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Decision support system for assessment of patients with
neurodegenerative disorders

Abstract — Clinical decision support system represents a computer-aided tool that utilizes
advanced technologies for influencing clinical decisions about patients. This dissertation presents
research and development of a new decision support system for the assessment of patients with
neurodegenerative diseases. The analysis of movements that are part of standard clinical scales or
everyday activities represents the basis of the system. These movements are recorded using small and
lightweight wearable, wireless sensors, which do not require complicated setup and can be easily
applied in any environment. The first part of system is dedicated to the (early) recognition of
Parkinson’s disease (PD) based on gait analysis and deep learning algorithms. PD patients could be
identified with a high accuracy. The other part of the system is dedicated to the assessment of PD
symptoms, more specifically, bradykinesia, utilizing the knowledge-based reasoning. A method for
analysis of bradykinesia related movements is defined and presented. Moreover, by applying different
signal processing techniques, new metrics have been developed to quantify the essential
characteristics of these movements. The prediction of symptom severity was performed using new
expert system that completely objectified the clinical evaluation criteria. Validation was performed
on the example of the finger-tapping movement of patients with typical and atypical parkinsonism.
A high compliance rate was obtained compared to clinical data. The developed system is objective,
automated, easy to use, contains an intuitive graphical and parametric presentation of results, and
significantly contributes to the improvement of clinical assessment of patients with
neurodegenerative diseases.

Keywords: decision support system; movement analysis; wearable sensors; machine
learning; signal processing; expert rules; neurodegenerative disorders; Parkinson’s disease,
bradykinesia; clinical assessment.

Scientific area: technical sciences, electrical engineering
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CucreMm 3a mnoApPUIKY OMJIYYMBaAWKBY, eBaJyauujy H
npaheme CTama nauujeHara 000J1e/1UX ()
HeypoaereHepaTUuBHUX 00J1eCTH

Pe3ume — Cuctemu 3a MojpIIKY KIMHUYKOM OJIyUYHMBamYy MPEACTaBIbajy pauyHapcKe ajare
KOJU IPHUMEHOM HaIlpeJHUX TEXHOJIOTMja MOTy YTHIATH Ha JIOHOIIEHE OJUIyKa y Be3H ca
nanujeHTuMa. Y OBOj JUCepTalMju MPEACTaB/bEHU Cy MCTPaKUBame€ M pa3BOj HOBOI cHCTEMa 3a
MOJPIIKY  OJIyYHBamy, eBalyanujy W npaheme crama mangjeHata o00Jelnux O
HEYpOJeTeHepaTUBHUX 00IeCTH. AHaN3a KIMHAYKY PEIEBAHTHUX U CBAKOJHEBHUX IOKPETa YNHH
OCHOBY OBOT cuctema. O0paciy OBHX IMOKpPETa CHUMJbEHH Cy ToMohy OSKWYHHUX, HOCUBHX CEH30pa
MaJIUX TUMEH3Hja U TeKUHE, KOjH HE 3aXTeBajy KOMIUIMKOBAHY IOCTaBKY W MOTY C€ jeJHOCTaBHO
OPUMEHHUTH y OWJIO KOM OKpykemwy. IIpBH €0 cucreMa HaMemeH je (paHoM) Iperno3HaBamby
ITapkunconose 6osnectu (I1b) Ha ocHOBY aHanu3e Xo/a U anropuTama 1yookor yuema. Pesynraru cy
nokazanu na je I1b manujentre moryhe mpemno3Hatu ca BHUcOKoM TauHouthy. Jpyru geo cucrema
noceeheH je mpahewy cumntoMa [1b OpaaukuHe3nje MPUMEHOM pe30HOBama KOjU ce Oa3upa Ha
3Hamy. [lpeicTtaBibeHa je MeToJa 3a aHaANM3y ITIOKpeTa KOjU Ce€ KOPUCTE 3a eBallyalujy
Opanukunesuje. [lopen Tora, mpuMEHOM pa3IMYUTUX METOAa 00paje CUrHajga pa3BHjeHa je HOBA
METpHUKa 32 KBaHTH(PHKAIN]y BaKHIUX KapaKTePUCTUKA OBHX MOKpeTa. [Ipenuknuja creneHa pa3poja
CHUMIITOMA C€ 3aCHUBA Ha HOBOM E€KCIIEPTCKOM CUCTEMY KOJH Y MOTIIYHOCTH 00j€KTUBU3Y]€ KIMHUUKE
eBallyalluoHe KpuTepujyme. Banunanuja je ypalena Ha nmpumepy MOKpeTa Talnkama IpCTujy, KOJU je
CHMMJbEH Ha MalljeHaTuMa ca TUIMHYHUM U aTUMUYHUM MapKUHCOHM3UMOM. [lokaszaHa je BHCOKa
ycarjaimeHocT y Tmnopehemy ca KIMHMYKUM TNojanuMa. Pa3BujeHHM cuCTeM je O0jeKTHBaH,
ayTOMaTH30BaH, JeJHOCTABHO CE€ KOPHUCTH, CaJIp’KU MHTYUTHBAH IpaMuKH U MapaMeTapcKu MpHuKa3
pesyiaTara U 3HauajHO AONPHUHOCH yHampehemwy KIMHUUYKUX MpOoLeaAypa 3a eBalyalujy u npaheme
CTama TalfjeHaTa ca HeypoJIereHepaTHBHIM 00JIeCTHMA.

KibyuHe peum: cucteM 3a HMOJPUIKY OJUTyYMBamY; aHaIM3a MOKPETa; ,,HOCUBU CEH30DPH;
MAIIMHCKO Yy4ewe; oOpaja curHaja; eKCIepTcka MpaBWia; HEypojereHepaTuBHE OO0JecTH;
[TapkuHcoHOBa Oosect; OpaAMKeH3H]ja; KIMHUYKO Npaheme n eBalyalyja cTama.

Hay4yHa o0J1acT: TEXHUYKE HayKe, EIIEeKTPOTEXHUKA
Yoxa Hay4Ha 00J1aCcT: OMOMEIUIIMTHCKO HHIKEHEPCTBO
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Thesis outline

Chapter 1 provides information about the clinical decision support systems, their basic
structure, types, and technological aspects of the work presented in this thesis. Furthermore, this
Chapter also presents the medical background of the analysed problem, including details about the
neurodegenerative disorders, with special focus given to Parkinson’s disease, as well as clinical



procedures for assessment of these patients along with the problems that need to be resolved. At the
end of the Chapter, the objectives and initial research hypotheses of the thesis are presented.

Chapter 2 presents state of the art in the field of advanced technologies that are developed and
implemented to support the clinical assessment of patients with Parkinson’s disease and related
disorders. It reviews different methods in terms of measurement systems, experiment design, and
intelligent algorithms that are developed and used for providing diagnostic recommendation or
prediction of symptom severity or response to therapy.

Chapter 3 introduces a new decision support system for the assessment of patients with
neurodegenerative disorders. The system is briefly explained.

Chapter 4 describes the challenges of the gait segmentation, which represents one of the most
important pre-processing steps in the gait analysis. Four different segmentation methods are applied
and validated using the gait data, recorded from patients with Parkinson’s disease and healthy
subjects. The segmentation techniques are compared in terms of their accuracy, precision, and
applicability to every day clinical implementation.

In chapter 5, a new method for the identification of Parkinson’s disease patients is presented.
The particular focus is given to the recognition of Parkinson’s disease in the early stage of its
development. The method uses deep learning algorithms and gait data recorded with wearable inertial
and force sensors. Two types of deep neural networks are developed and validated. The performance
of the designed models is additionally examined in terms of data augmentation strategy, length of
walking sequences that are used for training and testing, and walking conditions under which the gait
is recorded.

Chapter 6 describes a method for analysing the amplitude of repetitive hand and leg
movements that are used for the assessment of symptom severity. Furthermore, this Chapter
introduces a new technique for the segmentation of repetitive movements into individual cycles.

Chapter 7 presents a new method for the evaluation of symptom severity. The first part of the
method provides a detailed analysis and quantification of clinically relevant repetitive movements. A
new parameterization is designed to quantify the essential kinematic, temporal and frequency
movement properties objectively. The developed metrics are used as the input to the expert system
for the prediction of clinical scores. The decision-making process implements expert rules that
completely objectify clinical criteria for score assignment. The results are validated on data recorded
during finger-tapping movement from patients with typical and atypical parkinsonism and presented
in a manner that is understandable and intuitive for the potential end-users.

Chapter 8 presents the results of the developed decision support system on the example of one
patient.

Finally, chapter 9 summarizes the results and contribution of the thesis and outlines the
possibilities for future developments of the developed and proposed decision support system.
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1. Introduction

1.1. Decision support systems for clinical practise

Clinical decision support system (DSS) refers to any computer-aided tool that is developed to
influence clinical decision making about patients [1]. Although human expertise represents an
essential part of any clinical decision-making process, computational methods and precise sensor
systems can support the whole process with objective measures of patients’ state and behaviour that
cannot be otherwise observed by a human eye. The significance of clinical DSS is manifold — these
systems can improve health care and contribute to a better understanding of medical problems that
need to be resolved and contribute to the design of clinical reasoning models [2]. The necessity for
these systems has been further recognized in the past decades due to growth in health care costs and
complexity, challenges that are related to the management of clinical knowledge and information,
adoption of electronic medical records, and increased need for personalized medicine [2].

The literature suggests that a DSS should have different important characteristics, which could
be grouped into three main components: 1) data management; 2) decision-making process; and 3)
user-interface [3].

1.1.1. Data management

Having good data management capabilities represents a prerequisite to a reliable decision-
making process. This includes access to both internal and external data and information [3]. In the
sense of modern clinical DSS, data management requires effective techniques for acquiring large and
complex electronic health data (or big data) that is represented in a standardized form and enables
fast, accurate, and efficient processing [1], [2]. The choice of the data representation scheme is
influenced by the problem that the intelligent system tries to solve.

Over the last few decades, researchers have developed different techniques for capturing
relevant clinical data, ranging from simple keyboard data entries, speech or image inputs, scannable
forms, various physiological data to real-time data monitoring. With the recent technological
advancements, an especially important role for the acquisition of clinical data belongs to wearable
systems. Wearable systems represent sensor devices that can continuously measure human
physiology, such as electrocardiography (ECG), heart rate, blood pressure and oxygen saturation,
body temperature, electromyography (EMG), electroencephalography (EEG), and body, head and
eye movements [4]. A typical wearable system consists of 1) sensors that produce analog or digital
data; 2) a processing unit that collects and transforms raw data; and 3) a display that shows acquired
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and processed data [5]. In the case of wireless wearables, the system also comprises a transceiver that
wirelessly sends data to a central unit. Furthermore, data processing can be completely performed at
the sensor unit, or it can be partially performed, transmitted to the computer, and then processed [5].
Regarding the design requirements, these systems should 1) be low-cost to increase their potential for
large scale applications, 2) be small and lightweight to allow monitoring of human physiology in an
unobtrusive manner, 3) provide safe operating and positioning on a human body, 4) provide low-
energy operation and communication and 5) simple and flexible setup that can be easily adapted for
a new user [5]. The integration of wearable technologies into healthcare can help with relocating the
resources, active engagement of patients in the disease management process, increase of the flexibility
of regular clinical procedures, and reduction of the need for continuous supervision [4].

A wireless inertial measurement unit (IMU) is a wearable sensor module that typically
comprises a 3-axial accelerometer and 3-axial gyroscope sensors (and sometimes magnetometers).
The accelerometer represents an electronic sensor that allows determination of the object’s position
and movement in space. It measures total acceleration forces that are exerted upon an object,
including both static (such as gravity) and dynamic (causing the object to move) forces. Measured
accelerations are provided through the components of the IMU’s local coordinate system. The
rotational movement of an object can be detected with a gyroscope sensor. The gyroscope measures
the rate at which the object changes its orientation (i.e., angular velocity) around the three axes of the
IMU’s local coordinate system. Magnetometer sensors measure the direction, strength, or relative
change of the Earth’s or any other magnetic field. Typically magnetometer is used for determining
the movement heading reference. By placing IMUs on a human body, analysis of body kinematics
can be performed. IMUs are easy to apply and they allow for recording for a long time and in any
space. Additionally, the quality of these sensors is continuously increasing, while their price and size
are being reduced, improving their applicability for everyday and clinical use [6]. Their applicability
has been further extended with inertial sensors embedded in smartphones, which are now widespread,
low-cost, and unintrusive [7].

1.1.2. Decision-making process

Artificial intelligence (Al) is the core of the DSS. Different definitions of Al are discussed
in the literature. In a broad sense, Al is the intelligence demonstrated by machines. Russell and Norvig
[8] defined Al as the study of intelligent agents. An intelligent agent represents anything that
perceives the environment through sensors and performs subsequent actions upon it through
actuators. In that context, behaviour of agents is defined by agent functions that perform a mapping
from perceived information to actions. In another approach, Al is described as the field of computer
science dedicated to designing intelligent computer systems that can perform functions associated
with human behaviour, such as learning, reasoning, problem solving, and others [9]. The two most
important sub-fields of Al are expert systems and machine learning.

Expert systems represent computational systems that are designed to solve different
problems in a manner that is similar to the reasoning of a human expert [10]. The basic idea behind
the expert systems is to encompass domain-specific human knowledge and expertise and to serve as
a tool for non-expert users looking for advice on the subject matter. Two main components of expert
systems are a knowledge base and an inference engine [9]. The knowledge base comprises instances
of domain-related knowledge and information. Knowledge bases typically comprise certain pieces of
knowledge (such as rules), and a system could contain several knowledge bases with different types



of knowledge [11]. The inference engine comprises information-processing units (inferences) that
perform simple reasoning tasks [11]. The inferences use knowledge from a knowledge base to provide
new information based on the given input. DENDRAL [12], MYCIN [13], and PROSPECTOR [14]
were the first examples of the expert systems that were successfully developed and applied for
resolving domain problems. MYCIN was dedicated to the diagnosis of blood infections and
comprised a knowledge base of about 450 rules, which were acquired from extensive interviews with
experts, textbooks, and experience with diagnosis [8]. Furthermore, the system embodied a calculus
of uncertainty of medical knowledge called certainty factors.

Machine learning (ML) comprises algorithms that are able to learn from data [15]. The
learning represents the process that enables algorithms to perform some task. Given some input data,
ML can resolve different tasks; classify objects belonging to different categories, predict numerical
values, find natural grouping among unlabelled data, transcribe or translate data from one form to
another, detect atypical or abnormal events (anomalies), synthesize new similar samples based on the
existing data, insert missing data values, and other [15]. Based on a learning principle, ML algorithms
can be divided into two main groups: supervised and unsupervised learning algorithms [15].
Unsupervised learning algorithms process unlabelled multidimensional data to find and explore the
distribution of data or some properties of that distribution. In contrast, supervised learning algorithms
process multidimensional data that is associated with some labels or targets, which “teach” the ML
algorithm what to do. There are some other types of learning algorithms, including semi-supervised
learning algorithms, which use partially labelled data, or reinforcement learning algorithms, which
use a feedback loop to interact with the environment during the learning process [15].

The performance of ML algorithms is typically measured with some quantitative metrics.
Accuracy represents the most common metric for evaluating the performance of classification tasks;
however, other measures are used as well, including sensitivity, specificity, precision, F1-score, and
area under the curve [16]. The basic idea behind the ML is to examine the algorithm’s ability to
generalize and evaluate how well these algorithms are performing on previously unseen data [15].
Because of that, input data is split into training data, used for algorithm learning, and test data, used
for examining the algorithm’s ability to generalize. In the literature, different validation techniques
and methods for data division are proposed and implemented depending on the task, data type,
database size, and used algorithm.

Input data usually represents some set of features that are specifically captured or designed to
solve the problem of interest. It is usually provided in the form of a multidimensional vector, where
rows indicate different examples, and columns correspond to features. Appropriate data
representations are typically obtained using various signal processing techniques. In a broad sense,
signal processing is defined as the implementation of analog or digital techniques for improving the
functionality of data [17]. Analog techniques process time-varying electrical signals, whereas the
digital techniques utilize data provided in the form of an array of numbers. In biomedical engineering,
these techniques are applied to provide diagnostic or any other relevant clinical information [17]. For
these applications, the following techniques may be important: advanced spectral methods, time-
frequency analysis, wavelets (both continuous and discrete), advanced filters, and multivariate
analysis.

The recent achievements in the field of Al have been mostly brought by a subset of ML called
deep learning (DL). The main limitation of the conventional ML algorithms is their inability to



process raw data. These algorithms need to be fed with features that faithfully portray the desired
patterns in data in order to recognize them [18]. The extraction of suitable attributes is not a trivial
task — it requires dedicated work and high-level engineering skills. With bigger datasets or a larger
number of groups being analysed, creating proper data representations becomes even more complex
and demanding. DL comprises a set of algorithms that can process raw data and automatically extract
features for efficient classification or detection of objects [18]. These algorithms have shown amazing
capabilities for different classification tasks; however, the first breakthrough was seen in image and
speech recognition tasks [19]-[22].

The reasoning (inference) system and knowledge base on which that system operates
represent the most important part of the clinical DSS [2]. Based on the used reasoning, clinical DSS
could be divided into two main groups: knowledge-based and nonknowledge-based [1]. The concept
of the knowledge-based clinical DSS arose from the idea of expert systems that are designed to
simulate the decision-making process of a human expert [1], [10]. The knowledge base of these
clinical DSS contains information about diseases and their symptoms and other relevant clinical
information, which is typically expressed as production (or “if-then”) rules. The inference engine of
these systems usually associates the knowledge base with the patient data. These systems require a
priori knowledge in order to provide the correct answers to specifically designed medical questions
[1]. The earliest of these systems were dedicated to the provision of diagnostic support, but not in the
manner that simply mimics and replaces the human reasoning but instead gives information that
assists the decision-making process of clinical workers. On the other hand, the nonknowledge-based
clinical DSS use machine learning algorithms for finding patterns in clinical data These models do
not require any a priori knowledge - the DSS is designed to find new patterns and relationships in
given datasets, which are then applied to previously unseen data. This is especially important for the
cases when a priori knowledge is limited or non-existent. A combination of different reasoning
methods results in a hybrid clinical DSS [23]. The hybrid systems can utilize the best of any methods
and provide an optimal solution for a concrete problem.

1.1.3. User interface

Communication with a user is derived through a user interface. The user interface should have
a powerful but also simple design [3]. It should enable interaction through queries, reports, and
graphs.

The use of a Web-based interface extends the usability of DSS systems to a large number of
users [3]. In this way, developers can introduce and utilize new technologies at their site. Furthermore,
Web browser user interfaces facilitate adoption among users: they do not require extensive training,
they increase profitability and speed of decision-making processes, and they can be used with no
geographic limitations [3].

Mobile platforms and technologies have been increasingly adopted and implemented in the
field of medicine, enhancing the possibilities of the existing systems. In general, the mHealth
represents the health practise that is supported by mobile devices [24]. The rise of mHealth
technologies has been guided by the development of smartphones and tablets, as well as advances in
mobile platforms, most significantly Android and iOS, and mobile communication technologies, such
as 3G, 4G, Bluetooth, Zigbee, Radio-frequency Identification (RFID), and others. The use of mobile



user interface in clinical DSS increases their portability and possibility for customization.
Furthermore, these tools are available “at hand” every time the physicians need it at a low-cost [25].

1.1.4. Applications

Based on the clinical problem that a clinical DSS tries to solve, there are four categories of
these systems [1]:

1. Alerting systems are programs that continuously monitor and test the patient’s clinical data
according to the previously defined clinical criteria. Alert is activated when data meet the set
criteria. The design and timing of alerts depend on the goal.

2. Critiquing systems respond to entered information about a medical intervention by identifying
inconsistencies between the entered data and an internal definition or by indicating an
alternative treatment approach.

3. Suggestion systems represent the third category of clinical DSS, which are designed to
interactively support the clinical decision-making process, by answering to physician’s
request for assistance. In these systems, the clinicians use the DSS, enter the relevant clinical
data, the system process the data, and composes a suggestion.

4. Retrospective quality assurance programs utilize patient’s clinical data and formulate
decisions about the quality of care and send them back to physicians.

The clinical DSS has been developed for many clinical areas, including neurology. In the next
section, the medical background of the thesis and need for the development of new DSS for
assessment of neurodegenerative disorders are described.

1.2. Understanding the medical background of the analysed
problem

Neurodegenerative disorders represent progressive and incurable diseases, which are causing
degeneration or complete death of nerve cells [26]. These conditions can produce problems with
motor or mental functioning. Parkinson’s disease (PD) is the second most common neurodegenerative
disorder in the world. According to some sources [27], the prevalence of PD in 2016 was estimated
as 6.1 million (95% uncertainty interval 5.0-7.3) cases worldwide. In the same study, it was reported
that 16,702 (95% uncertainty interval 12,943 to 20,877) individuals were diagnosed with PD in
Serbia, which represented 0.24% of the total population of the Republic of Serbia at a time [28].
These numbers are showing a significant growth compared to data reported for 1990: the prevalence
of PD increased 2.4 times over 26 years [27]. It is expected that the number of individuals diagnosed
with PD will continue to increase, and it will affect between 8.7 and 9.3 million people in the world
by the year 2030 [29].

1.2.1. Symptomatic expressions of neurological disorders of
parkinsonian type

PD occurs from the progressive loss of dopaminergic neurons in the basal ganglia structure
called substantia nigra [30]. The disease is characterized by diverse motor and non-motor symptoms
(Figure 1.1) that are affecting the physical and mental abilities of PD patients and violating their
everyday life, routines, and activities. The most notable PD clinical motor representations are
bradykinesia, rest tremor, rigidity, and postural instability [31], [32]. Bradykinesia (or slowness of
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movements) is one of the most recognizable and characteristic symptoms of PD, expressed with
difficulties in planning, initiating, and executing motions, especially in tasks that require sequential
motor performance [33]. Because of that, bradykinesia is assessed and evaluated using fast, repetitive
hand and leg movements, including finger-tapping, hand opening-closing, hand pronation-supination,
and toe-tapping. Although they are not cardinal PD symptoms signs, gait disturbances represent one
of the most incapacitant motor signs, characterized by decreased stride length and walking speed,
festinating gait, and increased stride variability [34]. Abnormal changes in the gait pattern may be
visible from the early stages of disease development.

