert system provided very good results for 

patients with idiopathic PD, but also for the patients with atypical forms of parkinsonism who may 

perform finger-tapping movements differently compared to the PD patients [71]. The predicted scores 

and clinical scores did not exceed a difference of one score (as shown in the confusion matrices in 

Figure 7.13), except for one PD patient. In that case, the expert system predicted the score lower (for 

two values) than the scores given by both raters. By recording and analysing the data from the larger 

pool of subjects, decision boundaries could be fine-tuned providing even better results. 

Example results of the developed clinical support for two patients are presented in Figure 

7.14. The first patient performed wider and slower finger taps (quantified with higher values for the 

𝛼𝑎𝑣 feature and lower values for the 𝑓𝑎𝑣
(𝑖)

 feature). Furthermore, during the performance, this patient 

experienced significant amplitude decrement after the first tapping cycle (quantified with the 𝑖𝑑𝑒𝑐 

feature), which represented the criterium for assigning the score 𝑆𝐹𝑇 = 3. The second patient 

performed the finger-tapping with more considerable variations in speed and amplitude, with the 

appearance of four hesitations and one freeze. A large number of irregularities resulted in the score 

𝑆𝐹𝑇 = 3. Although their performances were different, both patients were equally scored not only by 

the expert system but also by both neurologists. Based on the instructions provided in the UPDRS 

scale, one score is given if any of the evaluation criteria is satisfied (tapping amplitude, speed, 

amplitude decrement, or hesitations/freezes). In the case when different patients satisfy different 

criteria for obtaining the same score, their performances cannot be compared. This raises a question: 

is a scale with only four grades sufficient for evaluating such complex movements? In order to solve 

this problem, in the literature, continuous scoring is proposed for the evaluation of repetitive 

movements. Although such solutions provide more thorough scoring, the continuous evaluation does 

not correspond to a standardized clinical scoring system and, therefore, may be confusing and not 

fully applicable for physicians. Because of that, the presented expert system can provide the final 

score, but also scores for individual movement properties. Furthermore, the result of the developed 

support includes graphical representation of the movement amplitude, together with metrics 

describing important movement properties. The metrics are provided in a form that is intuitive and 

understandable for the potential end-users (neurologists). In this way, the results of the different or 

the same patient can be compared.   

The list of subjects included patients with idiopathic Parkinson’s disease and two types of 

atypical parkinsonism, as well as healthy controls. The inclusion of different forms of parkinsonism 

(both typical and atypical) allowed developed analysis and metrics to be examined for different 

symptom manifestations. In addition, the calculated parameters showed some differences between 

groups (especially visible for the features describing finger-tapping speed and movement 

smoothness), which proved their potential for distinguishing patients with different forms of 

parkinsonism. Furthermore, by applying the developed analysis to the recordings of healthy subjects, 

it was possible to test and determine the normal characteristics of the tapping movement.  

Although the movement analysis and expert system were validated on the example of the 

finger-tapping movement, developed decision support is completely applicable and adjustable for all 

clinically relevant repetitive movements that are used for evaluation of bradykinesia symptom. The 

evaluation criteria are the same for these movements (which besides finger-tapping includes hand 

opening-closing, hand pronation-supination, and foot-tapping), and therefore the developed analysis 

can be easily adapted and applied for all these movements.    
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8. Decision support system for assessment of patients 

with neurodegenerative disorders: Presentation of 

results on the example of one patient 

The results of the developed support are presented on the example of one male patient (ID: 

M.M.). In 2015, the patient came to the Clinic of Neurology, Clinical Centre of Serbia, School of 

Medicine, University of Belgrade, Belgrade, Serbia. At the time, he was 64 years old, with no other 

medical history. During the visit, the gait of this patient was recorded using the wearable wireless 

sensors system. The patient M.M. walked along a straight path for 8 s. The observed and processed 

walking sequence had 14 feature dimensions including normalized ground reaction force GRFN, 3 

accelerometer axes 𝑎𝑥,𝑦,𝑧 and 3 gyroscope axes 𝜔𝑥,𝑦,𝑧, as shown in Figure 8.1. The data was fed to 

developed deep learning models: long short-term memory network and convolutional neural network. 

In Figure 8.1 right panel, the results of the decision support are presented in the form of a probability 

that that patient had PD, separately for the LSTM and CNN models.  