In addition to the primary parkinsonism type (referred to as the Parkinson’s disease or
idiopathic Parkinson’s disease), there are also some atypical syndromes, such as progressive
supranuclear palsy (PSP), multiple system atrophy (MSA), corticobasal degeneration (CBD) and
dementia with Lewy bodies (DLB) [35], [36]. These syndromes are characterized by similar
symptoms, especially in the early stage of disease; however, atypical parkinsonism is much more
progressive than idiopathic PD and requires different treatment [36].

Motor and non-motor Parkinson’s disease symptoms

Fewer More

Tremor, rigidity, bradykinesia, dystonia and/or gait issues
Autonomic, psychiatric, and/or cognitive symptoms

Mild motor-predominant Intermediate Difuse malignant

ON time T 3/7 ;

OFF time

Figure 1.1 Illustration of Parkinson’s disease symptoms in different disease stages (image adapted
from [37]).

1.2.2. Clinical assessment

There is no specific test that can provide a definite PD diagnosis [31]. For that reason, the
recognition of PD is not a trivial task, especially in the early stage of disease development. PD is
usually diagnosed using the UK Parkinson’s Disease Society Brain Bank criteria based on the
presence of specific symptoms [38]. Some studies examined the reliability of the clinical PD
diagnosis [39]. Post-mortem neuropathological examination was performed on 232 cases of
parkinsonism, of whom 131 with idiopathic PD and 101 cases with other types of parkinsonism. The
clinical diagnosis was correctly given in only 26% of cases when observing individuals who did not
show a clear response or did not receive standard therapy. For people in the advanced stage of the
disease development (>5 years disease duration), diagnostic accuracy achieved 88%; however, only
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53% of individuals diagnosed in the early stage (<5 years disease duration) have been confirmed as
PD.

The severity of PD is often evaluated using the Hoehn and Yahr (H&Y) scale [35]. Initially,
the H&Y scale had five scores (from 1 to 5), but later it was complemented with two additional ratings
(1.5 and 2.5) for more precise quantification of PD severity level [40]. Assessment of parkinsonism
signs and evaluation of both motor and non-motor clinical symptoms is performed using the
standardized clinical scale named the Unified Parkinson’s disease rating scale (UPDRS) [41], [42].
Motor symptoms are assessed with a set of tests designed to provide more detailed insight and
evaluation of these symptoms.

However, neurologists cannot objectively measure human behaviour or physiology; they can
only observe (hear or see) patients and assess them based on their knowledge and experience. Such
an assessment may result in subjective and rough evaluation. Furthermore, human judgement can
change over time (due to their current mood, fatigue, or their focus) and result in an inconsistent
assessment of patients [43]. Due to the mentioned issues, there is a strong need for the development
of new systems that can support the clinical decision-making process and provide an objective and
automatic assessment of patients with neurodegenerative disorders.

1.3. Objectives of the thesis

The goal of the research is to design a new clinical decision support system that can contribute
to the development of objective, automatized, and improved assessment of patients with
neurodegenerative diseases. The system is based on the analysis of clinically relevant repetitive
movements that are recorded using small and easy to use wireless wearable sensors and processed
using different signal processing techniques and artificial intelligence algorithms.

The importance of research is reflected in the practical and scientific potential of the obtained
results that improve and facilitate the everyday clinical decision-making process. Achieved
improvements refer to a complete understanding of all phases and changes of the movements being
analysed and the design of metrics that thoroughly describe all specific movement characteristics.
Furthermore, the advancements include the development and implementation of a new expert system
and machine learning algorithms that objectify the decision-making process, together with the
provision of graphical and parametric feedback in a form that is entirely understandable to potential
end-users (neurologists and clinicians).

1.4. Starting hypotheses of the thesis

H1: By using the advanced algorithms, recognition of patients with neurodegenerative disorders can
be improved. The work presented in this thesis is looking for answers to the following research
questions:

1) Is it possible to develop a fast and easy to apply diagnostic support based on the signals that
are recorded by the lightweight and small wireless wearable sensors while performing
clinically relevant repetitive movements?

2) Can applied machine learning algorithms achieve results that improve diagnostic accuracy
compared to the results presented in the literature?
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H2: It is possible to achieve objective evaluation and quantification of the degree of motoric
impairments in patients with neurodegenerative disorders. The work presented in this thesis is looking
for answers to the following research questions:

1) Can small and lightweight wireless inertial measurement units be used to record clinically
relevant repetitive movements for evaluating the severity of motor impairment in patients with
neurodegenerative diseases?

2) Can the selected signal processing techniques be used to analyse the recorded signals and to
develop new metrics that contribute to a better understanding of the observed movements and
quantification of essential movement properties, such as motor blocks, amplitude, speed,
amplitude decrease, and others?

H3: It is possible to develop a new expert system for objective prediction of clinical motor scores.
The work presented in this thesis is looking for answers to the following research questions:

1) Is it possible to develop an objective and automatic support for the assessment of motor
symptom severity that is based on the introduced parameterization and a new expert system
that fully objectify standardized clinical evaluation criteria?

2) What are the results of the expert system compared to the benchmark data given by several
neurologists who have years of experience in diagnosing, assessing, and evaluating patients
with neurodegenerative diseases?
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2.Advanced technologies for supporting the clinical
assessment: State of the art

Lack of objectivity and reliability in the adopted and standardized clinical procedures for PD
assessment has been a strong motivation for researchers to design and develop new systems that can
support and improve clinical diagnosis and evaluation of disease progression and symptoms severity
[44]. The methods proposed in the literature vary in terms of used instrumentation, observed tests and
experiment protocols, the number of included patients, and applied analysis. In the next few sections,
a comprehensive overview of the literature is provided and organized based on various essential
aspects of the performed analysis.

2.1. Measurement systems for capturing relevant clinical data

When it comes to the assessment of PD patients, researchers most frequently focused their
studies on analysing clinical signs. Motor representations of this disease were especially studied since
they represent the most cardinal and recognizable PD signs. Degrading vocal performance in PD
patients was suggested as one of the supporting pieces of evidence of PD progression, and as such,
was addressed in a number of research studies for providing objective PD assessment. Multiple types
of voice measurements were recorded using the head-mounted microphone [45] or a telemonitoring
system [46]. Some researchers focused on the analysis of handwriting images or handwriting
dynamics recorded with a smartpen [47], [48], whereas the others analysed clinically relevant hand
and leg movements captured with different sensor systems, including optical systems [49]-[52],
smartphone integrated sensors [53]-[55], wearable force and inertial sensors [56]-[64], force
platforms [65], [66], standard computer keyboards [67], [68], or electromagnetic sensors [69], [70].
The number of studies utilizing the wearable wireless sensors for analysis of physiological signals in
PD patients is increasing during the past years. Unlike optical systems, wearables are small and
compact, often inexpensive, and do not require dedicated space for recording. IMUs are particularly
significant; these sensor units are suitable for capturing and analysing clinically relevant movements
of the head, trunk, upper and lower extremities that are especially important in the assessment of
parkinsonism. Inertial sensors have been applied for recording body movements during gait [61],
finger-tapping [60], [71], hand opening-closing [72], hand pronation-supination [58], [59], [73], toe
or foot-tapping [74], [75], or for tremor analysis [64], [76], [77]. Sometimes, these sensors have been
combined with other sensor modules for providing an in-depth analysis of patients’ state, including
force sensors [78], EMG sensors [79], or ambient sensors [80]. However, with the higher number of
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sensor modules used, the complexity of testing increases, thus reducing the convenience and
practicability of such setup.

2.2. Measurement protocols and database size

Most studies utilized data recorded for that research, which resulted in a variety of
implemented experimental protocols. Hand and leg movements for assessment of bradykinesia have
been recorded for a concrete number of repetitions, e.g., ten times [59], [60], or for some specified
period, usually 10-15 s [58], [72], [81], depending on the version of the UPDRS which was followed.
The gait was also recorded under diverse conditions: some observed shorter time series recorded
during short walking distances, typically 5-15 m [61], [66], whereas the others analysed few minutes
long signals which described walks along tens of meters long paths [82]. The size of the used
database, more specifically, the number of included subjects (patients) also varied significantly
between studies: from systems demonstrated on data obtained from just a few patients [83], to those
including a few hundreds of patients [61]. In some studies, healthy subjects even mimicked the
impaired movement patterns of PD subjects [84]. Furthermore, the clinical characteristics of included
patient groups differed significantly between the studies. Data variety could be significant for some
tasks (e.g., prediction of full-scale symptom severity). However, in some cases, the developed
systems should focus on some specific sub-group of patients (e.g., recognizing PD in its early stage,
not in the late stages when symptoms are already too developed and easily recognizable).

Unfortunately, collecting enough data for efficient analysis and especially for implementing
machine learning algorithms is a very demanding task. It requires a lot of time, multidisciplinary
collaboration between different institutions, and researchers dedicated to collecting and annotating
data in a standardized manner. Some freely available databases contain physiological data recorded
from patients with PD and related disorders. UCI Machine Learning Repository contains several
datasets with voice measurements. One of these databases represents the result of a six-month trial of
a telemonitoring device that was developed to provide a system for remote monitoring of symptom
progress [46]. It contains voice recordings that were automatically captured in homes of 42 early
staged PD patients. This repository also includes a database with multiple types of sound recordings,
which were recorded from 20 PD patients and 20 healthy controls [85], and from 23 PD patients and
eight healthy controls [45]. Hand PD is another publicly available dataset that contains data collected
from patients with PD [86]. The database includes drawings of four spirals and four meanders
transformed to .jpg format. The drawing data is collected from 74 individuals diagnosed with PD and
18 healthy subjects [47]. An improved version of this dataset is also available at the same site [87].
The new database contains drawings from 66 individuals, namely 31 PD patients and 35 healthy
subjects. The individuals were asked to perform 12 different drawing exams, and the database
contains 264 images in total. The data is also complemented with handwritten dynamics data recorded
with a smartpen.

The largest available open-source database that contains PD movement data is the database
created in 2000, available at the PhysioNet site [88]. This database includes gait data, collected from
93 PD patients (in the early or mild stage of the disease development) and 73 healthy subjects. The
data was recorded for approximately 2 minutes on level ground, using force sensing resistors placed
on shoe insoles. The same research group published some other gait databases on the PhysioNet site,
including the database that comprises data from 15 patients with Amyotrophic lateral sclerosis (ALS),
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15 patients with PD, 20 patients with Huntington’s disease (HD), and 16 healthy controls [82], [89].
The database was formed similarly as the latter one: the data was recorded for 5-minutes using force
sensing resistors while walking along a 77 m long hallway. These datasets are usually complemented
with demographic and clinical data of included patients.

A significant number of research groups utilized these databases in their research; however,
the obtained results severely depended on the applied analysis, which will be discussed in the
following section.

2.3. Intelligent algorithms for objective and automatic PD
assessment

Clinical data recorded with accurate and unobtrusive systems has been processed utilizing
different signal processing techniques and artificial intelligence algorithms for the provision of (early)
diagnosis, monitoring of symptom progression, and response to therapy [90]. The choice of the
analysis that was applied mostly depended on the desired outcome. The presented literature review
focuses on the methods and results that are relevant to the topic of this thesis.

2.3.1. Provision of diagnostic recommendations

As correct diagnosis represents one of the top medical priorities, and the crucial step of the
PD assessment, the development of new diagnostic tools has been a topic in many research studies.
Various signal or image processing techniques were frequently combined with supervised machine
learning algorithms for the recognition of patients with PD and related neurological disorders.

A study combined an open-source database containing voice measurements with fuzzy k-
nearest neighbours algorithm and achieved a sensitivity, specificity, and accuracy above 95% for
discriminating PD patients and healthy subjects [91]. A support vector machine algorithm (SVM),
mixed with a genetic algorithm for feature extraction, also provided high accuracy results for PD
recognition based on the same dataset [92].

Evolutionary algorithms applied to the finger-tapping data were able to classify healthy
controls and PD patients with sensitivity, specificity, and accuracy of 94.6%, 91.8%, and 93.5%,
respectively [69]. Similar results were obtained for the early-stage PD recognition - these algorithms
accomplished sensitivity, specificity, and accuracy of 94.4%, 91.8%, and 92.5% [69]. Keystroke
features were also analysed for the provision of accurate identification of PD [93]. An ensemble of
machine learning classification models achieved sensitivity and specificity of 96% and 97%,
respectively. A feature vector with 12 elements was extracted from the tremor recordings of 21 PD
patients and 21 healthy control individuals using a wavelet analysis [55]. The designed set of
attributes was fed to a neural network classifier, which accomplished sensitivity, specificity, and
accuracy of 95%.

Interesting results have been obtained using the PhysioNet database with gait data recorded
from 92 patients and 73 healthy controls [62]. Radial basis function neural network fed with gait
features extracted from force data, classified patients and healthy controls with sensitivity, specificity,
and accuracy of 96.77%, 95.89%, and 96.38%, respectively. In another study utilizing this database,
several gait features were extracted from the recorded force profiles, including stride time, stance

14



time, swing time, and foot strike profile [94]. The medium gaussian SVM differentiated PD patients
and healthy controls with sensitivity, specificity, and accuracy of 97%, 87%, and 94%, respectively.
A 10-m long walking was recorded with the inertial sensors from a large pool of subjects (156 PD
patients and 424 healthy subjects) [61]. The IMU gait measurements were processed using the Hidden
Markov models, which resulted in fixed-length gait representations. Classification performance was
examined using a classical k-nearest neighbour classifier, which accomplished an accuracy of
85.51%.

DL algorithms have also penetrated the field of neurology. New studies have proven their
high potential for recognizing for patients with neurodegenerative disorders. The decision-making
process of DL algorithms resembles the work of clinical experts — each movement pattern is rated
with one output, similar to the clinical scores [90]. Furthermore, DL algorithms extend the capabilities
of conventional ML with the possibility of performing a temporal analysis, which might be
particularly crucial in the PD assessment [95].

Fuzzy recurrence plots of very short time series of keystroke logs data were passed as input
to a long short-term memory (LSTM) network, and accomplished accuracy of 81.9% for early PD
identification [68]. Several DL models were designed to recognize PD patients based on their
handwriting data [48], [87], [96]. A convolutional neural network (CNN) model fed with the Hand-
PD dataset accomplished an accuracy of nearly 95% [96]. Transfer learning using the Alex CNN
showed even better results with an accuracy of 98.28% [48].

Various studies processed gait data for the provision of DL based support for more accurate
(early) PD diagnosis. Video data captured with the Microsoft Kinect sensors system was fed to an
LSTM model [52]. This approach achieved high accuracy results (98.10%). In another study, different
network topologies were examined for early PD identification based on gait data recorded with the
Microsoft Kinect device [97]. The best result was obtained with a convolutional LSTM network
(accuracy of 83.40%). Several research groups developed DL models utilizing the above mentioned
publicly available PhysioNet database, which contained gait data from 92 patients and 73 healthy
controls [63], [95], [98]. A new CNN network was fed with force data transformed to spectrogram
images and trained for PD identification [98]. This approach accomplished an accuracy of 88.17%
for one data division. A two-channel model (consisted of both LSTM and CNN) extracted patterns
from the gait data and enabled recognition of PD with accuracy above 96% [95]. The network with
18 parallel 1-dimensional CNN blocks accomplished the best results for this database with high
accuracy of 98.7% [63].

Although showing promising results in the field of deep learning-based diagnosis of PD
patients, none of these studies tackled the problem of the early PD diagnosis using the data recorded
with wearable sensors. Inconsistent validation techniques limit the possibilities of comparison with
other methods. Furthermore, most studies evaluated their algorithms using data division performed
on the record (file) level, which may cause unrealistically good results.

2.3.2. Evaluation of symptom severity

Another approach to this topic combines clinical data and intelligent algorithms for providing
an objective evaluation of symptom severity or therapeutic effects. The PowerGlove system was used
for quantifying several hand motor symptoms of PD patients in both OFF and ON therapy conditions
and successfully measured differences between the two states [78]. The effects of deep brain
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stimulation on the performance of finger-tapping movement were also examined using a method that
implemented a musical keyboard for recording finger taps and five features describing biomechanical
and temporal movement properties [99]. A smartphone accelerometer was used for the acquisition of
hand tremor data in 52 PD patients [100]. From the recorded data, different features were extracted
and fed to four different classifiers. A naive Bayes classifier achieved high accuracy results (near
100%) for the prediction of symptom severity. Small force and gyroscope sensors measured data
during the reinforcement manoeuvres for quantifying the severity of rigidity at the elbow and wrist
[101]. The recorded data was described with different measures of mechanical impedance. The
obtained features showed agreement with the clinical data.

Bradykinesia was often analysed in the literature since it represents one of the most
recognizable motor symptoms of PD. The severity of this clinical PD sign was evaluated using
different clinically relevant repetitive movements, including finger-tapping [60], [71], [81], hand
opening/closing [102], [103], hand pronation/supination [58], [59], [73], foot or toe-tapping [74], and
by simultaneous analysis of several movements [64], [104].

From the accelerometer data of 36 PD patients and ten healthy controls, researchers extracted
eighteen features describing various frequency and biomechanical movement characteristics [60].
The most relevant features were selected using an ordinal logistic regression model and a greedy
backward algorithm. The performance of the designed model was compared with the scores of 3
specialists, showing high predictive power, with the Goodman-Kruskal Gamma score of 0.961 [60].
A similar approach was implemented for assessment of bradykinesia severity based on the repetitive
hand opening/closing task [103]. Features describing the dominant grasping frequency and mean
angle were extracted from the signals recorded with small IMUs. A regression model was fitted, and
the output was compared with the clinical scores, showing high correlation expressed through the
determination coefficient 72 = 0.99. In another study, two time-domain and two frequency-domain
features were extracted from the gyroscope data recorded during the repetitive finger-tapping
movement [105]. Each feature was statistically correlated with the clinical scores (from r = 0.73 to
r = —0.80). The severity of bradykinesia symptom in the finger-tapping movements was also
quantified with a method that combined principal component analysis and multiple linear regression
[81]. This approach predicted UPDRS finger-tapping scores with a mean square error of 0.45
compared to the benchmark clinical data. A method that used a motion capture system and dynamical
analysis for providing automatic finger-tapping show strong (r = 0.785) and significant correlations
(p < 0.0015) with clinical data [49]. The new performance indexes were also introduced to describe
bradykinesia severity in upper limbs [58] and walking and sit-to-stand tasks [106]. The obtained
indexes successfully correlated with the clinical bradykinesia scores and differentiated PD patients
with and without bradykinesia [58] and ON and OFF states in patients [106].

Several studies implemented a SVM classifier for prediction of UPDRS scores [64], [72],
[84]. SVM accomplished high accuracy results (sensitivity, specificity, and accuracy above 97%) for
prediction of finger-tapping scores using spectral and non-linear features [84]. The features were
extracted from gyro signals that were recorded in healthy subjects mimicking the impaired
movements of PD patients. Error below 5% was also obtained for estimating the severity of several
symptoms (bradykinesia, tremor, and dyskinesia) in 12 PD patients performing multiple movements
of upper and lower extremities [64], or for estimating bradykinesia severity in 78 PD patients
performing hand opening/closing for 10 s [72]. A decision tree algorithm was also applied for
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predicting bradykinesia severity in a hand pronation/supination task and showed a mean agreement
of 0.48 with clinical ratings [73].

Although supervised machine learning algorithms predicted clinical scores with high
accuracy, the labels used for designing models were subjectively given by one or several specialists
in movement disorders. The clinical scoring process severely depends on the examiner experience
and knowledge, and it was shown that a high inter-rater variability exists in the given scores. The
abovementioned reasons limit the applicability of these algorithms for prediction of clinical scores
since this type of learning might introduce the subjectivity in the obtained results as well (the model
predicts based on the scores given by a small group of physicians, not based on the rules that are used
in clinical practice). Furthermore, the models were usually defined based on data obtained from a few
dozens of data samples, which is not enough data for designing a clinically acceptable model. Due to
those facts, some research groups implemented decision rules for describing the clinical decision-
making process. Clinical scores were predicted with high accuracy (above 90%) using fuzzy rules
and features related to biomechanical properties of foot-tapping [74] and hand pronation/supination
movements [59]. Commercialized smartphone application Kinesia One, proposed by the Great Lake
Technologies, predicted scores for several bradykinesia tasks based on data recorded with an inertial
sensor placed on an index finger [107]. However, the output of these systems provided just a score
evaluating the severity of a symptom; none of these systems does provide a graphical nor parametrical
output of the performed movement analysis. Furthermore, most of the presented systems utilized
features that were not fully describing important biomechanical features of performed movements (as
they are observed in the clinical practice).

A lot of work has been done in this field; however, a need for additional improvements still
exists in different aspects of these studies. The required advancements mainly apply to an early
diagnosis of these diseases, especially to a diagnosis that is based on easily performable everyday
tasks that can be recorded with simple and inexpensive instrumentation. Furthermore, the assessment
tools for the prediction of clinical scales can also be improved in terms of developed analysis of the
observed movements, applied reasoning and provision of results in a manner that is intuitive and
understandable for the potential end-users.
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3. Decision support system for assessment of patients
with neurodegenerative disorders

This thesis presents research and development of a new decision support system for the
assessment of patients with neurodegenerative disorders. The system was developed following the
recommendations for having a clinical DSS with excellent performances (Figure 3.1). The proposed
DSS represents a suggestion clinical DSS — it is intended for clinical professionals working in the
field of neurology, more specifically for specialists in movement disorders who seek assistance or
consultation while assessing the patients.

Analysis of relevant hand and leg movements represents the basis of this system. Data is
recorded with lightweight and small wireless, wearable sensor systems, and analysed using advanced
signal processing techniques and artificial intelligence algorithms. The developed system is a hybrid:
it comprises both nonknowledge-based and knowledge-based reasoning. The choice of the reasoning
depended on the system’s intended result: 1) outputting the diagnostic recommendation, and 2)
evaluating the symptom severity.