LSTM model

CNN model

𝑃𝐷𝑠𝑐𝑜𝑟𝑒 = 100.00% 

𝐻𝐶𝑠𝑐𝑜𝑟𝑒 = 0.00% 

𝐻𝐶𝑠𝑐𝑜𝑟𝑒 = 1.30% 

𝑃𝐷𝑠𝑐𝑜𝑟𝑒 = 98.70% 

 
Figure 8.1 Presentation of the recorded walking sequence (data recorded from the more affected leg), 

together with the results given by the two deep learning models. 
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As shown, both models suggested that the patient M.M. had PD, with high probability (98.7% 

by the LSTM and 100% by the CNN model). The output given by the decision support based on deep 

learning models was presented in a way that is intuitive and understandable for the clinicians. The 

results agreed and supported the diagnosis given by two specialists in movement disorders.  

A severe progression of the disease was observed in the following years, with more expressed 

bradykinesia symptom. During the visit to the Clinic of Neurology, the examination of the patient’s 

motor abilities was executed. The patient performed the finger-tapping test for 15 s following the 

instructions provided in the UPDRS test and the measurement procedure (as introduced in Chapter 

6). The movement was recorded with a miniature inertial sensor system and processed using the 

developed method for the objective movement analysis (as defined in Chapters 6 and 7). The 

symptom severity was evaluated using the developed expert system for the prediction of clinical 

scores (as shown in Figure 8.2).  

Amplitude decrease
𝛼𝑎𝑣 = 60.30 ± 12.64 ° 

𝑺𝑭𝑻 = 𝟐 

𝐻𝑛𝑢𝑚 = 0, 𝐹𝑛𝑢𝑚 = 0  

𝑖𝑑𝑒𝑐 = 9 

𝑓𝑎𝑣
(𝑖)

= 1.24 ± 0.06 Hz 

Basic FT 

properties

Additional FT 

properties

𝑠𝑆𝑃𝐴𝑅𝐶 = −7.89 

𝑠𝑃𝐸𝐴𝐾𝑆 = 4.85 

𝑠𝑃𝑆𝐷 = 3.30 psd/Hz 

𝑤𝑃𝑆𝐷 = 0.34 Hz 

 

Figure 8.2 Presentation of the calculated finger-tapping movement amplitude, together with the 

metric describing important biomechanical properties and bradykinesia severity score.  

 During the examination, the patient performed wider but slower finger taps, with no 

hesitations nor freezes. The significant decrement in the movement amplitude was visible after the 

9th tap. The decision support system predicted the bradykinesia severity score of 𝑆𝐹𝑇 = 2. Additional 

movement properties are shown as well, including features describing smoothness and intra-

variability of the movement. Although the movement was not smooth, its variability was not 

significantly expressed. This indicated the presence of another symptom during the examination – 

tremor. In this way, a detailed and precise analysis of the movement is given as the output of the 

developed decision support, providing detailed insight into the patient’s motor state and abilities.  
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9. Conclusion  

9.1. Contribution of dissertation 

The contribution of the research presented in this thesis primarily includes the research and 

development of a new intelligent clinical decision support system. The presented tool provides an 

objective, automatic and precise assessment of patients with neurodegenerative diseases, supporting 

disease recognition and evaluation of symptom severity in these patients. Analysis of repetitive hand 

and leg movements represents the basis of the developed system. The observed movements are part 

of standardized clinical motor tests or everyday activities.  

The system has a high practical value. Movement patterns are captured using small, 

lightweight, and simple wireless wearable sensors. The necessary measurement systems do not 

require complicated set-up and can be easily applied in both clinical and everyday environments. 

Although in this system custom-made sensors are used, the designed DSS can be applied with any 

sensors that allow recording of inertial or force data in the same manner.  

The system is a hybrid; different parts of the system apply diverse types of reasoning. 

Intelligent algorithms are carefully selected and designed to meet all the necessary requirements of 

the desired clinical decision support, type of performed movement analysis, and expected outcomes. 

The whole processing is automatic, repeatable and does not require any manual work or engineering 

skills of potential end-users to implement it.  

The system is designed as a suggestion DSS – the clinical staff can seek for an assistance or 

a consultation while assessing the patients with neurodegenerative disorders. Because of that, the 

result is presented in a form that is intuitive and understandable for the potential end-users. It includes 

a graphical presentation of the analysed signals and parametric values that describe important 

movement properties and provide a diagnostic recommendation or symptom severity score.  

Objective and automatic decision support for recognizing patients in the early stage of the 

disease development  

The first part of the developed support is dedicated to the provision of objective identification 

of PD based on the intelligent and automatic analysis of the human gait. The support was developed 

using the nonknowledge-based reasoning, since it does not require any apriori knowledge about the 

observed problem.  
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For that purpose, deep learning models were designed. The initial database was augmented 

with walking segments of different sizes, which were segmented using two different techniques. The 

augmentation strategies provided several datasets (containing from a few hundred to a few thousand 

samples) for training and testing. The models were evaluated on a subject level: model performance 

was tested using data from a previously unseen subject. In this way, it was assured that the deep 

learning algorithms learned features that described subjects’ health status and not some other intrinsic 

properties of the subject’s gait related to their identity.  

Developed deep learning models distinguished PD patients from healthy controls with high 

accuracy (above 90%). Recognition of PD patients in the early stage of the disease development was 

also performed with very good accuracy (above 80%). Although LSTM models are designed to find 

long-term dependencies in data, CNN outperformed LSTM for both classification tasks, proving great 

capabilities of these deep learning algorithms.  

In addition to high accuracy results, the performed study has another important contribution 

– examination of the influence that walking duration and conditions might have on the efficiency of 

designed models. Although recognition of PD is based on very short sequences, and for those, high 

accuracy results are obtained, longer walking sequences would probably contribute to even better 

identification of PD in the early stage of the disease, especially in the case of the LSTM network. 

Walking segments that were recorded with a cognitive occupation were in larger percent correctly 

classified. These results showed that cognitive load while walking caused meaningful changes in the 

gait and contributed to more efficient early PD recognition. The literature already suggested that 

executive functions are impaired early in PD, which is demonstrated in an inability to separate the 

cognitive resources that are required for the simultaneous performance of different activities [150]. 

The obtained results complied with these conclusions and showed possible directions for the future 

development of the objective and automatic diagnosis of patients with neurodegenerative disorders.   

The developed and presented method is the first that implements deep learning algorithms for 

automatic and objective early PD recognition, based on gait data recorded with wireless, wearable 

sensors. One may wonder why this is important. Deep learning algorithms process raw data; they do 

not require a high level of engineering skills for developing features that can capture desired patterns 

and subtle changes in data. In the practical sense, developed DL models have high potential – they 

can be easily applied for new previously unseen data; they are repeatable, automatic and do not 

require complicated data processing or apriori medical knowledge. The output is provided in the form 

of a probability that a person might have Parkinson’s disease. The designed models are not too 

complex, which is especially notable for the LSTM model, which required training of only 56,301 

parameters. Therefore, developed models can be easily applied to some mobile or web platforms and 

accessible for a large number of potential users. 

Furthermore, the designed support is based on one of the most common everyday human 

activities – walking. Having a tool that can detect the appearance of one of the most common 

neurodegenerative disorders based on just a few strides may contribute to more efficient and 

widespread early recognition of this disease and consequently improve disease treatment and progress 

monitoring from its early stage. Additionally, the gait data is recorded with simple, inexpensive 

instrumentation that does not require a complicated set-up, and it can be applied at any time and any 

place. Therefore, presented support has high applicability and potential for the provision of automatic 
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and objective recognition of PD in the clinical environment, but also for the everyday self-

management of healthy people that might have a predisposition to develop this disease.  

A better understanding of analysed motor patterns and specific changes that may be visible in 

the recorded signals 

The second part of the decision support system allows assessment of the bradykinesia severity 

using repetitive hand and leg movements. These movements represent standardized clinical motor 

tests, and they are of crucial importance for evaluating PD symptoms.  

Firstly, the method for capturing and calculating the amplitude of these movements is defined 

and presented. The method includes the definition of the measurement procedure and instrumentation, 

as well as the algorithm for calculating the movement amplitude. The procedure for recording 

movements is simple, repeatable, and in agreement with the standardized clinical testing protocols. 

The measurement system is lightweight, easy to mount, and does not interrupt subjects’ natural 

performance. The algorithm for calculating the movement amplitude was initially developed and 

validated for the finger-tapping test [134]. In this thesis, the algorithm is extended to the other three 

movements as well: hand opening/closing, hand pronation/supination, and toe-tapping. The 

particularly significant contribution is a detailed analysis of the motion patterns, which included a 

definition of movement phases, and characteristic changes that are related to specific movement 

events, such as “zero posture” of the fingers or hand, maximum amplitude, moments representing the 

transitions between the successive phases, and others. The preformed analysis served as the basis for 

the development of a new algorithm for the segmentation of these repetitive movements, which is 

automatic and precise, and it can be applied for both normal and endangered movement patterns 

because it is adaptive to the intrinsic movement properties. The performed detailed analysis represents 

a significant basis for further analysis of these important hand and leg movements.  