The first part of the support is dedicated to the identification of Parkinson’s disease, with the
particular focus given to the recognition of PD in an early stage of disease development. For that
purpose, the nonknowledge-based reasoning was applied. Data recorded during the walking is used
as the input to this part of the system. The performed analysis consists of two steps: 1) gait
segmentation using different signal processing techniques, and 2) the provision of diagnostic
recommendations based on deep learning.

The second part of the support utilizes knowledge-based reasoning for the assessment of
symptom severity, more specifically, the severity of bradykinesia. The bradykinesia represents one
of the essential parkinsonism signs. The severity of this symptom can be evaluated with four different
repetitive hand and leg movement tests. The support for the assessment of symptoms is presented in
two steps: 1) a method for analysing the amplitude of four repetitive movements, and 2) evaluation
of symptom severity using new metrics for movement quantification and an expert system for the
prediction of clinical scores.

The output of the system comprises recorded and processed data, diagnostic
recommendations, metrics for movement quantification, and predicted clinical scores evaluating the
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severity of the bradykinesia symptom. The output of the support is presented in a manner that is
simple, intuitive, and understandable for the potential end-users.

Decision support system

Nonknowledge-based
decision support

Knowledge-based
decision support

Outputting the diagnostic recommendation Evaluating the symptom severity
Gait segmentation using signals Amplitude analysis of repetitive
recorded with wearable sensors movements using wearable sensors

(described in Chapter 4) (described in Chapter 6)

A 4 A 4

Evaluation of bradykinesia severity based
on new metrics and an expert system
(described in Chapter 7)

Deep learning for supporting diagnosis
(described in Chapter 5)

A 4 A 4

The output of the decision support system for interaction with a user

Representation of recorded and
processed data with metrics for
movement quantification and predicted
clinical scores

Representation of recorded and
processed data with diagnostic
recommendations

Figure 3.1 The block diagram of the developed decision support system for the assessment of patients
with neurodegenerative disorders.
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4.Gait segmentation wusing signals recorded with
wearable sensors

Gait represents locomotion delivered through the motion of human limbs. Analysis of gait has
become a significant tool for the clinical assessment of different disorders or injuries, allowing
examination of therapy or surgery effects, disease progress and recovery. One of the essential
processing steps of the gait analysis is gait segmentation. It is applied for dividing walking sequences
to individual cycles or partitioning cycles to their sub-phases. Furthermore, gait segmentation enables
analysis of important gait properties on the level of individual cycles (e.g., extraction of spatio-
temporal parameters), detection of specific gait events, and assessment of gait intra-variability within
longer walking sequences, which is important for the assessment of gait disturbances in patients with
neurodegenerative disorders, and especially parkinsonism.

Each gait cycle or stride has two main phases: stance and swing [108]. The stance phase
represents the period when a limb is in contact with the ground. It starts with an initial contact, usually
identified with a heel strike (HS), and lasts until the foot leaves the ground, typically associated with
a toe-off (TO). During the swing phase, the limb advances with the foot lifted in the air. Contrary to
the stance phase, the swing begins with a TO and ends with initial contact. Two intervals at the
beginning and end of the stance phase represent periods when both feet are in contact with the floor
(double support). In between those two intervals, only one limb contacts the ground, providing single
support. After the initial contact, initial double support begins the stance phase. When the opposite
limb starts swinging (contralateral TO), the body is supported only by the original limb on the ground.
By finishing the swing phase, the opposite limb strikes the ground (contralateral HS), which
represents the beginning of the terminal double support period, which lasts until the original limb is
lifted for a new swing (ipsilateral TO). In the normal gait cycle, the swing phase constitutes about
40% of the complete gait cycle, whereas the stance phase accounts for the other 60% (out of which
10% belong to the individual double support periods and 40% to the single support period).

Although recognition of gait events and phases may seem straightforward and visually
recognizable; reliable, and precise segmentation is not a trivial and straightforward task. Gait patterns
can be very variable even in healthy subjects. The diversity of gait patterns becomes even more
prominent in patients with motor impairment where altered motor control (due to some trauma or
disorder) can significantly change the biomechanics of their movements. Therefore, developing a
precise algorithm for automatic gait segmentation that can work for any subject (regardless of their
health status and type of motor disability they may experience) represents a complicated task, and
different solutions have been proposed to solve this problem. Setting a threshold for the detection of
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specific gait events represents one of the most common gait segmentation techniques. This method
has been implemented for discriminating the swing and stance phases from the signals acquired with
force sensors [109]. Others used it for detecting event-related peaks [110] or identifying the mid-
stance period from accelerometer and gyroscope signals [111]. In another study, detection of signal
local maximums and minimums was combined with a threshold optimization algorithm and a
procedure that eliminated the false peaks and interpolated the missing ones [112]. Template-based
methods were also applied for the segmentation of walking sequences into individual strides. In the
latter case, recorded gait signals are compared to a template or reference signal for finding repeatable
patterns and extracting time markers for their segmentation [113]-[115]. Dynamic Time Wrapping
was used as a template-based method and applied to the gait data acquired during the short and
controlled walking paths [114]. This approach gave a sensitivity of 97.7% and 75.5% for healthy
subjects and PD patients, respectively, while allowing a time difference of 100 ms between extracted
time markers and correct gait events [114]. Another template-based method was applied to the data
recorded with different sensor configurations, including inertial sensors positioned on the heel, low
back, and signals acquired with the optoelectronic system [115]. For all three settings, the time
difference between the detected markers and the real events was in the range 20-28 ms.

In a pilot study, presented in this Chapter, four different methods for gait segmentation were
applied on inertial and force gait data recorded from healthy subjects and patients with PD, and
compared for proposing the best segmentation technique [116]. The methods resulted in time markers
that were related to specific gait events: heel strike or toe-off, and the results were validated using
benchmark data.

4.1. Method

4.1.1. Experiment

Fifteen PD patients (Gender: 9 male/6 female; Age: 627 years) and fifteen age- and gender-
matched healthy controls (HC) (Gender: 8 male/7 female; Age: 63+7 years) were included in this
study. All participants were asked to walk with their natural pace along a 15-meter long and a 3-meter
wide hallway. The selected environment provided participants time and space to perform the
requested task most naturally. Four trials were recorded per each subject. Few minutes of rest were
given between the consecutive trials since fatigue may influence the performance. All participants
performed the walking task using their shoes.

Patients were recruited from the Clinic of Neurology, Clinical Centre of Serbia, School of
Medicine, University of Belgrade, Belgrade, Serbia, whereas healthy subjects were selected among
patients’ company or clinic’s workers. All testing was performed during one day at the Clinic. The
study was carried out under the ethical standards of the Declaration of Helsinki and approved by the
Ethical Committee, School of Medicine, University of Belgrade. All subjects provided written
consent prior to participation in the study.

4.1.2. Instrumentation

In this study, the custom-made wireless sensor system (SENSY) was used [117]. The system
includes two inertial measurements units (IMUs) comprising 3-axial accelerometers (ADXL330,
Analog Devices, Norwood, Massachusetts, USA) and 3-axial gyroscopes (LPR530, LPY530, Analog
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Devices, Norwood, Massachusetts, USA), as well as two shoe insoles each with five force sensing
resistors (FSR) placed under the 1%, 3 5" metatarsal bones, big toe, and heel area. During the
experiment, IMUs were positioned laterally on the feet. Shoe insoles were provided in the
corresponding sizes for all subjects. Reference time markers were measured using the GAITRite
electronic walkway (CIR Systems, Havertown, Pennsylvania, USA) with a 5.5 m long active area.
Two systems were synchronized using the GAITRIte trigger output, which was connected to an
analog-to-digital input of an external sync box. The trigger was generated when the GAITRIite
recording started and stopped, producing synchronization impulses in the gait data acquired with the
SENSY system.

4.1.3. Data processing

Signals were recorded with the sampling frequency f; = 100 Hz. Calibrated data was
processed in custom-made scripts written in Matlab 7.6 R2008a (MathWorks, Natick, Massachusetts,
USA). The raw force, accelerometer, and gyroscope signals were filtered using a 5-point moving
average filter before any further processing. Examples of the recorded and processed signals are given
in Figure 4.1.
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Figure 4.1 Examples of the 10 s long signals for one HC subject (left) and one PD patient (right). On
the upper panel, GRFn sequence is presented, whereas the middle and lower panels show the
accelerometer signal measuring anterior-posterior movement in the sagittal plane agq, and the

gyroscope signal measuring rotations in the sagittal plane w4, respectively.

4.1.3.1. Methods for gait segmentation

4.13.1.1. Setting a threshold for FSR signals (M1)

Force sensing resistors provide information about the force that ground exerts on a body
during the contact of the foot with the ground, i.e., the ground reaction force (GRF). The typical
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profile of the GRF signal for one foot, recorded with force sensors, is presented in Figure 4.2. The
presented GRF is normalized with respect to body weight. When foot contacts the ground, the GRF
signal begins to rise. The first peak in the signal (referred to as “impact peak”) represents the moment
when body weight is transferred onto a limb that has just finished swinging forward and contacted
the ground (“weight acceptance™). Afterwards, the complete foot is in contact with the ground
providing single support (or one limb support) for the body weight. The moment when the foot starts
to push and lift off the ground represents the second peak in the GRF signal (referred to as “active
peak”). The value of the GRF signal falls to zero when the foot leaves the ground and begins the
swing phase. Therefore, GRF provides essential information about the transitions between different
gait phases, which makes it suitable for the gait segmentation problem and detection of specific gait
events, such as HS and TO events.

Impact Active
peak peak
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Figure 4.2 Presentation of a typical GRF profile, normalized with respect to a bodyweight
(GRFn [%]). Different positions of a foot are illustrated during the corresponding phases of the GRF
profile. The example is given for one HC subject.

Firstly, the FSR signals from heel, toe, and metatarsal areas of one foot were averaged and
normalized with respect to the maximum of the averaged signal. The obtained signal represented the
normalized ground reaction force (GRFn).

In order to detect moments that represent HS and TO events in the gait cycle, a threshold
THqgr Was applied to the normalized ground reaction force GRFn. A binary sequence bggp Was
obtained. For samples i when GRFn was valued below the threshold TH;f, the binary sequence was
given the zero value, i.e. by (i) = 0 (corresponding to the swing phase). Similarly, for samples i
when GRFn was valued above the threshold THg, the binary sequence was assigned with ones, i.e.
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bsrr (i) = 1 (corresponding to the stance phase). Time markers corresponding to HS and TO events
were detected from the calculated binary sequence. The transitions from 0 to 1, i.e., when bggp (i) =
0 and bgrr(i + 1) = 1 (from the swing to the stance phase) were detected as the HS events (later
referred to as the M1a method). Similarly, the transitions from 1 to 0, i.e., when bggr(i) = 1 and
bsrr(i + 1) = 0 (from the stance to the swing phase) were marked as TO events (later referred to as
the M1b method).

The threshold value was determined as the lowest value that allowed the detection of all
observed gait events. It was established empirically, as the 10% of the maximum value of the
normalized ground reaction force GRFn sequence, i.e. THggr = 0.1.

In Figure 4.3, an example is provided for this segmentation method. A solid black line shows
the calculated normalized ground reaction force GRFn. A binary sequence bggf IS calculated using
the threshold TH;grr = 0.1 (marked with a dotted grey line in Figure 4.3). The transitions from the
succeeding gait phases were detected as HS and TO events, using the computed binary sequence
berr-
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Figure 4.3 Presentation of the GRFn signal (marked with a solid black line) and the calculated binary
function bsgr (represented with a dotted grey line). The detected HS and TO markers are shown with
blue and red circles, respectively. An example is given for one PD patient.

4.1.3.1.2. Detection of peaks from accelerometer and gyroscope signals (M2)

The segmentation method based on peak detection was applied to the accelerometer (later
referred to as M2a method) and gyroscope signals (later referred to as M2b method). The signals were
normalized prior to peak detection. The applied technique is previously introduced in the literature
and tested using several datasets [112].

M2a method was applied on the accelerometer signal measuring anterior-posterior motion in
the sagittal plane as,,. Prominent positive peaks were detected from the selected accelerometer
signal. These peaks could be related to HS events of individual gait cycles. Similarly, M2b method
was applied on the gyroscope signal measuring rotation in the sagittal plane ws,4. From the selected

signal, deep negative valleys were detected. These valleys could be related to TO events of the
individual gait cycles. The orientation of the gyroscope signal was inverted before further processing.

The peaks were detected using a thresholding procedure. All peaks valued above some
threshold TH,,.qx Were extracted from the signal. In order to find the optimal threshold, the value of

the threshold T H,,qy Vvaried from 0.2 to 0.8 (with a step of 0.01). It was showed that higher threshold
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values (closer to 1) allow detection of a fewer number of peaks, whereas very low thresholds (below
0.2) cause the detection of many false peaks [112].

The peak detection procedure was repeated for each threshold value from the selected range.
The gait cycle duration was calculated as the difference between the samples at which two succeeding
peaks were located. The variance of the gait cycle duration was then calculated for each threshold
value. The optimal threshold THpeak—opt for detection of peaks was selected as the value that, from
the applied range of values, achieved minimal variance of the calculated gait cycle duration (as shown

in Figure 4.4).
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Figure 4.4 Variance of the gait cycle duration as a function of the threshold value. The threshold value
achieving minimal variance of the gait cycle duration is selected as an optimal threshold THeqx—opt

(marked with a red triangle).

By applying the optimal threshold THpeqx—ope, PEaKS Were detected from the signal and
duration of each individual gait cycle d; was calculated using the samples representing two
consecutive detected peaks. The initial potential cycle (IPC) was found and defined as the cycle that
fulfilled the criterium 0.9d < length(IPC) < 1.1d, where d represented the average duration of the
detected gait cycles. This cycle was observed as the correctly detected cycle, and it was used for
examination of all other detected peaks. For all other cycles that fulfilled the criterium 0.9d < d; <
1.1d, it was considered that peaks were correctly identified. For d; < 0.9d, false peaks were detected,
and those peaks were eliminated from further analysis. Similarly, d; > 1.1d indicated that some
peaks were missed, and they were linearly interpolated between the detected peaks.

The final sequence of samples at which the detected peaks were located represented the
sequence of time markers that were used for gait segmentation. An example of normalized
accelerometer and gyroscope signals with detected time markers is presented in Figure 4.5.
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Figure 4.5 Upper panel: Presentation of the normalized accelerometer signal measuring anterior-
posterior motion in the sagittal plane a,q4—y With detected markers (marked with blue squares) and
true HS events (marked with blue circles). Lower panel: Presentation of the normalized gyroscope
signal measuring rotation in the sagittal plane wg,,—y With detected markers (marked with red
diamonds) and true TO events (marked with red circles). An example is given for one PD patient.

4.1.3.1.1. Template-based method — Recognition of gait patterns from accelerometer
signals (M3)

Template-based methods compare walking sequences with a reference (template) signal for
finding resembling and repeatable patterns that correspond to individual strides. The method M3 was
presented in the literature and applied to the accelerometer signal measuring anterior-posterior
movement in the sagittal plane ag,, [115].

In order to define a template signal, the autocorrelation function (AC) of the analysed signal
was calculated. The AC was then filtered using a 4™ order lowpass filter with a cut-off frequency set
to twice the value of the AC dominant frequency. The template signal length (TL) was then calculated
as the temporal distance between the two most prominent AC peaks valued above 0.5 [115]. A shorter
sequence was extracted from the analysed signal — beginning at 115% of TL from the start and ending
at 115% of TL before the end of the signal. Within this sequence, peaks (separated for at least 40%
of TL samples) were detected and used for the extraction of shorter segments. The template signal
was obtained by averaging the obtained segments.

The template signal was slid along the analysed signal and compared with the signal segment
with the same length as the template signal. A sliding step was set to one sample. The similarity of
these signals was measured using two metrics [115]: 1) standard deviation of the amplitude
difference, and 2) correlation coefficients of the template signal and the short window of the observed
signal. The ratio of these two calculated sequences was calculated, and it represented a new

26



characteristic that was used for the detection of time markers (later referred to as “coefficient signal”).
Peaks separated for at least 60% of TL distance are detected from the coefficient signal and considered
as time markers for the gait segmentation. The obtained time markers were then shifted for 15% of
TL and compared with the HS events [115].

An example of the analysed accelerometer signal is presented in Figure 4.6, together with the
extracted template signal, coefficient signal, and time markers.
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Figure 4.6 Upper panel: Presentation of the analysed accelerometer signal measuring anterior-
posterior motion in the sagittal plane a,,, with extracted template signal. Lower panel: Presentation
of the calculated coefficient signal with detected peaks (marked with blue squared markers) and
correct HS events (marked with blue circles). An example is given for one PD patient.

4.13.1.2. Pattern recognition from gyroscope signals using Dynamic Time Wrapping (M4)

Dynamic Time Wrapping (DTW) represents a signal analysis method that finds an optimal
alignment of different time sequences [118]. DTW provides a measure of similarity between analysed
time series by performing “elastic” transformation to find similar patterns within data. In terms of the
gait segmentation problem, this analysis method can be implemented as a template-based method,
where the analysed signal is compared with a “representative stride” for the identification of
individual strides [114].

DTW definition

Let X = (xq, X3, ...,%,), NENand Y = (y4, y3, ..., ), M € N represent time series that
are being compared. These time series are sampled at equidistant time steps. Distance matrix (or local
cost matrix) C; € RV*M s calculated as the pairwise distances between the analysed time series X
and Y [119]:
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C, € RVM: ¢ = ||x; — yj||, i € [1:N],j € [1: M] (4.1)

An alignment path (also called warping path) is found through the areas with low cost
(distance), i.e., through the valleys of the calculated distance matrix. It defines the correspondence of
the elements of the X time series to the elements of the Y time series, following some specified
conditions. The formal definition of the warping path is given as [119]:

p = (P, D2 ., Pu) 01 = (Pip;) € [1: N1 X [1,M],1 € [1:K] (4.2)

and it must satisfy the following criteria [119]:
1. Boundary condition: The first and last points of the warping path must coincide with the first
and last elements of the local cost matrix, i.e. p;, = (1,1) and px = (N, M).
2. Monotonicity condition: Time samples of the warping path points must be monotonously
aligned: n; < n, <+ < ngandmy; < my, < -+ < my.
3. Step size condition: The warping path is limited to small shifts in time: p;.; — p; €

{(1,0),(0,1), (1,1)}.

The distance function (or cost function) can be calculated from the warping path that is
computed from the local cost matrix, and it is given as [119]:

(X, ¥) = D Gty V) (43)
=1

The optimal warping path (later referred to as p*) is the warping path with a minimal distance
or cost related to the alignment. The procedure for finding the optimal warping path is
computationally challenging since it requires that all possible warping paths are tested so the optimal
one could be found. Because of that, an accumulated cost matrix or global cost matrix D is calculated
from all possible warping paths.

The elements in the first row of D are calculated as [119]:

]
DAL =) G, yi).) € [1:M] (4.4)
k=1

The element in the first column of D is computed as [119]:

i
D@, 1) = Z Ci(xx, y1),1 € [1:N] (4.5)
k=1
All other elements in D are found as [119]:

D(i,j) =min{D(i —1,j —1),D(i — 1,/),D(i,j — 1} + C;(x;, y;), “s)
4.6

i € [1:N],j € [1: M]
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When the accumulated cost matrix is calculated, the distance function is calculated as the
optimal warping path by implementing the backtracking procedure from the last element of D
p* = (1,1) to the first element of the D p* = (N, M).

In this study, DTW was applied for recognition of gait patterns from the gyroscope signal
describing rotations in the sagittal plane w,q, [114]. Gyroscope signals from 10 randomly selected
subjects were segmented into individual strides using a peak detection algorithm. The extracted
strides were then averaged, which provided the pattern of the representative stride. The previously
described procedure was applied for finding the accumulated cost matrix and the distance function as
the measure of similarity between the analysed signal and the representative stride. Local minima
from the calculated distance function were detected using a thresholding technique [114]. The
threshold was set to 5% of the function maximum. The extracted local minima defined time markers
for the segmentation of gait into individual strides. The obtained time markers were related and
compared with TO events.

4.1.3.2.  Evaluation of the implemented methods

Extracted time markers were compared with the reference markers that corresponded to the
real HS and TO events and that were obtained using the GAITRite platform. In order to have a
reliable, consistent, and repeatable pre-processing basis for the stride-based gait analysis, the gait
segmentation should be related to some specific event or change in the analysed signal. In the case of
the inertial-based gait segmentation methods M2-M4, detected time markers did not represent the
exact HS and TO events. Because of that, the efficiency of the segmentation methods was evaluated
using the following metrics:

1) Sensitivity:

- . 0,
Se =rprrn 1001%I (4.7)
2) Precision:
- . 0
Pr=gpyrp 1001%] (4.8)
3) Absolute error:
Ae = mger — Myef [ms] (4.9

where TP, FN, and FP represented the number of true positive, false negative, and false positive
events, respectively. If the time difference between the detected and reference time markers laid in
the range £50 ms (for M1) and £100 ms (for M2-M4), the detected markers were considered as TP
events. Lower temporal boundaries were applied to the first method since it was expected (based on
the definition of the implemented segmentation techniques) that the M1 method would detect events
that were closer (in the context of time) to the real events compared to other methods. FNs represented
imprecisely detected or completely missed events. Falsely identified events were considered as FPs.
Based on the Equations (4.7) and (4.8), Sensitivity Se gave the percent of precisely detected events
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with respect to the total number of actual events, whereas the Precision Pr provided the measure of
the share that correctly identified events had in the total number of detected events. In Equation (4.9),
mge: and m,.. represented the detected and reference time markers. Absolute error Ae represented
the temporal difference of the identified markers and the real events. It was calculated for each
detected event that was marked as true positive. By using this metric, segmentation consistency was
examined on the level of each individual gait cycle, which represents a very important term for having
an applicable and reliable segmentation method in the stride-based analysis.

4.2. Results

One hundred and twenty recordings from 30 subjects (444 strides in total) were included in
the analysis. In Table 4.1, Sensitivity Se and Precision Pr results are presented. The results are shown
separately for all four segmentation methods and both PD and HC groups, summarized for both legs
and averaged for all subjects in the group. Results for the Absolute error Ae metric are shown in
Figure 4.7 using the boxplot representation. The results are presented for all four segmentation
methods and both PD and HC groups, separately. Examples of correctly and wrongly detected HS
events are shown in Figure 4.8.

The M1 and M3 methods provided comparable results, with the highest values for Sensitivity
Se and Precision Pr metrics (for both groups) compared to other methods. The poorest results were
obtained for the M4 technique. The methods M2-M4 applied to the inertial data showed lower
consistency in the obtained values of the Absolute error Ae evaluation metric, compared to the method
M1.

Table 4.1 Segmentation results, presented through descriptive statistics (averagezstd) of the Se and
Pr metrics, for all segmentation methods and both subject groups, separately.

Method  Metrics PD HC
Mia Se [%] 91.1+0.07 99.6+0.01
Pr [%] 99.6+0.01 99.9+0.02
M1b Se [%] 91.1+0.07 99.6+0.01
Pr [%] 99.6+0.01 99.9+0.02
M2a Se [%] 87.9+0.06 93.3+0.05
Pr [%] 97.7+0.01 98.8+0.01
M2b Se [%] 90.2+0.06 91.6+0.09
Pr [%] 96.5+0.05 99.6+0.02
M3 Se [%] 91.1+0.03 98.6+0.02
Pr [%] 94.9+0.02 99.8+0.01
MA Se [%] 85.7+0.05 87.7+0.08

Pr{%]  955+0.05  99.4+0.02

PD — Parkinson’s disease patients; HC — Healthy controls; M1a — Gait segmentation method based on force data for
detection of HS events; M1b — Gait segmentation method based on force data for detection of TO events; M2a — Peak
detection algorithm for detection of HS related peaks; M2b — Peak detection algorithm for detection of TO related peaks;
M3 — Template-based detection of HS events; M4 — Template-based detection of TO events; Se — Sensitivity; Pr —
Precision.
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Figure 4.7 Boxplot representations of the Absolute error Ae evaluation metric obtained for all four
segmentation methods.
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Figure 4.8 Presentation of two strides long GRFn signal (upper panel) and two strides long normalized
accelerometer signal a4y (lower panel), with correctly detected HS (marked with a blue circle),
one precisely detected peak (marked with a blue square), one imprecisely detected HS (marked with
a blue star), and one wrongly detected HS (marked with a blue cross). The area of a missed peak is
marked with a dashed blue ellipse. An example is given for one PD patient.
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4.3. Discussion

In this pilot study, four methods were applied for segmenting the walking sequences into
individual strides. The selected and implemented methods differed in terms of applied analysis
(thresholding techniques, peak detection, template-based analysis) and type of analysed signals
(signals recorded with force or inertial sensors). The methods were examined and validated on the
data acquired from both healthy subjects and PD patients.

The first method was based on FSR signals, and it used thresholding for the detection of HS
and TO events. This method provided the best results with the highest values for the Sensitivity Se
and Precision Pr metrics compared to the other three methods. It is an expected result since FSR
signals are easiest to interpret and transform into characteristic gait phases and events. However, by
applying a universal threshold, some gait events can be overlooked or falsely detected (in Figure 4.8,
small ridge during the swing phase caused false-positive events), which consequently influences the
efficiency of the method.

In order to provide a complete analysis of the gait, FSR sensors must be combined with some
other types of sensors (such as inertial sensors), since they can provide only information about the
temporal and force gait characteristics. Furthermore, these sensors are sensitive to breaking and
temperature (which may cause changes in thresholds as well). New shoe insoles should be provided
for each examined patient, and placing individual sensors on shoe insoles can be time-consuming.
Besides, patients with impaired motor functions may perform gait patterns differently (e.g., not
starting the stance phase with a heel strike), which would consequently reduce the clinical
applicability of the introduced gait segmentation method.

On the other hand, inertial sensors are easy to use and apply in clinical settings, providing
significant information about kinematic characteristics of the gait. In this study, three segmentation
methods were implemented on the signals acquired with inertial sensors. The techniques were
selected as the segmentation techniques that had great potential for clinical applications. The
template-based method M3 applied to the accelerometer data provided results that were comparable
with the method M1. The other two inertial-based methods M2 and M4, provided poorer results with
decreased Sensitivity Se and Precision Pr for up to 12%. Furthermore, the methods applied to the
inertial data had wider distributions of the Absolute error Ae feature, which was especially visible for
PD patients (as shown in Figure 4.7). This result showed that time differences between the detected
and actual gait events varied from stride to stride and between different subjects. Therefore, these
methods allow the detection of some specific changes in the signals, not concrete gait events, which
makes them less reliable than methods based on force data.

Methods using a reference signal for finding repeatable gait patterns among signals, such as
template-based methods implemented here, can be applied for both regular and impaired gait patterns,
but in that case, the shape of the gait pattern must be uniform without prominent stride to stride
variability. These methods would not provide reliable results for patients experiencing gait
disturbances with highly expressed intra-variability. Gait patterns showing prominent peaks are
suitable for applying peak detection algorithms. However, they are not applicable to the signals
describing altered gait patterns that do not have expressed or repeatable peaks.
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In order to have a gait segmentation method that is suitable and applicable for clinical settings,
the applied technique must provide reliable, reproducible and automatized analysis that requires
minimal technical skills for use, and that can be applied for all types of gait disturbances. Therefore,

analysed methods must be additionally examined for other types of gait disturbances to exploit their
practical capabilities entirely.
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5. Deep learning for supporting diagnosis

In the clinical practice, several different tests are simultaneously considered for identifying
patients with PD since no test can provide a definitive PD diagnosis. Because of that, it was decided
that support should be developed utilizing nonknowledge-based reasoning. For that purpose, DL
models were selected, designed and examined. These models allow automatic recognition of patterns
in data, which makes them suitable for resolving this kind of problem. The DL models are developed
based on data recorded during the walking task with the wireless and wearable sensor system.
Walking represents a basic everyday human activity. Furthermore, changes in the normal gait pattern
may indicate the presence of a motoric impairment in patients with neurodegenerative disorders. Gait
disturbances are also one of the most incapacitant and identifiable signs of parkinsonism. In this
Chapter, a new method that utilized DL models for the provision of an objective and automatic
recognition of PD patients based on gait data is presented.

5.1. Overview of artificial neural networks

Artificial neural networks (ANNS) represent the core of the DL; therefore, in order to
comprehend DL, one should understand the underlying ANN principles first. ANNs represent ML
algorithms that are inspired by the biological functions of the human brain. Perceptron is a basic type
of the artificial neuron that consists of external inputs, one internal input (also called “bias”), one
output, and a step function [120]. The perceptron is fed with an input feature vector x =
(x1, X3, ..., X5), Which is multiplied with a set of weights W = (wy, w,, ..., wy):

n
z= z W;iX; (5.1)
i=1

where z represents the weighted sum of the input. Usually, the bias feature (x, = 1) is added to the
network [120]:

n
s=z+b=Zwixi+b (5.2)
i=1

with s representing the state of the perceptron, and b the bias parameter. Usually, the state is
represented as s = },j—, w;X;, where wy, = b.

34



The resulting state value is compared with the threshold, and the output value is obtained:

n
1=0

—1 otherwise

The model of the perceptron is presented in Figure 5.1.

state s

n
S = Z W;X;
i=0

activation
function

f(s)

Figure 5.1 The general model of the perceptron.

The values of the weight and bias parameters are learned during the training phase. The
perceptron predicts the output for one training sample pair (x,y) at a time where x represents the
input vector for that sample, and y corresponds to its label [120]. In order to find the optimum values
of the parameters, the perceptron learning rule is applied — for the misclassified samples, the error
between the predicted and actual output is calculated, and used for updating the values of the
perceptron parameters, as follows:

wi' =w; + Aw; = w; +n(a — y)x; (5.4)

where w; represents the weight value from the previous iteration, w;’ is the updated weight value,
and n marks the learning rate. The learning rate controls to what extent the parameter values are
modified, and usually, it is set as some small value from the range of 0-1. The large values of the
learning rate might prevent the algorithm from converging towards the optimal value, whereas too
small values might require more training iterations and therefore result in a very slow algorithm. The
initial weights are given some random values. The procedure is repeated until the algorithm converges
towards the optimum.

Single perceptron with the step activation function can only learn linear patterns, and the
algorithm fails to converge if given training examples are not linearly separable. Although stacking
multiple perceptrons in layers may help with resolving some more complex tasks, other architectures
and neurons are usually applied for finding more complex non-linear patterns among data.
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5.1.1. Feed-forward neural networks

Within ANNSs, units (or artificial neurons) are usually organized in layers [120]. Typical ANN
consists of an input layer, an output layer, and one or more hidden layers. The input layer takes the
external information from the environment and passes it to the network, whereas the output layer
provides resulting data to the environment [120]. Units of the hidden layers are connected to the units
from other layers and do not have connections with the environment. The abovementioned
architecture of the network is called a deep feed-forward neural network or just a feed-forward neural
network (FFNN). FFNNSs are fully connected and do not contain any loops, i.e., all neurons from one
layer are connected to all neurons in the succeeding layer, without giving any connections to the
neurons from the previous or current layer. Units of the input layer represent features, which can be
scalars, vectors, or multidimensional matrices. Input data is often normalized and scaled into some
range of values, i.e. [0,1] or [1,1], prior to the development of an ANN model. This procedure usually
accelerates the learning process and helps with algorithm converging [15].

In order to represent complex non-linear patterns, non-linear activation functions are applied
in artificial neurons. The most common non-linear activation functions are sigmoid, hyperbolic
tangent, rectified linear unit, soft-sign, and softmax [15].

The sigmoid (or logistic) function is given as follows [120]:

1
) = 1= (55)

where s corresponds to the state of the artificial neuron, and m is a constant value that controls the
steepness of this activation function. The sigmoid function squashes a large range of input values into
a continuous range from 0 to 1. The sigmoid activation function is presented in Figure 5.2, upper left
panel.

The hyperbolic tangent function is given as follows [15]:

£(s) = tanh(s) = % (5.6)

The output of the hyperbolic tangent function is squashed into the range from -1 to 1 (the S-shape).
The function is continuous, monotonous and differentiable. The hyperbolic tangent activation
function is presented in Figure 5.2, upper right panel.

The rectified linear unit (later referred to as “ReL.U”) is given as follows [15]:

f(s) = max (0,s) (5.7)

The function is continuous, but not differentiable for s = 0. The ReLU activation function is
presented in Figure 5.2, lower left panel.

The soft-sign function is given as follows:
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s
|s| +1

f(s) = (5.8)
The soft-sign function is an alternative and closely related to the hyperbolic tangent function. The
difference is that the soft-sign converges polynomially, in contrast to the hyperbolic tangent function,
which converges exponentially. The soft-sign activation function is presented in Figure 5.2, lower
right panel.

The softmax function is given as follows [15]:

eSk

f(S)=K—

o k=LK (5.9)

where K represents the number of units in the layer. The softmax function is usually applied in the
output layer for classification tasks that include multiple target classes, where each neuron outputs
the estimated probability of the corresponding class.

Sigmoid (or logistic) function Hyperbolic tangent function
St S ()
5 0 5 s 5 0 5 s
-1} -1
Rectified linear unit function Soft-sign function
S(s) 1 S ()]
5 L
1
3 5 s
-1
-5 0 5 5

Figure 5.2 Presentation of the most common activation functions that are applied in the neural
networks: sigmoid (or logistic) function (upper left panel), hyperbolic tangent function (upper right
panel), rectified linear unit function (lower left panel) and soft-sign function (lower right panel).
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5.1.2. Backpropagation algorithm

The following denotation is adopted for describing the neural network learning algorithm. The
layers in the network are indexed with [, and the total number of layers in the network is represented
with L. The number of training examples is denoted with M. One training example is given with
(x,y), where x represents the feature vector, and y is the target label of that example. Sometimes,
the target is also represented as a vector, where different vector elements correspond to different
classification groups. In such case, y takes the value of 1 for the correct classification group and the
zero value for the others. A set of parameters connecting layers I — 1 and [ is denoted with W=,
The output a® of a layer [ is given as [121]:

a® = fO(s) = FOWI-Dal-D) (5.10)

where the layer input and state are denoted by a®=" and s® respectively, and £ marks the
activation function. The number of units in the output layer is marked with K. The measure of the
overall error can be calculated with the loss function (or cost function) as follows:

JW) = — Z yelog (a, ™), k=1,..,K

(511

In Equation (5.11), a cross-entropy function is used for calculating the overall classification error;
however, depending on the observed task, other functions can be applied as well, including mean
absolute error (or L* loss), mean square error (or quadratic loss or L? loss), mean bias error, hinge
loss, and others [15].

Error backpropagation is the most commonly used learning algorithm in ANNSs. Initially,
network parameters are given some small random values. The input training example is propagated
forward through the network, and the output is calculated for that training example as [121]:

a® = FO (W(L—l)f(L—l) (W(L—Z) ...f(Z)(W(l)a(l)))> (5.12)

where a™¥ = x. The algorithm propagates the error backward, and the error gradient is used for
updating the values of the network parameters (weights and biases) for each layer. Because of that,
the algorithm is also called “gradient descent”. The goal of the algorithm is to obtain the optimum
values of the network parameters, so the error of the algorithm is minimized, i.e., to compute
rnwi/n](W). The derivative of the loss function in terms of the neural network input is given with the

following chain rule [121]:

dj da® ds® da® D dst-D  4g®@ §s@
da® ds® da®D dstD dat-D " ds@ ga® (5.13)

dj , _ ) - ,
0 . (f(L)) WD . (f(L 1)) W2 .. (f(Z)) W

!

where operator ' and - denote derivative and Hadamard product (or element-wise product),
respectively. The gradient V represents the transpose of the derivative represented in the Equation
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(5.13). Therefore, although the entries are the same, the order of multiplication is reversed, and
matrices are transposed [121]:

V] = WO - (fF@) . Wwh=D)T . (pULDy . (WaL=INT. (FYY o] (5.14)

The new quantity can be introduced and defined as the gradient of the input at the level of the layer [
[121]:

§0O = (f(l))' - (WOHT . (f(l+1))' e (WE=2)T . (f(L—l))' - (WLDYT. (f(L))'

5.15
V] 519)

It can also be interpreted as the error at the level of the layer [. The delta is a vector with a length that
equals the number of units in that layer. This quantity can be calculated recursively as [121]:

5O = (f(l))’ - (WHT . §+D) (5.16)

The gradient of the parameters connecting the layers  and [ + 1 [121]:

v, = 8D @®)T (5.17)

The gradient V,,,»] is influenced by the factor a® since the parameters W® connect units from the

layers I and I + 1 and affect the layer [ + 1 proportionally to its input a®). The parameters connecting
the layers [ and [ + 1 are updated according to the following formula [121]:

woh =wO — vyl (5.18)

where n represents the learning rate. The weights are updated for the specified number of repetitions
(also called iterations) until the network reaches the best solution for the output values, or until it
reaches its final iteration. The backpropagation algorithm is illustrated on the example of one simple
FFNN with one hidden layer in Figure 5.3.

When parameter updating is performed after each training example, the algorithm is called
“stochastic gradient descent”. Sometimes, the input data is divided into batches prior to the learning
process. A batch size represents a number of input examples that have been fed to the network before
updating the network parameters. The error is calculated for each example in the batch. After feeding
all batch examples, the gradient of the cumulative error is applied for updating the network
parameters. The batch size is observed as a hyperparameter. Batch gradient descent is an algorithm
that uses all training samples at once. The mini-batch gradient descent represents the version of this
algorithm that uses smaller portions of the input examples (the number of examples in one batch can
take a value between 1 and the total number of examples in the input set). Division of data to batches
causes an algorithm to have one more hyperparameter: an epoch. The epoch is an interval during
which the algorithm has processed all training examples to update the model parameters.
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Figure 5.3 Illustration of the backpropagation algorithm on the example of one simple feed-forward
neural network with an input layer, one hidden layer, and an output layer.

5.1.3. Performance evaluation

Generalization represents the central problem in ML, and it is defined as the ability of
algorithms to perform well on previously unseen data [15]. Because of that, prior to the learning
process, input data is divided into training data, used for fitting the model, and test data, used for
examining the performance of the designed model and its ability to generalize [15]. When dividing
data to training and test sets results with a too-small test set (implying statistical uncertainty in test
results), then alternative strategies can be applied to provide a more accurate estimation of the model
performance. The most common approach includes dividing original input data to k randomly
selected non-overlapping splits, also referred to as the k-fold cross-validation. In each trial, one data
split is used for testing the model, whereas the other k — 1 folds are applied for training. The
procedure is repeated until every split or fold is used as the test set precisely one time. The
performance is measured on test data and then averaged for all trials.

In the literature, different performance measures are introduced and applied. Binary
classification tasks are usually evaluated using the following metrics [16]:

1) Accuracy:
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TP+TN

Ac = -100 [©
‘=rprrn+rprN 001%] (5.19)
2) Sensitivity:
- - . 0
Se=Tprry 100 1% (5.20)
3) Specificity:
- . 0
Sp=nyrp 100 1% (5.21)

In these Equations, TP, TN, FP, and FN represent the number of examples that were classified as
true positives, true negatives, false positives, and false negatives, respectively. Sometimes, precision,
F1-score, and area under the curve are used as well.

5.1.4. Regularization

As shown in the example of the FFNNs, during the learning process, training error is
computed, and the algorithm tries to minimize the error. However, for the model to generalize well,
it is also necessary for a test error (error calculated on test data) to be small, and that a gap between
the training and test errors is minimized [15]. Two problems can emerge during the learning process:
underfitting and overfitting. Underfitting represents the inability of the model to obtain a low training
error. The big gap between the two errors implies that the model is overfitting.

There are different techniques for preventing algorithms from underfitting or overfitting.
Underfitting usually suggests that the model is too simple for the observed task. Increasing the
complexity of the model or number of iterations can help with the underfitting problem. However,
overfitting represents a more complex problem, and it expresses the inability of the model to
generalize well. Regularization represents a set of techniques that are being applied to mitigate the
overfitting problem [15]. In further sections, there will be a more detailed explanation of the
regularization techniques that have been used in this thesis.

5.1.4.1. Parameter Norm Penalties

The most common regularization strategy includes adding a norm penalty Q (W) to the loss
function, as follows [15]:

Jw) =JW) +20W) (5.22)

where J(W) is a regularized loss function, and A € [0, ) is the hyperparameter controlling the
contribution of the norm penalty. Smaller values of the A hyperparameter cause model to be less
regularized and vice versa. By minimizing the loss function J(W), the algorithm also minimizes the
norm penalty function, which consequently shrinks the weight vector at each iteration before
performing the gradient update and prevents the weights from achieving high values [15]. Typically,
the norm penalty is chosen as the function that penalizes the weight parameters. The most common
is the L? norm penalty or weight decay:
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Other functions can be applied as the norm penalty, including L! or a combination of L and
L? norm penalties [15].

5.14.2. Dropout

Dropout represents a computationally inexpensive but powerful regularization technique. It
randomly removes some portion of layer units [122]. The most effective manner of removing a unit
from the network includes multiplying it with a zero. The architecture of the network changes from
iteration to iteration, and an ensemble of all subnetworks that are formed in this manner is trained
[122]. The models share the parameters — the parameters learned in the previous iteration are
transferred to a new subnetwork. By applying dropout, the layer cannot rely on only a few input
features since they are not always present during the training. In this way, the layer learns to use all
inputs, which prevents the network from overfitting [122]. Dropout is usually used together with a
mini-batch gradient algorithm. With every new training example, a binary mask is applied to the layer
units [15]. The probability of removing the layer units is a hyperparameter that needs to be selected
before the training. Typically, a probability of 0.5 is used for hidden layers.

5.1.4.3. Dataset Augmentation

One of the best strategies to prevent a network from overfitting is to feed it with a larger
amount of data [15]. When collecting more data requires many resources, data augmentation can be
a useful tool for creating bigger datasets. For two-dimensional data, data augmentation techniques
often imply to some transformation of the original images (image rotations, adding some noise, and
others). In the case of one-dimensional time-series data, augmentation strategies applied in the
literature typically include cropping data to shorter time-series.

5.1.4.4. Batch normalization

During the training process, the layer parameters change, which consequently alters the
distribution of the next layer inputs as well. Because of that, a lower learning rate and cautious
initialization of the network parameters are required, which consequently slows down the learning
process. This phenomenon is called “internal covariate shift,” and it can be resolved by normalizing
the layer inputs [123]. The normalization becomes the part of the network model — it is performed for
each batch of data during the training. The use of batch normalization allows a less strict selection of
learning rate and network parameter values.

In general, batch normalization is not considered as a regularization technique; however, it
was shown that it could act as the regularization strategy and improve the generalization abilities of
the network.
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5.1.5. Long short-term memory network

A recurrent neural network (RNN) represents a dynamic system that is capable of processing
time series [15]. RNNs have a looping mechanism (connections) that propagate data from earlier time
steps to the current. For each time step, the information is preserved within the unit’s internal state.

The standard RNNs suffer from a problem called “short-term memory”, i.e., they cannot carry
information for more than approximately ten time steps [120]. With every time step, a backpropagated
error tends to grow or shrink, and with a sufficiently large number of time steps, it explodes or
vanishes. Exploding gradients cause network weights to oscillate, whereas, with vanishing gradients,
the network takes a lot of time for training or it does not train at all. One possible way for solving this
problem is a gradient-based method called a long short-term memory neural network [120].

Long short-term memory (LSTM) network represents a special type of RNN, capable of
learning relationships for more than a thousand time samples [124]. One LSTM unit consists of a
memory cell, input gate, forget gate, and output gate. The memory cell captures the information for
different time steps, whereas the gates control the information flow through the memory cell.