New metrics describing important biomechanical movement properties 

Performed analysis of fast repetitive hand and leg movements resulted in new metrics. Feature 

extraction is fully automatized, simple, repeatable, and does not require any manual or individual 

processing. Signal processing techniques were carefully selected for each feature individually. The 

developed parametrization has two sets. The first, basic set, comprises features that completely 

quantify standardized movement properties: amplitude, speed, amplitude decrement, and 

hesitations/freezes that may appear during the performance. For that purpose, time-frequency 

analysis, numerical analysis and thresholding techniques were applied. Designed parameters are 

presented in a form that is intuitive and understandable for physicians. The feature extraction is 

adaptable to the inherent properties of each individual signal. Therefore, developed movement 

analysis can be easily applied to new signals that were not used during the design and validation of 

the method itself.  

The metrics are complemented with some additional features describing other movement 

properties as well. These motion characteristics do not represent part of the standardized clinical 

evaluation; however, during the extensive search and examination of the used database, some 

specifics in the movement patterns were observed that might be of interest to neurologists for the 

long-term monitoring of patients and comparison with other patients. These include smoothness of 

the movement and movement intra-variability, which were described with some simple and 
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repeatable signal processing techniques. The features were designed with a time- and frequency-

domain signal processing techniques.  

Furthermore, the results of the statistical analysis showed that the developed metrics have 

great potential for differential diagnosis of parkinsonism and related disorders.  

Automatic prediction of clinical scores based on the expert system 

Developed support implements a new expert system for the prediction of clinical scores and 

symptom severity. The expert system predicted scores with high accuracy of 88.16% for comparison 

with the reference data given by two specialists in movement disorders.  

Although machine learning algorithms could predict scores with high accuracy, in that case, 

prediction of scores would require the use of labels that are visually estimated by neurologists. As it 

was already mentioned, evaluation efficiency severely depends on the examiner’s knowledge and 

experience, and therefore, the decision-making process is prone to subjectivity. The use of 

subjectively estimated labels can cause subjectivity in the learning model and its results as well. 

Because of that, this thesis offers a different approach to solve this problem. Since UPDRS scale 

encompasses domain-specific knowledge that is expressed though the clinical evaluation criteria, 

prediction of clinical scores was performed using the knowledge-based reasoning. The expert rules 

for the discrete movement properties (the serial number of the tap with significant amplitude drop 

and the number of hesitations/freezes) completely matched clinical rules and instructions for 

assigning scores. In the case of continuous features (such as the amplitude and speed), the medical 

knowledge does not comprise precisely defined criteria. Because of that, decision boundaries were 

defined using a clustering technique. The clustering allowed the definition of expert rules based on a 

natural grouping of data that was obtained from healthy subjects and randomly selected pool of 

patients. In addition to the score describing the bradykinesia severity, the system can also output the 

sub-scores evaluating the individual movement properties. Therefore, all movement characteristics 

are considered simultaneously for providing the final score.  

Furthermore, this is the only solution that observes the natural inter-subject diversity of these 

movements. The extensive search and analysis of the used database showed that subjects perform the 

finger-tapping movement in two different ways: 1) wider but slower finger taps and 2) narrower but 

faster finger taps. When reasoning, the presented expert system also considers the type of movement, 

and based on that, applies the corresponding set of decision boundaries. In this way, the patient’s 

understanding of the given task does not influence the decision-making process. The whole procedure 

is objective and automatic – the movement is automatically assigned to one movement type, and the 

corresponding set of decision boundaries is selected.  

The result of the support comprises a graphical presentation of the calculated movement 

amplitude, detected movement irregularities and disturbances, calculated feature sets describing 

important movement properties, and scores for prediction of symptom severity. Developed support 

represents a valuable and practical tool that can assist neurologists. It provides an automatic and 

objective assessment of bradykinesia, evaluation of symptom severity through prediction of clinical 

scores, monitoring of disease progress and response to therapy, and comparison with other patients.  