The parameters (weight and biases) of the forget gate regulate the amount of information that
is discarded from the cell. The forget gate activation vector is computed as [120]:

ar = f(Wex, +ush;_q) (5.24)

where Wy and uy represent the weight vector of the input and recurrent connections of the forget
gate, respectively. The input feature vector for a time step t is denoted with x;, whereas the h,_4

represents a hidden state vector obtained as a result of that LSTM unit from the previous time step.
The activation function is marked with f.

The input gate controls the flow of new information to the memory cell. Firstly, the input gate
activations vector is computed as [120]:

a; = f(Wix; + ujh,_4) (5.25)
where W; and u; represent the weight vector of the input and recurrent connections of the input gate,
respectively. In this way, the LSTM unit decides what values are updated. Afterwards, new candidates
for a cell state vector values are found by calculating a cell input activation vector [120]:

¢ =fWex, +uch,_q) (5.26)

where W; and u; represent the weight vector of the input and recurrent connections of the cell input,
respectively. Afterwards, the cell state vector is updated as follows [120]:

€t =0qf " Cq +a; ¢ (5.27)
where c;_ represents the cell state vector from the previous time step, and the operator - denotes the
Hadamard product (or element-wise product). The output gate regulates the amount of information

used for calculating the output activation of the LSTM unit. The activation vector of the output gate
is computed as [120]:
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a, = f(Wox, +uh;_q) (5.28)

where W, and u,, represent the weight vector of the input and recurrent connections of the output
gate, respectively. The output vector of the LSTM unit or hidden state vector represents the final
output of the LSTM unit at the time step t, and it is computed as:

h=a, - f(ct) (5.29)

The learning algorithm applied in the LSTM networks represents the combination of two
algorithms, backpropagation through time and real-time recurrent learning [120].

5.1.6. Convolutional neural network

The convolutional neural network (CNN) represents a special type of FFNNs that can process
raw data with a grid-like topology, including both a 1-dimensional grid of time samples (or time-
series) and a 2-dimensional grid of pixels (or images) [15].

In general, convolution is an operation defined with the following formula [15]:
s(t) =(x*xy)(t) = jx(a)w(t —a)da (5.30)

In Equation (5.30), any two functions of a real-valued argument can be used. The first
argument (the function x in the abovementioned Equation) is typically referred to as the “input”. The
second argument (the function w in the abovementioned Equation) is denoted as the “kernel” or
“filter”. Sometimes, the output of the convolution operation is called the “feature map”. The discrete
convolution is defined as [15]:

o)

SO =N = ) 2@ wlt-a (5.:31)

a=—oo

where functions x and w are defined on some finite number of t, and operator - represents the
Hadamard product (or element-wise product). Discrete convolution over more than one axis is
defined as [15]:

SG) = U+ K0GH = ) > 10nm) - K(i—m,j—n)

m n

=221(i—m,j—n)-l((m,n) (5.32)

where I and K represent 2-dimensional input and kernel, respectively.

Within CNNs, kernels are organized within convolutional layers, and they are defined by their
height Hg, width Wy and stride Sy (observed as network hyperparameters). The height and width
determine the size of the filter, whereas the stride represents the size of a step for crossing the input
both vertically and horizontally. The output of one convolutional layer represents a feature map.
Sometimes a padding technique is applied to pixels/samples near the input edges: the original input
is extended with the additional pixels/samples P so the resulting feature map can take some specific
size. The size of the resulting feature map is defined as:
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W, — W, + 2P
L K +1

Ws = S, (5.33)
_ Hy— Hg +2P
Hy=——g —+1 (5.34)

where W, and H, represents the width and height of the input. The number of kernels that are applied
within one convolutional layer defines the number of channels (or depth) of the resulting feature map.
In these Equations, stride values used for traversing the input horizontally and vertically can differ.
In the case of 1-dimensional input, the resulting feature map has a size of 1xW,, where W; is
calculated using the same formula (5.33), and the depth of the feature map is defined by the number
of applied kernels. The illustration of the CNN learning process in the case of 1-dimensional input
data is given in Figure 5.4.

Kernel size

Input
features

v

i Time samples

Extracted patch of
the input data

Element wise product
with kernels

Depth of the resulting
feature map

N
>

Size of the resulting feature map
Figure 5.4 Illustration of the CNN learning process in the case of 1-dimensional input data.

Other important properties of the CNNs include [15]:

1. Sparse connectivity or sparse weights — This property arises from the fact that the kernel is
usually much smaller than the input, e.g., the input can have thousands of elements (pixels or
time samples), but small features can occupy only a few dozens of elements. In this way, a
smaller number of parameters needs to be stored and trained, which reduces the number of
required operations and memory requirements, and improves the statistical efficiency of the
network.

2. Parameter sharing — Each pixel/sample of the kernel is used at every or almost every position
of the input (depending on the selected values for the stride Sy and padding P). This means
that one set of parameters is learned at different positions of the input.

3. Equivariant representations — This property refers to the equivariance to translation, causing
the output to change in the same manner as the input. When 1-dimensional input is processed,
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convolution gives a “timeline,” showing when different features emerge in the input. If some
features are moved later in the input, the same features will emerge later in the output as well.

Within multilayer convolutional neural networks, the output feature map of one layer is fed
to the next layer as the input. A typical convolutional neural network consists of three layers: a
convolutional layer, a non-linear layer, and a max-pooling layer [15]. The convolutional layer
produces a set of linear activations, which then runs through a non-linear activation function (usually
ReLU). In the end, a pooling layer is used to merge similar features. The result of the pooling is
computed as the summary statistics of a local patch of the feature maps’ pixels/samples. The most
common pooling layer calculates the maximum value of nearby outputs, and it is called the max-
pooling. Other commonly used statistics include average, weighted average or L? norm of a
neighbouring local patch [15]. The pooling layer makes the output invariant to a small translation of
the input, which is useful for the cases when the existence of a feature is essential, but not its precise
location. The size of the output of the max-pooling layer can be calculated using the same Equations
(5.33) and (5.34).

5.2. Method

5.2.1. Experiment

The study comprised forty-eight subjects in total: thirty-three patients with PD (Gender: 17
female/16 male; Age: 64.3+7.9 years) and fifteen age- and gender-matched HC subjects (Gender: 7
female/8 male; Age: 62.5+6.9 years). The patients were initially recruited at the Clinic of Neurology,
Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia, in 2015.
Healthy controls were selected among healthy staff members or persons accompanying the patients
at the Clinic of Neurology. Neurologists (specialists for movement disorders) diagnosed PD patients
using the UK Parkinson’s Disease Society Brain Bank criteria [38]. Parkinsonism signs were assessed
with the UPDRS scale [42]. The H&Y scale was applied for the evaluation of disease severity [35].
The performed assessment showed that all PD patients were in an early or mild stage of disease
development. The criteria for H&Y scores (H&Y<2) and disease duration (<5 years) were applied
for distinguishing patients in the early stage of PD development. Fifteen out of thirty-three PD
patients (Gender: 9 female/6 male; Age: 62.0+£9.8 years) met the set criteria, and they were also
observed as patients in the early stage of PD development (later referred to as “PDearly”). The clinical
data of both PD and PDearly patient groups are presented in Table 5.1.

The clinical diagnosis of PD has lower reliability, especially if it is given in the early stage of
disease development [125]. For that reason, diagnostic follow-up was performed by two neurology
specialists (with more than ten years of experience) in 2020, 5 years after the initial inclusion of PD
patients. The physicians confirmed the diagnosis that was given before or at the beginning of the
study for all observed patients (Table 5.1, last row), increasing the reliability of the labels for
classification tasks. All thirty-three PD patients were included in further analysis.
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Table 5.1 Clinical features of PD patients presented through descriptive statistics (averagezstd,
median), with separately presented information for patients in the early stage of PD.

Clinical features Statistics PD PDearly
Averagezstd 2.0+0.8 1.5+0.5
H&Y -
Median 2.5 1.5
Disease duration  Averagezstd 9.2+6.5 3.4+1.3
(years) Median 7 3.25
UPDRS Averagezstd 78.9£33.0 43.8+£16.9
Total Median 85 40
UPDRS Averagezstd 40.51£16.2 24.4+8.4
Il Median 39 23
UPDRS Averagezstd 1.5+0.9 1.0£0.8
gait Median 2 1
confirmed 5 of cases 33/33 15/15
diagnosis

PD — Parkinson’s disease patients; PDearly — Patients in the early stage of Parkinson’s disease development; H&Y —
Hoehn and Yahr scale; UPDRS — Unified Parkinson’s disease rating scale; UPDRS Il — Unified Parkinson’s disease
rating scale, Part I1l — Motor examination; UPDRS gait — Unified Parkinson s disease rating scale, scores given for the
evaluation of the severity of gait disturbances.

The participants were asked to complete a walking task, which was captured and analysed

under four different conditions [126]:

1. Regular or baseline walking (later referred to as “BASE”) — walking along a straight path with a
regular, usual rhythm.

2. Motor dual-task (later referred to as “MOTOR”) — walking along a straight path with a regular,
usual rhythm while carrying a glass of water, trying not to spill it.

3. Cognitive dual-task (later referred to as “COGNITIVE”) — walking along a straight path with a
regular, usual rhythm while performing a mathematical task — serial subtractions of the number
“7” from the number “100”. The mathematical task was given by the examiners, who took care
that the participants provided the correct answers.

4. Combined dual-task (later referred to as “COMBINED”) — walking along a straight path with a
regular, usual rhythm, while carrying the glass of water and performing the described
mathematical task, in parallel.

For all subjects, four walking sequences were captured per each walking condition with few
minutes of break between the successive trials. The exception was one PD patient who performed
only two walking sequences per each condition because of particularly evidenced fatigue during the
experiment. The subjects performed the walking task in their shoes.

The included patients did not experience any freezing of gait or fall episodes during the
experiment. The measurements were conducted in a 15-meter long and 3-meter wide hallway that did
not contain any obstacles, narrow passages, or floor patterns that could affect the walking of patients.
In that manner, the participants were provided with a clear space and time to walk at their natural
pace.
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For all subjects, the measurements were conducted during one day at the Clinic of Neurology,
Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia. The study
was performed following the ethical standards of the Declaration of Helsinki and approved by the
Ethical Committee, School of Medicine, University of Belgrade. All participants gave their written
informed consent to participation in the study.

5.2.2. Instrumentation

In this study, the wireless sensor system SENSY was applied for recording the walking task
[117]. The system comprises two IMUs, and two shoe insoles, each with three force sensing resistors
(FSR) positioned below the area of the 2" and 4™ metatarsal bones and heel area, respectively
(illustrated with gray circles on Figure 5.5). The IMUs incorporated a 3-axial analog accelerometer
(ADXL330, Analog Devices, Norwood, Massachusetts, USA) and a 3-axial gyroscope sensor
(LPR530, LPY530, Analog Devices, Norwood, Massachusetts, USA). During the experiment, IMUs
were placed laterally on the subject’s feet (illustrated with a gray rectangle in Figure 5.5). Shoe insoles
were provided in a corresponding size for each participant and positioned in their shoes during the
measurements. The sensors were connected to their central units, which collected and wirelessly sent
signals to a remote computer (proprietary communication protocol based on IEEE 802.15.4 standard).
The data was acquired with a sampling frequency f, = 100 Hz, using a custom-made software
developed in LabWindows/CV1 9.0 (National Instruments, Austin, Texas, USA).

Figure 5.5 Illustration of the used SENSY system and its position during the experiment, with the
program for data acquisition running on the remote computer.

5.2.3. Data processing

Data processing was executed in custom-made scripts written in Matlab 9.6 R2019a
(MathWorks, Natick, Massachusetts, USA). A single GPU, Cuda device, GeForce GTX 1050 Ti
(Nvidia Corporation, Santa Clara, California, USA) was used for training and testing of developed
models.
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All recorded signals were initially filtered using the same 5-point moving average filter for
all subjects. The normalized ground reaction force GRFn was calculated from the recorded and
filtered FSR signals, using the same procedure described in Chapter 4.

An example of the pre-processed force, accelerometer, and gyroscope signals is presented in
Figure 5.6. The example is provided for one PD patient in the early stage of disease development
(H&Y=2, diseased for two years). The presented signals are recorded from the more affected (right)
leg during the BASE task.

The analysed walking sequences had 14 feature dimensions that represented the normalized
ground reaction force GRFn, three accelerometer axes a,,, , and three gyroscope axes w,,, , from
both legs. The initial dataset which consisted of the whole non-cropped and pre-processed 14-
dimensional walking sequences (later referred to as “ORIGINAL”) was used as an input for further

data processing.

! ID: PD15
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Figure 5.6 Presentation of the pre-processed signals: the normalized ground reaction force GRFy
(upper panel), three accelerometer axes a,.,, , (middle panel) and three gyroscope axes w,,, , (bottom
panel) from the more affected leg. The example is given for one PD patient in the early stage of
disease development.

5.2.3.1. Gait segmentation

Segmentation of walking sequences was performed using the gait segmentation method M1b
that was already presented in Chapter 4. This method was applied to the calculated normalized ground
reaction force GRFn. The moments representing toe-off events from the left leg were detected and
used in further analysis as the time markers for segmenting the gait into individual strides.
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5.2.3.2. Data augmentation problem

In this study, two strategies were developed and applied: stride-based and time-based data
augmentation. These techniques were applied to the ORIGINAL dataset. In addition to providing
more data for training and testing, the introduced augmentation techniques allowed examination of
the influence that a length of the walking sequences might have on the performance of the developed
models.

5.2.3.2.1. Stride-based data augmentation

The extracted time markers were applied to the ORIGINAL dataset for providing shorter 14-
dimensional walking sequences. The data augmentation was executed along the following lines:

1) Cropping to 14-dimensional walking segments that include eight successive strides (later
referred to as “STRIDE-8”). The neighbouring walking segments were shifted by a length of
one stride.

2) Cropping to 14-dimensional walking segments that include five successive strides (later
referred to as “STRIDE-5"). The neighbouring walking segments were shifted by a length of
one stride.

3) Cropping to 14-dimensional walking segments that include two successive strides (later
referred to as “STRIDE-2”). The neighbouring walking segments were shifted by a length of
one stride.

Based on the detailed analysis of the ORIGINAL database, it was established that the shortest
recorded walking sequence comprised nine strides; therefore, the upper limit for data augmentation
was set to eight strides, which provided no less than two cropped segments per any recorded walking
sequence.

The increased intra-variability (sometimes referred to as a stride-to-stride variability)
represents one of the most notable characteristics of the parkinsonian gait [125]. In order to observe
these essential gait characteristics, at least two successive strides should be contained within one
cropped walking segment, which was selected as a lower limit for segmenting the original walking
sequences.

5.2.3.2.2. Time-based data augmentation

In the case of time-based data augmentation, data was cropped on a time level. The data
augmentation was executed along the following lines:

1) Cropping to 8 s long 14-dimensional walking segments (later referred to as “TIME-8”). The
neighbouring walking segments were shifted by a length of 1 s.

2) Cropping to 5 s long 14-dimensional walking segments (later referred to as “TIME-5"). The
neighbouring walking segments were shifted by a length of 1 s.

3) Cropping to 2 s long 14-dimensional walking segments (later referred to as “TIME-2"). The
neighbouring walking segments were shifted by a length of 1 s.

The selection of cropping limits was performed using the same principle as for the previous
augmentation strategy. The shortest walking sequence within the ORIGINAL database was 9.25 s
long; therefore, the upper limit for data augmentation was set to 8 s, which provided no less than two
cropped segments per any recorded walking sequence. The lower limit for cropping the walking
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sequences was set based on the value of the typical gait frequency of 1 Hz [126]. For a typical gait
and sampling frequency of 100 Hz, two strides should be comprised in a 2 s long walking sequence,
which was set as a lower limit for gait augmentation.

By using both augmentation strategies, seven datasets were developed and fed to the designed
deep learning models in total: ORIGINAL, STRIDE-8, STRIDE-5, STRIDE-2, TIME-8, TIME-5,
and TIME-2.

5.2.3.3. Classification of PD patients and healthy controls

Two classification tasks were observed and analysed in this study:
1) classification of all patients with PD and HC subjects (later referred to as “PD-HC”);
2) classification of PDearly patients and HC subjects (later referred to as “PDearly-HC”).

For this purpose, two deep learning models were designed and validated using the developed
datasets: long short-term memory network and convolutional neural network.

5.2.3.3.1 Long short-term memory network

Different architectures of the LSTM network were tested to find a network topology that
provides the best results for the observed classification tasks. The architecture of the final designed
network is shown in Figure 5.7.

The designed network had one LSTM layer with 100 hidden neurons, one fully connected
(FC) layer with 100 hidden neurons, and a softmax layer. The Xavier initialization scheme was
applied for the initialization of values of both input and recurrent weights [129]. For the gates, the
sigmoid activation function was used, while the soft-sign function was applied as the activation
function for updating the memory cell and hidden states. A dropout layer was applied after both the
LSTM and FC layers to prevent the LSTM network from overfitting, with the probability of dropping
out the hidden units of 0.5.

The Adaptive moment estimation (ADAM) solver was applied for training. The cross-entropy
was used as a loss function. The network was trained for 30 epochs, with a mini-batch size of 128.
For the case when stride-based datasets were used for training, one mini-batch could contain walking
segments of different lengths. Because of that, the input data was sorted in an ascending order prior
to any model training and testing. During the training and testing process, the walking segments
belonging to one mini-batch were cropped to the length of the shortest walking segment from the
corresponding mini-batch. The L, norm penalty, with regularization parameter A = 0.05, was added
to the loss function so the complex models could be penalized. The learning rate was given the initial
value n = 0.001; after every five epochs, the learning rate was decreased for a factor of 0.2.
Furthermore, a limitation of value 1 was applied to the gradient values, to prevent the gradients from
exploding/vanishing. In this study, input data was not normalized, since it was shown that data
normalization reduced the performance of the LSTM network, indicating that the amplitude of the
input data carried crucial information that contributed to more precise recognition of gait
disturbances.

The LSTM network was trained and tested on all developed datasets: ORIGINAL, STRIDE-
8, STRIDE-5, STRIDE-2, TIME-8, TIME-5, and TIME-2.
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Figure 5.7 The topology of the developed LSTM network. Marks x4, x,, ..., x14 represented 14 input
feature dimensions, namely GRFw, ay,, and w,, , signals from both legs. Labels y; and y,
corresponded to two groups being classified.

5.2.3.3.2. Convolutional neural network

The second DL model was designed using the CNN model. The final network consisted of 14
convolutional blocks of the same architecture, marked as C;, C,, ... C14. The convolutional blocks were
fed with the individual dimensions of the 14-dimensional input data, corresponding to the normalized
ground reaction force GRFn, three accelerometer axes a,,, , and three gyroscope axes w,,, , from
both legs. Each convolutional block comprised two parts:

1) convolutional layer (CONV-1) with 16 filters size of 1x10 samples; followed by a batch
normalization layer, ReL U activation function layer, and a max-pooling layer (POOL-1) with

a pooling patch size of 1x2 samples;

2) convolutional layer (CONV-2) with 32 filters size of 1x10 samples, followed by a batch
normalization layer, ReLU activation function layer, and a max-pooling layer (POOL-2) with

a pooling patch size of 1x2 samples.

The features learned by the convolutional blocks were merged and fed as the input to the FC
layer with 100 hidden neurons. A dropout layer with a probability of 0.5 for dropping out the hidden
units was put after the FC layer, and followed by a softmax function layer. The topology of the
designed CNN network is presented in Figure 5.8. The batch normalization layer and ReL.U activation
function layers were not illustrated in this Figure to simplify the illustration.

The same hyperparameters were used, as in the case of the LSTM network. The data was not
normalized prior to network training and testing. The CNN network was trained and tested on three
time-based datasets: TIME-8, TIME-5, and TIME-2.
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Figure 5.8 The topology of the developed CNN network. Marks x4, x,, ..., x4 represented 14 input
feature dimensions, namely GRFn, a,, ,and w,, , signals from both legs. Labels y; and y,
corresponded to two groups being classified. Marks C4,C,, ..., C;, represented the convolutional
blocks, which were fed with a corresponding input feature dimension.

5.2.3.4. Evaluation

A 5-fold stratified subject-wise cross-validation was used to evaluate the performance of the
developed models. Firstly, participants from each subject group were randomly split into five folds,
as equally as possible. This manner of data partitioning assured that data was divided on a subject
level and that data from one subject was always placed in the same fold. Furthermore, in this way, all
folds contained data from both subject groups that were observed for a specific classification task.

The standard k-fold cross-validation procedure was applied for validating the models. One
fold (out of 5 folds) was used for testing, whereas the other four folds were applied for training. The
procedure was rerun five times, each time with a different fold used for testing the models. The results
obtained for five repetitions were averaged to provide final quantification of the model performance.

The performance of the developed DL models was evaluated using the Accuracy Ac,
Sensitivity Se, and Specificity Sp metrics, which were calculated following the formulas (5.19)-
(5.21). The Accuracy represented the percentage of the correctly classified walking segments with
respect to the total number of the observed segments. The Sensitivity measured the proportion of the
accurately categorized walking segments belonging to the diseased individuals. In contrast, the
Specificity represented the percentage of the walking segments of the healthy participants that were
correctly recognized.
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5.3. Results

5.3.1. Data augmentation

The ORIGINAL dataset comprised 760 non-cropped walking sequences in total, each
sequence had 14 feature dimensions representing the normalized ground reaction force GRFy, three
accelerometer axes a,, , and three gyroscope axes w,, , from both legs. The initial dataset was
augmented using two approaches: stride-based and time-based augmentation, which resulted in 6 new
datasets. The results of the performed augmentation are presented in Table 5.2, separately for different
datasets and different subject groups.

Table 5.2 The size of the developed datasets expressed as the number of analysed walking segments,
and presented for each subject group separately, and in total.

Dataset [# of sl:gla:r)nents] [# cl)jf[s):gani;tle%ts] [# of s|:gcr:nents] [# of-lsjggtrilents]
ORIGINAL 520 240 240 760
STRIDE-8 5,571 2,150 1,113 6,684
STRIDE-5 7,131 2,870 1,833 8,964
STRIDE-2 8,691 3,590 2,553 11,244
TIME-8 8,693 3,542 1,646 10,339
TIME-5 10,523 4,262 2,366 12,889
TIME-2 12,083 4,982 3,086 15,169

PD — Parkinson’s disease patients; PDearly - Patients in the early stage of Parkinson’s disease development; HC —
Healthy controls; ORIGINAL — Dataset with original non-cropped walking segments; STRIDE-8 — Dataset with 8 strides
long walking segments; STRIDE-5 — Dataset with 5 strides long walking segments; STRIDE-2 — Dataset with 2 strides
long walking segments; TIME-8 — Dataset with 8 s long walking segments; TIME-5 — Dataset with 5 s long walking
segments; TIME-2 — Dataset with 2 s long walking segments.

In the case of the stride-based datasets, the number of observed strides was uniform for all
subjects; however, the duration of the walking segments varied between the participants. In the
STRIDE-8, STRIDE-5, and STRIDE-2 datasets, the shortest segments were 6.7 s, 4.1s, and 1.6 s
long, respectively, whereas the longest duration among all walking segments was 24.3 s, 16.9 s, and
12 s, respectively. Furthermore, the average duration of the walking segments was 9.8 s, 6.1 s, and
2.4 s, respectively, for these three datasets. In contrast, for the time-based datasets, the duration of
walking segments was uniform for all subjects, but the number of observed strides varied between
the subjects. With this augmentation technique, 6.25, 3.9, and 1.6 strides were on average included
within one walking segment from the TIME-8, TIME-5, and TIME-2 datasets, respectively.

5.3.2. Model complexity

The developed CNN model, with 5,362,848 parameters in total, was more complex compared
to the LSTM network, which required training of only 56,301 parameters.
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5.3.3. Model performance

The results obtained for the LSTM network are presented in Table 5.3. All datasets gave
comparable results for the recognition of all PD patients. The accuracy varied for just a few percent,
with slightly better results in favour of the time-based datasets compared to the stride-based datasets.
The ORIGINAL dataset gave the worst results, showing that a lower number of walking segments
for training and testing had a significant impact on the model performance. The TIME-8 dataset
provided the best results, with Ac, Se, and Sp of 91.63%, 94.58%, and 75.15%, respectively (shown
in the grey-shaded cells in Table 5.3, third column).

Table 5.3 Classification results for the LSTM network, presented through Ac, Se, and Sp metrics for
all developed datasets.

Dataset Metric PD-HC PDearly-HC
Ac [%] 85.26 80.00
ORIGINAL Se [%] 89.39 77.50
Sp [%] 76.25 82.50
Ac [%] 88.28 71.84
STRIDE-8 Se [%] 90.19 68.56
Sp [%] 75.75 78.38
Ac [%] 89.55 66.04
STRIDE-5 Se [%] 91.63 59.11
Sp [%] 79.05 74.58
Ac [%] 87.20 67.04
STRIDE-2 Se [%] 91.30 59.10
Sp [%] 72.65 76.66
Ac [%] 91.63 74.29
TIME-8 Se [%] 94.58 71.77
Sp [%] 75.15 79.59
Ac [%] 91.20 73.94
TIME-5 Se [%] 92,51 66.53
Sp [%] 76.57 88.53
Ac [%] 87.60 71.46
TIME-2 Se [%] 90.67 66.84
Sp [%] 76.69 76.20

PD-HC — Classification of all Parkinson’s disease patients and healthy controls; PDearly-HC — Classification of patients
in the early stage of Parkinson’s disease development and healthy controls; ORIGINAL — Dataset with original non-
cropped walking segments; STRIDE-8 — Dataset with 8 strides long walking segments; STRIDE-5 — Dataset with 5 strides
long walking segments; STRIDE-2 — Dataset with 2 strides long walking segments; TIME-8 — Dataset with 8 s long
walking segments; TIME-5 — Dataset with 5 s long walking segments; TIME-2 — Dataset with 2 s long walking segments;
Ac — Accuracy; Se — Sensitivity; Sp — Specificity.

The early PD recognition confirmed that the time-based datasets outperformed the stride-
based datasets. Furthermore, longer walking segments contributed to a more accurate classification
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of two subject groups. Contrary to the result obtained for the first classification task, the ORIGINAL
dataset provided the best results, with Ac, Se, and Sp of 80.00%, 77.50%, and 82.50%, respectively
(shown in the grey-shaded cells in Table 5.3, last column). This result indicated that the length of the
walking segment had a significant impact on the performance of the model, even though in the latter
case, the notably smaller number of walking segments was used for training and testing.

Furthermore, the ratio of the calculated Se and Sp parameters differed for the two
classification tasks. In the case of PD-HC classification, higher sensitivity and lower specificity were
achieved. On the other hand, early PD recognition resulted in higher specificity and lower sensitivity.

For the PD-HC classification task, the CNN model gave the best result in the case of the
TIME-8 dataset with Ac, Se, and Sp of 92.49%, 94.15%, and 83.93%, respectively, followed by the
TIME-5 dataset with Ac, Se, and Sp of 91.21%, 95.50%, and 74.16%, respectively, and the TIME-2
dataset with Ac, Se, and Sp of 88.47%, 94.23%, and 65.25%, respectively. Similar results were
obtained for the PDearly-HC classification - the TIME-8 dataset provided the best results with Ac,
Se, and Sp of 83.26%, 85.18%, and 75.65%, respectively, followed by the TIME-5 dataset with Ac,
Se, and Sp of 80.27%, 85.01%, and 77.67%, respectively, and the TIME-2 dataset with Ac, Se, and
Sp of 77.43%, 81.29%, and 76.98%, respectively.

The best classification results of the two models are compared in Table 5.4. For both
classification tasks, CNN gave better results compared to the LSTM network (shown in the grey-
shaded cells in Table 5.4).

Furthermore, the analysis of the obtained results showed that the models did not perform
poorly for individual subjects but for different walking segments (ho matter to whom they belonged),
indicating that no subject influenced the performance of the networks.

Table 5.4 The best classification results for the LSTM and CNN models, presented through Ac, Se,
and Sp metrics.

. PD-HC PDearly-HC
Metric
LSTM CNN LSTM CNN
Ac [%] 91.63 92.49 80.00 83.26
Se [%] 94.58 94.15 77.50 85.18
Sp [%] 75.15 83.93 82.50 75.65

PD-HC — Classification of all Parkinson’s disease patients and healthy controls, PDearly-HC — Classification of patients
in the early stage of Parkinson’s disease development and healthy controls; LSTM — Long short-term memory network;
CNN — Convolutional neural network; Ac — Accuracy; Se — Sensitivity; Sp — Specificity.

5.3.4. Influence of walking conditions on networks’ performance

The influence of the walking conditions on the performance of the developed deep networks
was also explored. It was evaluated as the percent of walking segments that were correctly classified
with regard to the total number of walking segments that were observed for each walking condition.
The results are shown in Figure 5.9, for both classification tasks, both models, and three time-based
datasets.
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Figure 5.9 The influence of the walking conditions on the performance of the developed DL models
for PD recognition (left) and early PD recognition (right), expressed as a percent of accurately
classified walking segments per each walking condition.

The walking segments recorded during the COGNITIVE and COMBINED tasks were in
larger percent correctly classified compared to the BASE and MOTOR tasks. These results were
confirmed for both classification tasks and all three datasets. The differences between the tasks were
less expressed for the PD-HC classification task. In contrast, this discrepancy was up to 15% for the
classification of healthy subjects and early PD patients. For most of the observed cases, the walking
segments recorded during the MOTOR task were in a smaller percent accurately classified compared
to other tasks.

5.4. Discussion

In this Chapter, a new method was developed and presented for providing objective and
automatic recognition of Parkinson’s disease patients. The particular focus was given to the
recognition of PD in the early stage of disease development. The developed support utilized
nonknowledge-based reasoning. For that purpose, DL models, more specifically long short-term
memory network and convolutional neural network, were designed and fed with gait data. The
networks were developed and evaluated for two classification tasks, including classification of all PD
patients and healthy controls, and classification of early PD patients and healthy subjects. It was also
examined how the duration of the walking segments, augmentation strategy, and walking conditions
influenced the performance of these models.

Gait data was recorded with a wearable wireless inertial and force sensor system. The used
sensors are lightweight, small, affordable, and can be applied at any time and place. These important
properties make them appropriate for clinical practice that requires a fast and accurate diagnostic
assessment of a large number of patients, but also for applications in the everyday environment and
patients’ self-management.

The processed gait data had 14 feature dimensions: the normalized ground reaction force
GRFn, three accelerometer axes a,, ,and three gyroscope axes wy, , from both legs. Two
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augmentation strategies were applied to the original walking sequences: the stride and time-based
augmentation techniques. Six new datasets were developed, and together with the dataset comprising
the original walking sequences, were fed to the designed deep learning models.

LSTM network represents a special type of recurrent neural network that can find long term
dependencies in time-series data. In this study, a LSTM model was developed and validated using all
seven datasets. In the case of recognition of all PD patients, time-based datasets provided slightly
better results compared to the ORIGINAL and stride-based datasets. The TIME-8 dataset provided
the best results with Ac, Se, and Sp of 91.63%, 94.58%, and 75.15%, respectively (shown in the third
column, the grey-shaded cells in Table 5.3). Although walking segments were sorted by their length
prior to the model training and testing, the LSTM network required that data comprised in one mini-
batch was equalized in its length during the learning process. In the case of stride-based datasets, this
could cause some information loss and, therefore poorer performance of models that were developed
using these datasets. In contrast, recognition of the early-stage PD was more affected by the length
of the walking segments. The results showed increased accuracy using longer walking segments for
training and testing. Among the seven datasets, the best result was obtained for the ORIGINAL
dataset (shown in the last column, grey cells in Table 5.3) with Ac, Se, and Sp of 80.00%, 77.50%,
and 82.50%, respectively. This dataset comprised the whole non-cropped walking segments, and
therefore the fewest samples for training and testing (as shown in Table 5.2). Furthermore, the ratio
between the sensitivity and specificity parameters showed some discrepancy between the two
classification tasks, with lower sensitivity and higher specificity for the early PD recognition. In the
latter case, some patients had less prominent or almost undeveloped gait disturbances, which could
cause their walking segments to be confused with those belonging to healthy individuals.

A deep learning model based on convolutional neural networks was also designed. CNN
represents a powerful technique for the extraction of meaningful representations from two- or one-
dimensional data. Three time-based datasets were fed to the CNN model. The CNN model
outperformed the LSTM model for both classification tasks. The best result was obtained for the
TIME-8 dataset (shown in grey cells in Table 5.4) with Ac, Se, and Sp of 92.49%, 94.15%, and
83.93%, respectively for the PD-HC classification task, and Ac, Se, and Sp of 83.26%, 85.18%, and
75.65%, respectively for the PDearly-HC classification task. These results show the high applicability
of CNN models for PD recognition.

The gait disturbances represent one of the most incapacitant PD signs; however, this symptom
is less prominent in the early stage of the disease development. This fact was supported by the results
obtained in this study, showing that a larger number of strides or longer walking sequences should be
analysed in order to capture early changes in the gait pattern caused by PD. The CNN network would
probably provide even better results with data acquired from a larger number of patients due to its
complexity and ability to process big data. On the other hand, the LSTM network is much simpler,
and it would probably benefit from longer walking segments, especially for the early PD recognition.

The influence of the dual-task paradigm was also examined on the ability of the designed
models to recognize PD. In the literature, the dual-task paradigm is usually applied to examine the
interplay between gait and cognition [130]. It was shown that it could influence and alter gait patterns
even in healthy subjects [131], [132]. This effect is even more prominent for PD patients, significantly
increasing the variability of their gait pattern. The presented results showed that COGNITIVE and
COMBINED tasks contributed to an accurate recognition of PD in larger percent compared to the
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BASE and MOTOR walking. In the case of the identification of all PD patients, the differences were
smaller, indicating that in advanced stages, walking of PD patients is disturbed to the same extent
regardless of the condition under which the gait was recorded. In contrast, classification of early PD
patients and healthy controls was influenced a lot more by the dual-task paradigm, showing that tasks
including some mental occupation while walking (i.e., COGNITIVE and COMBINED) contribute to
a more accurate early PD recognition (with differences up to 15%). In contrast, walking segments
recorded during the MOTOR task were accurately classified with the smallest percent, which
indicated that motor occupation probably altered the gait pattern of both early PD patients and healthy
individuals.

Since a small number of subjects were included in the study, a 5-fold stratified subject-wise
cross-validation was applied for the evaluation of models’ performance to provide meaningful
interpretations of the obtained results. Subject-wise cross-validation indicated that all data from one
subject was put in the same fold. Therefore, during the testing phase, the predictions were made for
data belonging to a subject that was previously unseen by the models. This type of evaluation is
especially important since deep learning models can pick up some complex predictors, which in the
case of a record-wise validation, could capture a relationship between the data and identity of the
subjects and provide high but unrealistic accuracy [133].

Other gait databases were also applied in the literature for recognizing PD using deep learning
algorithms. Some systems showed high accuracy results in this field [63], [95]; however, none of
these studies considered early PD identification, and to the knowledge of the author, there are no
other available results for the early PD recognition using deep learning models and gait data recorded
with wearable, wireless sensors. Furthermore, both developed models outperformed deep learning
solutions that are using other types of data for recognizing PD in the early stage [68].
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6. Amplitude analysis of repetitive movements using
wearable sensors

In clinical practice, several motor tests (defined within the UPDRS scale) are applied for
assessing the severity of bradykinesia symptom, including finger-tapping, hand opening/closing,
hand pronation/supination, and toe-tapping (or foot-tapping) [41], [42]. As part of the test, patients
are instructed to perform a specified movement with the biggest amplitude and, as fast as possible,
for some number of repetitions, e.g., ten times [59], [60], or for some short time interval, typically
10-15 s [58], [72], [81], depending on the version of the UPDRS scale that is followed. Afterwards,
these movements are evaluated with a score that is given based on the specifically defined
instructions. The evaluation criteria are the same for these four movements: neurologists observe the
amplitude, speed, amplitude decrement, and the number of occasional interruptions that may occur
during the test. The only difference in the evaluation process between these four tests relates to the
way the amplitude of these movements is observed. Therefore, in order to provide an objective
analysis and quantification of these movements, firstly, the amplitude of these movements should be
determined.

In this Chapter, the method for capturing and calculating the amplitude of the abovementioned
hand and leg movements is defined and presented for each movement separately. The method is
demonstrated on the example of one subject.

6.1. Measurement protocol

Subjects are told to sit comfortably in the chair, with their back put against the chair back.
They are instructed to perform four motor tasks as following.

Finger-tapping (FT) test: Subject’s hand is placed in front of the subject’s body, flexed, and
supported at the elbow. Each recording contains a sequence of two tasks: 1) fingers are firmly closed
and perform a 3D circular or zig-zag movement in the duration of 3-5 s, which is later used for auto-
calibration; 2) finger-tapping movement in the duration of 15 s or for 10 repetitions. Finger-tapping
movement starts and ends with fingers closed in a “zero” position. The subject is instructed to tap
his/her index finger and thumb as fast as with the largest amplitude possible. One cycle of the
movement is presented in Figure 6.1.
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Figure 6.1 Presentation of the repetitive finger-tapping test: the fingers are closed in a “zero” position
(left), and the fingers are opened with the highest possible aperture (right).

Hand opening-closing (HOC) test: Subject’s hand is placed in front of the subject’s body, flexed
and supported at the elbow, so the palm faces the examiner. Each recording contains a sequence of
two tasks: 1) palm is firmly closed and performs a 3D circular or zig-zag movement in the duration
of 3-5 s, which is later used for auto-calibration; 2) hand opening-closing movement in the duration
of 15 s or for 10 repetitions. HOC movement starts and ends with the hand closed in a fist (in a “zero
position”). The subject is instructed to open and close his/her hand as fast as possible, with the largest
possible amplitude. One cycle of the movement is presented in Figure 6.2.

Figure 6.2 Presentation of the repetitive hand opening/closing test: the hand is closed in a “zero”
position (left), and the hand is opened with the highest possible aperture (right).

Hand pronation-supination (HPS) test: Subject’s hand is placed in front of the subject’s body,
extended with a palm down at the initial position. Each recording contains a sequence of hand
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pronation-supination movements in the duration of 15 s or for 10 repetitions. HPS movement starts
and ends with palm oriented down at full supination. The subject is instructed to rotate palm up and
down alternatively, as fast and as fully as possible. One cycle of the movement is presented in Figure

6.3.
£
el

X |

Figure 6.3 Presentation of the repetitive hand pronation/supination test: the hand is rotated to full
supination (left), and a hand is rotated to full pronation (right).

Toe-tapping (TT) test: Subject’s feet are placed in front of the subject’s body, slightly bent at the
knee with the heel placed on the ground, while sitting in a straight-back chair. Each recording contains
a sequence of toe-tapping movement in the duration of 15 s or for 10 repetitions. TT movement starts
and ends with the complete foot on the ground (both toes and heel are placed on the ground). The
subject is instructed to tap his/her toes as fast as with the largest amplitude possible, while holding
the heel on the ground. One cycle of the movement is presented in Figure 6.4.

Figure 6.4 Presentation of the repetitive toe-tapping test: the foot is entirely placed on the ground
(left), and the toes are lifted as high as possible while holding the heel on the ground (right).
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6.2. Measurement system

A wireless inertial sensor system is used for recording the four repetitive hand and leg
movements. The system comprises two IMUs, each with a 3-axial gyroscope L3G4200
(STMicroelectronics, Geneva, Switzerland) [75]. IMUs are connected to their sensor-control units
(SCUs), placed on subjects’ forearm during the experiment. SCUs acquire and wirelessly transmit
data to a remote computer. A custom-made software, developed in LabWindows/CVI1 9.0 (National
Instruments, Austin, Texas, USA) controls data acquisition. The position of the IMUs depends on the
performed test, and it is organized in the following way:

1) FT test: IMUs are positioned over the fingernails of the index finger and thumb. The adopted
orientation of the local coordinate systems of the sensors is presented in Figure 6.1.

2) HOC test: One IMU is positioned over the fingernail of the middle finger, whereas the other IMU
is mounted on the same hand, placed over the middle of the 3 metacarpal bone. The adopted
orientation of the local coordinate systems of the sensors is presented in Figure 6.2.

3) HPS test: One IMU is positioned over the fingernail of the middle finger. The adopted orientation
of the local coordinate system of the sensor is presented in Figure 6.3.

4) TT test: One IMU is positioned over the footbridge. The adopted orientation of the local
coordinate system of the sensor is presented in Figure 6.4.

IMUs are miniature (10x12mm) and lightweight (10 g), which allows subjects to perform the
specified movements in a natural manner.

6.3. Calculation of movement amplitude

The method for calculating the amplitude of the repetitive movements is described for each
movement individually in the following sections.

6.3.1. Finger-tapping test

The FT movement amplitude is defined as the aperture of the fingers during the repetitive
finger-tapping. It is expressed as the angle of the relative rotation of the thumb and index finger. This
movement is very complex, and although the precise instructions are provided within the clinical
scale, patients may perform it with large inter-variability (rotations and translations of different finger
joints) [134]. Their poor understanding of the given instructions and expressed disease symptoms can
influence their ability to execute this movement correctly. Because of that, the FT movement is
observed and analysed in a simplified manner: it is approximated as the scissor-like movement and
observed only in terms of rotations of whole fingers (ignoring the movements of the finger joints)
[134]. This approximation is in compliance with other suggested solutions in the literature [135].

6.3.1.1.  The angle of the relative rotation of fingers

The approach for calculating the angle of the fingers’ relative rotation is introduced and
described in [134]. The gyroscope sensors positioned on the fingers provide a measure of angular
velocities in 3-dimensional space with respect to their local Cartesian coordinate systems. The local
x-axis of the sensors is directed along the axis of the corresponding finger, whereas the y-axis and z-
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axis were directed transversally and perpendicular to the surface of the nail, respectively (as shown
in Figure 6.1).

By placing the two sensors on the thumb and index finger, their local Cartesian coordinate
systems are relatively rotated to one another (Figure 6.1). In order to calculate the relative movement
of the fingers, it is necessary to determine the mutual position of the sensors upon their placement on
the fingers. Due to that fact, the auto-calibration sequence is performed at the beginning of each
recording sequence [134]. During the short auto-calibration, fingers are firmly pressed against each
other while performing fast circular or zig-zag movements in 3-dimensional space. In this way, a
short sequence with very small or no relative motion between the fingers is obtained. Angular velocity
vectors of two sensors are equal during the auto-calibration sequence [134]:

0, =W,=® (6.1)

where w; and w, represent vectors of the angular velocity of the thumb and index finger sensors,
respectively. Since the Cartesian axes of these two sensors are not parallel, components of the angular
velocity differ between the two sensors [134].

The relative movement is observed from the index finger coordinate system since the index
finger performed significantly larger swings than the thumb. In addition, it is shown that in such
cases, signal processing is more numerically stable [134]. In order to transform components of the
angular velocity of the thumb into the index finger coordinate system, a rotational matrix [R] was
introduced [136]:

Wax 11 Ti2 T13][Wix
Woy| = |T21 T22 T23||W1iy (6.2)
Wz 31 T3z T33]lWq,

Where (w,y, Woy, W37) and (w1x, w1, w17) represent components of the angular rotation of the thumb
and index finger sensors, respectively, whereas r;;, i,j = 1,2,3 represent elements of the rotational

matrix [R]. The matrix should be time-invariant during the calibration process. For each time step,
connections between the components of w; and w, are described with three relations, each involving
three elements of the rotational matrix [R]. The goal of the auto-calibration is to estimate the elements
of the rotational matrix and approximate the initial relative rotation of these two local coordinate
systems. By taking the components of w; and w, at three different time steps, a system of three linear
equations can be formed and used for computation of the matrix elements [134]. Unfortunately, there
are several problems with this approach. Firstly, these equations could be ill-conditioned. Besides,
the obtained matrix may not be orthonormal because of the sensor imperfections, which would require
additional processing [134].