The expert system was validated on the example of the finger-tapping test; however, it is fully 

applicable for other bradykinesia related movements as well. Instructions for evaluating these four 
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movements are the same, including movement properties that should be observed and rules for 

assigning scores. The movements differ only in the manner how movements are performed, and their 

amplitude is observed, which is also analysed in this thesis. Therefore, although the expert system 

was only validated on the example of the finger-tapping test, the developed analysis and expert system 

are fully adaptable and applicable for other movements as well, proving the high practical value of 

the developed support.  

Validation of the developed decision support system on different groups of subjects 

The intelligent algorithms, developed and presented in this thesis, were validated on several 

groups of subjects. The patient groups reflected many features of real clinical cases, which enabled 

the examination of the developed algorithms for a wide range of movement impairments. Data 

recorded on healthy subjects allowed the definition of “normal” or reference movement patterns. 

Designed deep learning models were cross-validated using the gait data recorded from PD patients in 

different stages of the disease development. The particular focus was given to identifying patients 

with PD in its early stage when symptoms endangering their gait are not significantly expressed and 

visible.  

Objective and automatic support for the assessment of bradykinesia symptom was validated 

on the pool of patients, that included patients with several neurodegenerative disorders, more 

specifically typical and atypical forms of parkinsonism, patients in different stages of the disease, and 

different stages of the bradykinesia severity (ranging from normal to severely impaired motions). The 

developed and presented movement analysis, and expert system gave high accuracy results for all 

patient groups, regardless of the disease stage and bradykinesia severity, showing the great practical 

potential of developed support for patients with different types of parkinsonism and different 

symptom manifestations. Most studies only included patients evaluated with the test score up to 3. In 

this thesis, several patients with the highest degree of bradykinesia severity were included. Those 

patients performed the finger-tapping test very badly, expressing multiple movement disturbances 

simultaneously. This caused their movement to be scored with the highest score, by both neurologists 

and the expert system. In this way, the applicability of the developed support was examined for the 

full range of scores 0-4.  

9.2. Perspective and future research 

Extension of the developed system for other neurodegenerative disorders or tasks 

The obtained results gave potential directions for the future improvement and extensions of 

the developed decision support system. The support will be extended to other neurodegenerative 

disorders as well. This advancement primarily includes the differentiation of typical and atypical 

forms of parkinsonism. In this thesis, it was shown that developed analysis of bradykinesia has great 

diagnostic potential. These results represent a significant basis for future research, which will be 

directed towards designing appropriate features that can capture significant patterns in movement 

data and contribute to the precise differentiation of these patient groups. Furthermore, obtained results 

showed that cognitive dual-tasking and longer sequences might play a significant role in the precise 

early PD identification. Due to that, an effort will be put in developing experimental protocols that 

can contribute to even better identification of PD patients in the early stage of disease development 

or differential diagnosis with other neurodegenerative disorders.  
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As for the expert system, planned extensions include validation of developed algorithms on 

other bradykinesia related movements: hand opening/closing, hand pronation/supination and toe-

tapping. Furthermore, expansion of the entire system is planned, which will include the development 

of an objective and automatic support for the assessment of other PD symptoms, such as tremor, 

rigidity, postural instability, and others. 

Collaboration with other groups for more widespread validation of the developed system 

The main limitation of the developed system is a relatively small number of included subjects. 

This represents the burning issue in the field of sensor-derived assessment of patients with 

neurodegenerative disorders. Most research groups working in this field have collaboration with 

medical institutions and put a lot of effort and resources to collect enough data for developing and 

validating their intelligent algorithms. Data acquisition typically requires a lot of time and results with 

only a few dozen of analysed patients, which is not enough to have a clinically acceptable system. 

Therefore, the validation of developed decision support would benefit from increased and widespread 

collaboration among different research groups in the world. Aligning experiment protocols, 

validating algorithms using data recorded with measurement systems of different manufacturers or 

from patients of different demographic features, and sharing data among researchers would provide 

a good basis for the development of large-scale databases and more precise and clinically acceptable 

systems. 

Development of an intuitive graphical interface 

In the future, a developed decision support system should be developed in the form of a mobile 

or web application. This advancement would enable the system to be used by a larger number of 

users, and it would additionally improve the accessibility and practical value of the developed 

support.  

The software application should have an intuitive and simple graphical interface, protected 

with a password. It should provide a graphical presentation of recorded signals, numerical results of 

features, diagnostic recommendations, scores and sub-scores, and statistical analysis. Furthermore, 

the collected data should be saved for later analysis and monitoring and exported in a form that is 

suitable for reporting and compatible with local electronic health records. 
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