There are several alternative solutions to this problem. This method implements the procedure
based on the Euler angles since it represents a more physically understandable and intuitive approach
compared to quaternions [134]. Transformation of one Cartesian coordinate system to another can be
performed by three subsequent rotations [136], as shown in Figure 6.5. The angles of these three
rotations represent the Euler angles.
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The transformation of the coordinate system (x;,y;z;) to the other coordinated system
(x2,¥2,2,) starts with a counter-clockwise rotation about the z;-axes for an angle ¢. The resulting
coordinate system is marked with (xj,y;,z;). Afterwards, the new coordinate system is rotated
counterclockwise about the x;-axes for an angle 6, which again results with another coordinate
system, later referred to as (x;',y:’,z;'). In the last rotation, the second intermediate coordinate
system is rotated counterclockwise about the z;'-axes for the angle . With this final rotation, a
desired coordinate system (x,, y, z,) is obtained. Therefore, the Euler angles completely describe the
rotation of the coordinate system (x,, y, z,) with respect to the coordinate system (x4, y; z;) [136].

!
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Figure 6.5 Rotations that are defining the Euler angles.

In further annotation, the matrix describing the complete transformation of the coordinate
system will be marked with [R]. The matrix [R] is equal to the product of three matrices, which
correspond to the three rotations. The first rotation is described by [136]:

[x1] = [Rg][x4] (6.3)

where x; and x4 represent the column matrices. Similarly, it is performed for the other two rotations
[136]:

[x7] = [Rg][x1] (6.4)
and
[x2] = [Rg][x7] (6.5)

The complete transformation is described with the following equation [136]:
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[x;] = [R][x1] = [Ry][Ro][R][x4] (6.6)

The matrices [Ry], [Ro] and [R | have the form described in the Equations (6.7)-(6.9) [136]:

cos¢p sing O
[Ry] = [— sing cos¢ O] (6.7)
0 0 1
1 0 0
[Rg] = [0 cos@ sin 0] (6.8)
0 —sinf@ cos@
cosy sinyp 0
[Ry] = [— siny cosy O] (6.9)
0 0 1
Based on the Equations (6.7)-(6.9), the complete transformation matrix equal to [136]:
[R]
cos P cos ¢ — cos @ sin sin ¢ cosysiny + cosfcospsingg  sinysiné (6.10)

= |—sin¢ cos¢p —cosOsinpcos¢p —sinypsiny + cosbcosycosy cosysinf
sin 6 sin ¢ —sin 6 cosy cos

This matrix is automatically orthonormal. In order to calculate angles ¢, 8, and ¥, based on
the Equations (6.2) and (6.10), an optimization function is obtained [134]:

2
f(®,0,¢) = (fUZx — (NM1w1x + 1201y + Ti301,))
2
+ (wa = (rpyw1x + T22W1y + Tz3w1z)) (6.11)

2
+ (w2z — (r31w1x + 13504y + 7”33‘*)12))

This function is minimized using an algorithm that implements the Nelder-Mead simplex (direct
search) method [137]. In this way, the estimation of the angles ¢, 0, and ¥ is performed and
afterwards, the initial rotational matrix is calculated.

As already mentioned, each trial begins with the auto-calibration sequence, which is recorded
prior to the finger-tapping sequence. Therefore, the initial rotational matrix is calculated for each
recording individually and then applied for the finger-tapping sequence, which is captured
immediately after the auto-calibration sequence.

The relative rotation of the thumb with respect to the index finger is calculated as [134]:

Wy = W] — (6.12)

By observing the Equations (6.2) and (6.12), the relative rotation w, is given as [134]:
Wry W1y Wy
Wry | = 7"21 Tzz 7"23 W1y | — | W2y (6.13)
Wrz 31 T332 T33]lWiz W3z
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Since, two local coordinate systems additionally rotate relative one to another during the FT
movement, the rotational matrix [R] is updated for each time step, as follows [134]:

cosA¢p —sinA¢p 0][cosd8 0 sind8][1 0 0
[R,] = |sinA¢ cosAP 0] 0 1 0 ”0 cosdyp —sindyY([R,_4] (6.14)
0 0 1l1l—sin460 0 cos46110 sindy  cosdy

where [R,,_1] represents the rotational matrix at the previous time step, and A¢ = w,,At, AO =
wry, At and AY=w,,At represent the instantaneous rotations about the three axes of the index finger
coordinate system. As shown in the Equation (6.14), relative rotation of the fingers is described with
the rotations about three axes of the index finger coordinate system. However, in order to provide a
simpler and more understandable representation, the FT amplitude is defined as the most dominant
rotation of the relative motion of the fingers w,; [134]. For most cases, it is expected that the
dominant rotation is about the y, axis of the index finger coordinate system. Otherwise, the coordinate
system is rotated, so the dominant rotation is about a new y, axis. The angle of the relative rotation
« is calculated by integrating the dominant component of the relative angular velocity w,.4 in a time-
stepping procedure [134].

In some cases, the drift caused by integration is too big, which requires the approximation of
the angle using some other approach. In the literature, it is shown that the elements in the second row
of the matrix [R] remain almost constant for all time steps [134]. Hence, in order to find the relative
rotation of the fingers, it is enough to use the initial rotation matrix and to project the w; on the y,
axis:

Wyrq = T21W1x T 12201y t 72301, (6.15)

Once again, the angle of the relative rotation a is calculated by integrating the angular velocity
w,q In a time-stepping procedure. This method implements the second approach for the cases where
drift exceeds the value of 40 degrees.

By integrating the dominant component of the angular velocity w,4, a drift occurs regardless
of the approach that is used for calculating the relative rotation of the fingers. The procedure for drift
removal is described in the next section.

6.3.1.2.  Segmentation of movements to individual cycles

In order to remove the drift from the calculated angle sequence, it is necessary to detect
moments when fingers are closed, i.e., when the angle between fingers equals to “zero.” Because of
that, the segmentation of the finger-tapping movement is performed.

One finger-tapping cycle (or tap) consists of two phases: fingers opening and fingers closing.
During the opening phase, fingers are moving away from each other. This phase ends when fingers
form the highest aperture for that cycle. Afterwards, the closing phase begins, and the fingers are
moving towards each other. The closing phase ends with fingers closed in a “zero posture.”

Ideally, the dominant component of the relative angular velocity w,.; of the finger-tapping
movement would look like a periodic sine wave. The w,; signal passes through a “zero” value two
times per each cycle: when fingers are closed in a “zero posture,” and when fingers briefly stop after
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forming the highest aperture, so they could start moving in the opposite direction. Based on the
adopted orientation of the index-finger coordinate system (as shown in Figure 6.1), the peaks
correspond to maximum closing angular velocity, whereas the signal valleys represent the maximum
angular velocity during the opening phase. In an ideal movement, fingers are opening and closing
with the same angular velocity, and the movement is smooth. However, the real finger-tapping
movement is different.

An example of the dominant component of the relative angular velocity w,,; (with marked
finger-tapping phases) is presented in Figure 6.6. As shown, the maximum opening and closing
angular velocities may differ. The rising edge of the signal is smooth, and there are no setbacks around
zero, which means that fingers smoothly pass from the opening to the closing phase after achieving
the maximum aperture for that cycle. On the other hand, during the closing phase, there is a short
period when the signal stays around the “zero” value or stays in the “zero posture” (marked with a
red ellipse in Figure 6.6). During that short period, fingers are closed, and they may slightly slip over
one another. This effect is more visible for faster movements when subjects tap their fingers very fast
and make a significant impact when closing. Although this movement pattern may be altered to some
smaller or larger extent from subject to subject (slower and less smooth movements, longer or shorter
“zero posture” segments, and others), this division into phases is maintained for all people.

Maximum closing

- angular velocity
30 - 4" per one tap
20 -
) Fingers closed
Maximum angle in a "zero posture"
10 - peronetap
= N 4
s
E 0=
3’5
-10 -
-20
opening phase closing phase ‘”\ Maximum opening
50l angular velocity
- per one tap
]
0 Time [s] 0.5

Figure 6.6 Presentation of the short w,,; sequence describing the finger-tapping movement, with
marked movement phases. Samples corresponding to maximum closing and opening angular
velocities (per one tap) are labelled with red stars. The red dot marks a moment when fingers achieve
maximum angle or aperture during one tapping cycle, and red ellipse shows a short period during one
cycle when fingers are closed in a “zero posture.”

In order to provide automatized segmentation of signals, the observed signal is smoothed
using a moving average filter with an adaptive span [138]. The span is calculated as (f;/f)/2, where
f, represented the sampling frequency, and f,, frequency is the basic tapping frequency extracted from
the frequency spectrum. In this way, every signal is smoothed based on its intrinsic properties. The
smoothed angular velocity is then normalized with respect to its maximum value and later referred to
aS Wrg—smooth—n (@N €xample is shown in Figure 6.7). Two thresholds are applied to the normalized
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filtered signal, valued at 0.1 and -0.1, respectively. All samples valued above 0.1 are declared as the
areas where signal peaks should be located. A local maximum within one interconnected area is
extracted from the original signal. The time marker indicating the maximum closing angular velocity
(per one tap) is defined as the index of the sample at which this local maximum value is detected (red
circles in Figure 6.7). The procedure is repeated for all interconnected areas.

= Normalized dominant relative angular velocity WoaN

......... Normalized smoothed angular velocity Wt mooth-N

....

Area where
<-0.1

“rd-smooth

0.5

Won [rad/s]

Area where
>0.1

wrd—smoath

! 0 Time [s] 0.5

Figure 6.7 Detection of markers indicating the maximum opening and closing angular velocity and
“zero posture” moments per one tap. The dominant component of the relative angular velocity w,4
is normalized for the sake of the presentation and shown with a solid black line. The normalized
smoothed angular velocity w,q4_smooth—n 1S represented with dark grey dashed line. Light grey
dashed vertical lines mark areas where smoothed angular velocity takes values below -0.1 or above
0.1 value. Red circles and squares mark moments where angular velocity achieves its maximum value
during the closing and opening phase, respectively. Red crosses represent “zero posture” markers.

Time markers representing the maximum closing angular velocity (per one tap) are extracted
using the same procedure, by finding a local minimum within each interconnected area where the
normalized smoothed angular velocity w,4—smooth—n 1S below the -0.1 threshold (red squares in
Figure 6.7). “Zero posture” markers (indicating moments when fingers are closed) are extracted using
the maximum closing and opening angular velocity time markers. They are defined in the samples at
which the normalized smoothed angular velocity @, 4—smooth—n PaSSeS through a “zero” value for the
first time between each two succeeding maximum closing and opening angular velocity time markers
(red crosses in Figure 6.7). The sequence of extracted “zero posture” time markers is complemented
with two samples representing the beginning and end of the movement sequence.

Time markers representing “zero posture” moments are applied for the drift removal.
Polynomial approximation of the third order is fitted through the obtained time markers and
subtracted from the drifted angle sequence.
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6.3.2. Hand opening/closing test

The HOC movement amplitude is defined as the aperture of the hand during the repetitive
hand opening-closing. It is expressed as the angle of the relative rotation of the fingers and palm. This
movement is even more complex than the FT movement. Hand opening-closing requires movement
of all fingers, including rotations and translation of different joints. Besides, fingers may open and
close inconsistently. Because of that, the following simplification of the movement is performed: all
fingers are moving together and in the same manner, and HOC movements are observed only in terms
of rotations of palm and whole fingers (ignoring the movements of the finger joints).

6.3.2.1. The angle of the relative rotation of fingers and palm

The same procedure for calculating the relative motion of the sensors is applied, as in the case
of the FT test. The relative motion is observed from the middle-finger coordinate system since fingers
perform much larger swings than a palm.

The initial relative position of the sensors (upon their placement) is determined using the auto-
calibration sequence, which is recorded at the beginning of each HOC trial. The calculations are the
same as for the FT test. The relative angular velocity of the palm with respect to the middle finger is
observed:

Wy = W] — (6.16)

where w; and w, represent the angular velocity vectors of the palm and middle-finger sensor,
respectively. The dominant component of the relative angular velocity w,.; is automatically detected
about the y, axis of the index-finger coordinate system and used for further analysis. By integrating
the w,-4, the angle between the hand and the finger « is obtained.

6.3.2.2.  Segmentation of movements to individual cycles

One hand opening-closing cycle consists of two phases: hand opening and hand closing. The
cycle starts with the hand closed in a fist (or a “zero posture”). Afterwards, the hand opening phase
starts — the palm and fingers are moving away from each other. Although fingers perform significantly
larger swing than a palm, there can be some small backward movement of the palm. The opening
phase ends with an outstretched hand forming the highest aperture for that cycle. Afterwards, the
closing phase begins — palm and fingers are moving towards each other. The closing phase ends with
the hand closed in a fist or “zero posture.”

The dominant component of the relative angular velocity w,, of the ideal hand opening-
closing movement would look like a periodic sine wave. The w,; signal passes through a “zero”
value two times per each cycle: when the hand is closed in “zero posture” and when hand briefly
stops after forming the highest aperture, so it could start moving in the opposite direction. Based on
the adopted orientation of the middle-finger coordinate system (as shown in Figure 6.2), the peaks
correspond to maximum angular velocity during the closing phase, whereas the signal valleys
represent the maximum opening angular velocity. In an ideal movement, the hand is opening and
closing with the same angular velocity, and the movement is smooth. However, the real hand opening-
closing movement is different.
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An example of the dominant component of the relative angular velocity w,,; with marked
movement phases is presented in Figure 6.8. The signal has a similar shape with the signal
representing the finger-tapping movement. The maximum opening and closing angular velocities may
differ. In the presented case, the rate of change of the angle is larger for the opening phase than for
the closing phase. The rising edge of the signal is smooth, and there are no setbacks around zero,
which means that hand smoothly passes from the opening to the closing phase after achieving the
maximum aperture for that cycle. In contrast, during the closing phase, there is a short period when
the signal stays around the “zero” value or stays in the “zero posture” (marked with a red ellipse in
Figure 6.8). During that short period, the hand is closed in a fist. This effect is even more expressed
than in the case of the finger-tapping movement and more prominent for faster movements, when
subjects open and close their hand very fast and make a significant impact when closing. Although
this movement pattern may be altered to some smaller or larger extent from subject to subject (slower
and less smooth movements, longer or shorter “zero posture” segments, and others), this division into
phases is maintained for all people.

50 - Maximum closing
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Figure 6.8 Presentation of the short w,,; sequence describing the hand opening-closing movement,
with marked movement phases. Samples corresponding to maximum closing and opening angular
velocities (per one cycle) are labelled with red stars. The red dot marks a moment when hand achieves
maximum angle or aperture during one cycle, and red ellipse shows a period during one cycle when
the hand is closed in a “zero posture.”

Segmentation is performed in the same manner as for the finger-tapping movement [138]:
firstly, the signal is smoothed using a span calculated based on the subject’s opening/closing
frequency. Afterwards, areas with signal peak and valleys are detected. Based on the adopted
orientation, these peaks and valleys correspond to maximum closing and opening angular velocities
(per individual cycles), respectively, and the samples at which they are located are extracted as their
markers. These markers are then used for finding the moments in which hand is closed in “zero
posture.” These moments are then saved as time markers for movement segmentation or drift
removal. The third-order polynomial fit is calculated through the extracted markers and removed
from the drifted angle sequence.
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6.3.3. Hand pronation/supination test

The amplitude of the HPS movement is defined as the angle of rotation during the consecutive
hand pronation and supination movements. It is expressed as the angle of the dominant rotation of
the hand.

6.3.3.1.  The angle of the hand rotation

The dominant component of the angular velocity w4 is automatically detected from the
obtained vector of the angular velocity w; and used for further analysis. The dominant axis is about
the z, axis of the middle-finger sensor. The selected w, 4 is integrated for calculating the angle of the
hand rotation «a.

6.3.3.2.  Segmentation of movements to individual cycles

One hand pronation-supination cycle consists of two phases: hand pronation and hand
supination. The cycle starts with the hand rotated in full supination. Afterwards, the hand pronation
phase starts — the hand is rotating around the axis oriented along the hand. The pronation phase ends
with the hand rotated at the highest possible pronation. Afterwards, the supination phase begins and
ends with hand rotated at full supination.

The dominant component of the hand angular velocity w,,4 of the ideal hand pronation-
supination movement would look like a periodic sine wave. The w;4 signal passes through a “zero”
value two times per each cycle: when the hand is rotated at full supination and when the hand is
rotated at full pronation. Based on the adopted orientation of the middle-finger coordinate system (as
shown in Figure 6.3), the peaks and valleys correspond to maximum angular velocity during the
supination and pronation phases, respectively. In an ideal movement, the hand is rotating with the
same angular velocity in both directions, and the movement is smooth. However, the real repetitive
hand pronation-supination movement is different.

An example of the dominant component of the hand angular velocity w,,; with marked
movement phases is presented in Figure 6.9. The maximum angular velocities (marked with red star
markers in Figure 6.9) may differ while rotating in two opposite directions. When hand stops with
rotating at full supination or pronation, the hand may pause briefly and even perform a slight shake
due to its inability to perform instant and smooth change of movement direction (shown with red
circles in Figure 6.9). Although this movement pattern may be altered to a smaller or larger extent
from subject to subject (slower and less smooth movements, longer or shorter stops while changing
the direction of the movements, and others), this division into phases is maintained for all people.

Segmentation is performed in the same manner as for the previous movements [138]: firstly,
the signal is smoothed using a span calculated based on the subject’s pronation/supination frequency.
Afterwards, areas with signal peak and valleys are detected. These peaks and valleys correspond to
maximum angular velocities during supination and pronation (per individual cycles), respectively,
and the samples at which they are located represent their markers. These markers are then used for
finding the moments when the hand is rotated in full supination, which represents the beginning point
of each HPS movement cycle. These moments are then saved as the time markers for movement
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segmentation and drift removal. The third-order polynomial fit was calculated through the extracted
markers and removed from the drifted angle sequence.
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Figure 6.9 Presentation of the short w,4; sequence describing the hand pronation-supination
movement, with marked movement phases. Samples corresponding to maximum pronation and
supination angular velocities (per one cycle) are labelled with red stars. Red circles mark moments
when the hand achieves maximum rotation in one direction.

6.3.4. Toe-tapping test

The TT movement amplitude is defined as the angle that foot forms with the ground while
holding the heel on the ground and tapping the toes. It is expressed as the angle of the dominant
rotation of the foot.

6.3.4.1.  The angle of the foot rotation

The dominant component of the angular velocity w4 is automatically detected from the
obtained vector of the angular velocity w; and used for further analysis. The dominant axis is about
the y, axis of the foot sensor. The selected w, 4 is integrated for calculating the toe-tapping angle .

6.3.4.2. Segmentation of movements to individual cycles

One toe-tapping cycle (or tap) consists of two phases: toe lifting and toe lowering. The cycle
starts with the foot placed entirely on the ground. Afterwards, the toe lifting phases begins — the toes
are lifted as high as possible while maintaining the heel on the ground. This phase ends with the toes
lifted as high as possible, forming the highest angle with the ground. Afterwards, the toe lowering
phase begins and ends when the foot makes full contact with the ground.

The dominant component of the foot angular velocity w, 4 of the ideal toe-tapping movement
would look like a periodic sine wave. The w4 signal passes through a “zero” value two times per
each tapping cycle: when toes are lifted as high as possible and when the foot makes full contact with
the ground. Based on the adopted orientation of the foot coordinate system (as shown in Figure 6.4),
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the peaks and valleys correspond to maximum angular velocity during the toe lowering and lifting
phases, respectively. In an ideal movement, toes are tapped with the same angular velocity during
both cycles, and the movement is smooth. However, the real repetitive toe-tapping movement is
different.

An example of the dominant component of the relative angular velocity w,,; with marked
movement phases is presented in Figure 6.10. The maximum angular velocities while toe lifting and
lowering phases (marked with red star markers in Figure 6.10) may differ. The foot smoothly changes
the movement direction (shown with red dots in Figure 6.10). Although this shape may be altered to
some smaller or larger extent from subject to subject (slower and less smooth movements, visible
stop while the foot is in the full contact with the ground, and others), this division into phases is
maintained for all people.
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Figure 6.10 Presentation of the short w,,; sequence describing the toe-tapping movement, with
marked movement phases. Samples corresponding to maximum toe lowering and lifting angular
velocities (per one cycle) are labelled with red stars. The red dots mark moments when foot achieves
maximum angle during one cycle or when the whole foot is on the ground.

Segmentation is performed in the same manner as for the previous movements [138]. Firstly,
the signal is smoothed using a span calculated based on the subject’s toe-tapping frequency.
Afterwards, areas with signal peaks and valleys are detected. These peaks and valleys correspond to
maximum angular velocities while the foot is lowering to the ground or lifting to the air (per
individual cycles), respectively, and the samples at which they are located are extracted as their
markers. These markers are then used for finding the moments when the foot is entirely placed on the
ground, which represents the beginning point of each TT movement cycle. These moments are then
saved as the time markers for movement segmentation and drift removal. The third-order polynomial
fit was calculated through the extracted markers and removed from the drifted angle sequence.
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6.4. Demonstration of the method on the example of one
subject

6.4.1. Method

6.4.1.1. Experiment

The method for measuring and calculating the amplitude of the repetitive hand and leg
movements is demonstrated on the example of one healthy subject (Gender: Female, Age: 24). By
following the previously introduced experimental setup and protocol, four repetitive movements were
recorded: finger tapping, hand opening/closing, hand pronation/supination, and toe-tapping. In
addition to regular movements (performed as fast as possible and with the biggest amplitude
possible), the participant was requested to simulate different bradykinesia related motion
characteristics that could be seen in patients with PD and related disorders. The simulation scenarios
included: 1) performing as fast as possible and with the biggest amplitude possible (which
corresponded to normal movement), 2) performing with smaller amplitudes and/or speed; 3)
performing with decrementing amplitude; 4) performing with occasional hesitations and/or freezes.

The participant was introduced to the simulation scenarios and practiced the endangered
movements a few times before the recording. The tasks were performed in duration of 15 s to obtain
longer movement sequences for analysis. Four trials were recorded for each hand and each movement.
Few minutes of rest were given between the consecutive trials.

6.4.1.2. Instrumentation

The movements were recorded using the previously described wireless inertial sensor system.
In addition, the OptiTrack motion capture system (MOCAP) with passive markers (NaturalPoint,
Inc., Planar Systems, Beaverton, Oregon, USA) was used as the reference system. This system can
track motions in a 3-dimensional space with a high precision, which makes it suitable for providing
benchmark data.

The applied configuration consisted of five Prime x22 cameras (distance resolution:
+0.15mm). Marker clusters comprising three markers were designed and positioned over the IMUSs.
The local coordinate systems of two recording systems were aligned by placing sensors. The used
marker clusters were small (bounding box around the marker clusters was 4x6 cm) and lightweight
(3-49), so they did not disturb the subject’s performance. The MOCAP system provided the measure
of movement amplitude, which was expressed as the rotations of the local coordinate system about
the corresponding axes of the adopted global coordinate system (the laboratory). The rotations were
described with Euler angles. The obtained measurements were used for comparison with the results
of the presented method for calculation of the movement amplitude.

The testing was performed during one day in the Laboratory for eHealth and Biomedical
Engineering of the Innovation Center, School of Electrical Engineering in Belgrade, following the
ethical standards of the Declaration of Helsinki. The subject provided written informed consent prior
to participation in the experiment.
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6.4.1.3. Data processing

The inertial sensor and MOCAP system recorded data with a sampling frequency f; =
200 Hz. Calibrated data was then processed in Matlab 9.6 R2019a (MathWorks, Natick,
Massachusetts, USA).

6.4.1.3.1. Comparison of two systems

The amplitude of four repetitive movements was calculated based on the gyroscope
measurements recorded with the inertial sensor system, using the previously described procedure.
The calculated movement amplitude was marked as a. In the case of the MOCAP system, the
dominant rotation was found for each movement. The angle of the dominant rotation was used for
further processing (later referred to as ayocap)-

Two systems were synchronized using the cross-correlation function. The lag with the
maximum cross-correlation was found and used for shifting the two angle sequences. The similarity
of the two angle sequences was measured with the root-mean-square error (RMSE):

N

— 2

RMSE = Z(a ax“f“") (6.17)
n=1

where N represents the length of the observed angle sequences.

6.4.2. Results

The examples of the recorded angle sequences describing the amplitude of repetitive
movements are presented in Figures 6.11-6.14. The results are presented for both sensor systems and
for all four movements.
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Figure 6.11 An example of the finger-tapping movement amplitude calculated using the inertial
sensor system (marked with a black line) and the MOCAP system (marked with a red line).

The example in Figure 6.11 shows a fast finger-tapping movement with changeable tapping
amplitude and speed, with occasional “breaks” in the rhythmic performance.
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Figure 6.12 An example of the hand opening-closing movement amplitude calculated using the
inertial sensor system (marked with a black line) and the MOCAP system (marked with a red line).

A hand opening-closing movement presented in Figure 6.12 is characterized by slow rhythm
and high amplitude, with a slight decrease over time.

Hand pronation-supination movement — MOCAP data
—_ Inertial sensors data
2150 -
(]
e A A A
=
£ N N A A N A
o, L
= 100
<
=
Q
g 50
o
>
=
S o Y
0 / v | | |
0 5 Time [s] 10 15

Figure 6.13 The example of the hand pronation-supination movement amplitude calculated using the
inertial sensor system (marked with a black line) and the MOCAP system (marked with a red line).

The hand pronation-supination movement presented in Figure 6.13 is characterized by lower
speed and high and uniform amplitude.
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Figure 6.14 An example of the foot-tapping amplitude calculated using the inertial sensor system
(marked with a black line) and the MOCAP system (marked with a red line).
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The example in Figure 6.14 shows a fast toe-tapping movement with a changeable amplitude
and constant tapping speed, with one “break” in the rhythmic performance around the 4™ second.

The average RMSE was 4.87°, for all four movements and all recording conditions. The
difference between the obtained results originated from the inability to align local coordinate systems
of two measurement systems perfectly.

6.5. Discussion

This Chapter presents an objective and automatic method for capturing and calculating the
amplitude of the bradykinesia-related repetitive hand and leg movements. The method utilizes a
miniature and lightweight inertial sensor system for recording movements, which does not require a
lot of time nor skills to be mounted on the patient’s hand or leg. The established measurement
procedure is simple, easy to apply, and it follows the rules of the standardized clinical testing
protocols. The method also comprises an algorithm for calculating the movement amplitude for each
movement individually. The algorithm was previously defined and validated for the finger-tapping
movement solely [134]. In this thesis, it is extended to other bradykinesia movements as well (hand
opening-closing, hand pronation-supination, and toe-tapping). Furthermore, a new algorithm for the
segmentation of movements to individual cycles is also presented, together with the detailed
inspection and understanding of the observed movement patterns.

The applicability of the proposed method was demonstrated on the example of one healthy
subject. The participant performed all four movements following the designed measurement
procedure. In addition to the normal performance (repeating the movements fast with the biggest
amplitude), the subject imitated movement properties, which are characterizing the presence of
bradykinesia in patients with neurodegenerative disorders. The results of the proposed method were
compared with the reference data provided by the motion capture system. The systems showed high
agreement, with an average root mean square error of RMSE = 4.872, confirming the high
applicability of the proposed method. The introduced method represents the basis for further and more
detailed analysis of these movements, which will be discussed in the next Chapter.
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7.Evaluation of bradykinesia severity based on new
metrics and an expert system

As already mentioned, the severity of the bradykinesia symptom is assessed using the
repetitive hand or leg motor tests. A patient’s performance is visually observed and evaluated with a
score from 0 to 4. The UPDRS evaluation criteria includes specifications on how patients should
perform the movement, characteristics of the movements which should be observed, and decision
rules defining how scores should be given. This information was determined by the experts in
movement disorders and carefully selected for providing full insight into the development of the
patient’s symptom and disease progression. In the case of bradykinesia related repetitive movements,
finger-tapping, hand opening-closing, hand pronation-supination, and toe-tapping, the movements are
evaluated in terms of the amplitude, amplitude decrement, speed, and number of hesitations and
freezes that may appear during the performance. The score is given based on the patient’s ability to
perform these repetitive movements as fast and as widely as possible, in which part of the movement
sequence its amplitude starts to drop, and how many hesitations and freezes patients experience
during the performance. The lowest scores are given for normal movements, whereas the higher
values represent severe bradykinesia. Although the instructions given in the UPDRS clinical scale
defined the scoring process, the evaluation outcome is severely depended on the examiner’s
experience and knowledge.

In order to provide an objective and detailed assessment of the bradykinesia symptom, a new
method for evaluation of bradykinesia is presented in this Chapter [138]. The method for calculating
the amplitude of these repetitive movements is defined and presented in Chapter 6. The method
observes and focuses on crucial biomechanical movement properties, which can provide significant
insight into patients’ state and severity of developed symptoms. New metrics for quantification of
movement characteristics were obtained as a result of the conducted analysis. The developed
parametrization was then used as the input to the expert system, which is implemented as a
knowledge-based decision support tool for prediction of scores and evaluation of the bradykinesia
severity in patients with parkinsonism. Expert system was designed to match the standardized clinical
knowledge and evaluation criteria.

The developed metrics and expert system were validated on the example of the finger-tapping
movement that was recorded for several groups of subjects, including patients with different
neurodegenerative diseases.

79



7.1. Method
7.1.1. Experiment

In this study, fifty-six subjects were included, including 13 patients (Gender: 7 male/6 female;
Age: 62.23+£10.79 years) with idiopathic PD, 17 patients (Gender: 5 male/12 female; Age:
58.41+6.41 years) with MSA, 14 patients (Gender: 11 male/3 female; Age: 65.71+£9.33 years) with
PSP, and 12 HC controls (Gender: 4 male/8 female; Age: 58.40+7.78 years). The patients were
recruited at the Clinic of Neurology, Clinical Centre of Serbia, School of Medicine, University of
Belgrade, Belgrade, Serbia. Healthy controls were enlisted among healthy staff members or persons
accompanying the patients at the Clinic of Neurology.

Descriptive statistics of clinical data for the included patient groups are provided in Table 7.1.
The signs of parkinsonism were assessed using the UPDRS scale [42], whereas the severity of the
disease was evaluated using the H&Y scores [35].

Table 7.1 Clinical features presented through descriptive statistics (averagexstd, median), for each
included patient group separately.

. Group
Data Statistics
PD MSA PSP
Age Averagetstd 62.23+10.79 58.41+6.41 65.71+9.33
(years) Median 61 58 66.5
Averagetstd  1.80+0.79 3.18+0.75 3.45+0.93
H&Y Median 2 3 4
UPDRS Averagetstd 42.60+16.93 77.73x13.70 74.45+20.08
Total Median 36 79 79
UPDRS Averagetstd 24.60+9.07 46.64+9.08 42.91+13.14
i Median 19.5 45 45

PD — Parkinson’s disease patients; MSA — Multiple system atrophy patients; PSP — Progressive supranuclear palsy
patients; HC — Healthy controls; H&Y — Hoehn and Yahr scale; UPDRS — Unified Parkinson’s disease rating scale;
UPDRS 1l — Unified Parkinson’s disease rating scale, Part III — Motor examination.

The testing was performed following the measurement protocol that was presented in the
previous Chapter. The participants were asked to sit comfortably in the chair with their back put
against the chair back. During the experiment, their hands were placed in front, with arms flexed and
supported at the elbow. All subjects were instructed to perform the finger-tapping test — to tap a thumb
and index finger as quickly and as widely as possible for 15 s. At the beginning of each trial, a short
auto-calibration sequence was recorded. Although the newest version of the UPDRS scale state that
the finger-tapping test should be repeated precisely ten times [42], for this study, longer sequences
were recorded to obtain enough data for analysis. Several trials were recorded per each hand and each
subject, so that subjects could familiarize themselves with the instrumentation and measurement
protocol. One minute of rest was given between the consecutive trials since fatigue might influence
subjects’ performance.

All trials were also captured with a commercial video camera that recorded hand in a close-
up view. For each subject and each hand, neurologists selected one representative trial for further
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analysis. The selection criteria comprised participants’ understanding of the given instructions and
duration of the finger-tapping sequence.

For each subject, the testing was performed during one day at the Clinic of Neurology. The
study was conducted following the ethical standards of the Declaration of Helsinki and approved by
the Ethical Committee, School of Medicine, University of Belgrade. All subjects provided written
informed consent prior to entering the study.

7.1.2. Instrumentation

In this study, the previously described measurement system was applied. The used wireless
inertial sensor system consisted of two IMUs, each comprising a 3-axial gyroscope [75]. IMUs were
placed over the fingernails of the thumb and index finger and connected to their SCUs (Figure 7.1).
SCUs were positioned on the lower arm and acquired and wirelessly transmitted data to a remote
computer. IMUs were lightweight and miniature, which allowed subjects to perform the requested
task most naturally.

Figure 7.1 Illustration of two small and lightweight inertial measurement units positioned over the
fingernails of the thumb and index finger.

7.1.3. Scoring by neurologists

Recorded video files were visually examined and analysed by two neurology specialists that
had more than ten years of experience working with movement disorders. The neurologists evaluated
each recording with a score from 0 to 4. The scores were given based on their experience and
knowledge, following the instructions that were provided in the UPDRS test, Part IlI-Motor
examination, task 3.4 Finger tapping [42]. The scores were given separately for the right and left
hand. The videos showed participants’ hands in a close-up view, which assured that specialists are
blinded to the identity of the subjects during the evaluation.

7.1.4. Data processing

The data was recorded with a sampling frequency f; = 200 Hz. Calibrated data was processed
and analysed in a custom-made script, written in Matlab 9.0 R2016a (MathWorks, Natick,
Massachusetts, USA).

The angular velocities from the thumb and index finger sensors were processed and
transformed using the procedure described in Chapter 6. The relative rotation of the fingers was
analysed from the index-finger coordinate system [134]. The relative angular velocity of the thumb
with respect to the index finger was computed using the Equation (6.13). The dominant component
of the relative angular velocity w,; was automatically selected and used as the input to further
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analysis of the finger-tapping movement. An example of the dominant component of the relative
angular velocity w,.4 is presented in Figure 7.2.
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Figure 7.2 Presentation of the dominant component of the relative angular velocity w,.; with extracted
time markers indicating maximum closing angular velocity (shown with red circles), maximum
opening angular velocity (marked with red squares), and moments when fingers are closed in a “zero
posture” (represented with red crosses). An example is given for one MSA patient.

The analysis of the finger-tapping movement consisted of segmentation to individual cycles
or taps and calculation of relevant movement properties (as defined in the UPDRS test), including
amplitude, amplitude decrement, speed, and the number of hesitations and freezes. In addition,
smoothness and intra-subject (or tap-to-tap) variability were calculated for providing a more detailed
analysis of the finger-tapping movement.

7.1.4.1. Individual taps

Characteristics of the finger-tapping movement were quantified and evaluated on the level of
individual taps. Because of that, the segmentation of the finger-tapping movement sequence was
performed using the dominant axis of the relative angular velocity w,.4. The previously introduced
segmentation technique was applied, as described in Chapter 6. The signal was smoothed using a
moving average filter, with span (f;/fo) /2, with f; representing the sampling frequency, and f; being
the basic finger-tapping frequency automatically calculated from the frequency spectrum. Time
markers representing maximum closing and opening angular velocities were extracted from the
smoothed signal. Time markers identifying moments when fingers were closed in a “zero posture”
were detected between succeeding maximum closing angular velocity and maximum opening
velocity markers. The detected “zero posture” markers were complemented with two additional
markers identifying the first and last sample of the finger-tapping sequence (as shown with red crosses
in Figure 7.2). The final sequence of time markers was then used for drift removal and segmentation
of the finger-tapping movement sequence into individual taps.

7.1.4.2. Amplitude

The amplitude of the finger-tapping movement represents very important clinical criteria for
the evaluation of the bradykinesia. The procedure for calculating the amplitude of the finger-tapping
movement was described in detail in Chapter 6. The amplitude was defined as the angle of the relative
rotation of the fingers. The angle was computed by integrating the dominant component of the relative
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angular velocity w,4 in a time-stepping procedure [134]. The drift was removed using a third-order
polynomial approximation, fitted through the extracted “zero posture” time markers. In these
moments, the angle should be equal to zero, as shown with red crosses in Figure 7.2 and Figure 7.3.
After removing the drift, the angle sequence a was segmented into individual cycles/taps using the
same time markers. For each individual tap, the maximum angle was found, and it was expressed in
degrees. The extracted maximum angles were averaged over all cycles of the 15 s long finger-tapping
sequence. The obtained average angle was marked with a,,, [°] and provided as the final parametric
result.
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Figure 7.3 Presentation of the angle estimation procedure. The drifted angle sequence is represented
with a dotted grey line, whereas a solid black line shows angle sequence after drift removal. Red
crosses mark “zero posture” time markers, whereas the dotted red line represents polynomial fit
applied for drift removal. An example is given for one MSA patient.

7.1.4.3.  Amplitude decrement

Amplitude decrement is evaluated as the movement cycle at which the amplitude begins to
decrease. In order to quantify amplitude decrement, inter-tap changes of the calculated tapping angles
a(i) were observed. The maximum angle per each individual tap was compared with a threshold
TH,: if the angle was lower than the threshold value then this tap was considered as the tap with
significant amplitude decrement. Indices of the first tap that fulfilled this criterion were selected as
the parametric result and marked as i ;..

The threshold was given the value of TH, = 75% of the maximum angle among all taps that
preceded the tap being analysed. This threshold value was heuristically established through extensive
search and analysis of the used signal database. A range of threshold values was examined: from 50%
to 90%, with a step of 5%. The selected threshold provided the best results among all tested values.
The lower threshold values caused detection of the amplitude decrement later in the finger-tapping
sequence, with a delay compared to the first real amplitude decrement. On the other hand, higher
threshold values caused the detection of very small amplitude changes, which might appear due to
the normal movement variability.

An example of the detection of the amplitude decrement is given in Figure 7.4. In the example,
the threshold TH, was set based on the angle value of the first tap. The thresholding criteria were
satisfied for all other taps in the finger-tapping sequence; however, the second tap was the first tap
with an angle below the threshold value, and therefore, the result was i ;.. = 2.
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Figure 7.4 Procedure for detection of taps showing significant decrement in the angle amplitude
values. Angle sequence is represented with a solid black line, whereas the extracted tapping angle
amplitudes were marked with red triangles. The threshold TH,, for detection of amplitude decrement
is represented with a dotted grey line. An example is given for one MSA patient.

7.1.4.4. Hesitations and freezes

Hesitations and freezes represent a very important part of the bradykinesia evaluation. They
are demonstrated as breaks or irregularities of the regular movement rhythm, which can occasionally
appear in the finger-tapping performance. In order to quantify these movement irregularities, the
continuous wavelet transform (CWT) was applied. Wavelet analysis has already proven to be a useful
tool for analysis of transient changes and spikes in rhythmic behaviour [139], [140], and as such, it
was selected for detection and localization of disturbances in the rhythmic finger-tapping
performance.

CWT represents a time-frequency analysis method that is suitable for the analysis of signals
with both faster and slower changes, which represents its main advantage compared to other time-
frequency analysis techniques (such as Short Time Fourier Transform) [17]. In order to determine the
spectral characteristics of the signal, a probing function is applied. Various functions can be used as
the probing function; however, all of them have one main characteristic - by translating and scaling,
they adapt to the shape of the original signal. In this way, the concept of CWT is introduced. The
basic wavelet function must take on an oscillatory form, which is why this analysis method is called
the "wavelet" transform. CWT is defined with the Equation (7.1) [17]:

o)

W(a,b) = [0 x(t) J%Ip* @y (7.)

where a performs time scaling of the probing function y, and b controls the translation of this
function. The probing or wavelet function is marked with i, whereas x(t) represents the signal,

which is analysed. The normalization factor is denoted by \/% whereas the operator * indicates

complex conjugation. Since the energy of the wavelet function is dependent on the scale, the
normalization factor allows the energy of the wavelet function to be the same for each value of the
parameter a. The result of the CWT W (a, b) is represented with the correlation coefficients of the
probing function and the signal being analysed. These coefficients are called wavelet coefficients.
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Depending on the value of the parameter a, certain features of the wavelet function y can be
achieved [17]:
e For |a| > 1 function ¥ is stretched along the time axis,
e For|a| < 1 function ¥ is compressed along the time axis,
e For |a| < 0 function v is flipped around the time axis.
Fora =1 and b = 0, the wavelet function is given in its basic form, and it is called mother wavelet.

By selecting the appropriate value of the scaling and translation parameters, the basic function
can adjust to any change that occurs in the signal. Information about the frequency content of the
signal is presented through the obtained coefficients. These coefficients have a stronger response to
the changes that are on the same scale as the wavelet function, or that resemble it. Therefore, CWT
maps the signal to the time-scale domain. Small scales correspond to high frequencies, which make
them suitable for describing fast changes in signals, and vice versa.

If the wavelet function is appropriately selected, the original signal can be reconstructed from
the obtained coefficients, using the following Equation [17]:

1 [0/0) [o.0]
x@=z | | Wb, ©dadd (7.2)

a=—o hb=—0o0
where C represents admissibility condition, and it is given as [17]:

0 2

|w]

The wavelets are well localized, but not perfectly localized in either scale and time domain.
The time range of the wavelet can be specified as [17]:

o0 t 2
—t)2 W) d
t, - 5= t)? [p)| a -

12 | ae

where t, represents center time or the first moment of the wavelet. The time range is defined as the
square root of the second moment of the wavelet about its time center, Equation (7.4) [17]. Time
center can be calculated as:

e a

to = — L 2 (7.5)
12, [we| e
The frequency range is given similarly:
“ (0 — wo)?|¥(w)|2dw
poty = el 1) 7.6
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where W(w) is a representation of the wavelet function 1/)(2) in a frequency domain, and w,
represents its center frequency. Similarly, the center frequency can be calculated as [17]:

w0, = f_o;wll/)(w)lzdw .7
- ¥ (@)*dw

The time and frequency ranges of the specific wavelet function family can be obtained by
using the Equations (7.5) and (7.7). By scaling the wavelet function with the parameter a, the time
range is modified as Aty (a) = |alAty. Similarly, the frequency range is changed as Awy(a) =
Aw./|al. The product of the time and frequency range is constant and does not depend on the scale.
Additionally, the two ranges are inversely related: increasing the time range At,,(a) decreases the
frequency range Awy,(a), and vice versa. The correlation between these ranges defines the time-
frequency resolution of the CWT [17].

In this study, CWT was applied to the dominant component of the relative angular velocity
w,q. The fast Fourier transform-based algorithm was used. The mother wavelet function was selected
from the complex Morlet family. The center frequency was set to 1 Hz, and the time-frequency
resolution was given a value of 0.7. A matrix of complex CWT coefficients was obtained as a result
and used for further analysis. CWT maps the signal into the time-scale domain. The signal
representation in the time-scale domain is called a scalogram. It is a colour-coded representation of
the calculated CWT coefficients. An example of a scalogram is given in Figure 7.5, together with the
analysed signal. In the shown example, the jet colour map is applied. Lower values of the CWT
coefficients are presented with colder colours, with dark blue hue for the lowest values. Warmer
colours are used for higher values, with vibrant yellow for presenting the highest coefficients.
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Figure 7.5 The dominant component of the relative angular velocity w,; (upper panel), and a
scalogram of the calculated CWT coefficients, presented using the jet colourmap (lower panel). An
example is given for one PSP patient.
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By summing the values of the CWT coefficients perpendicular to the time axis, a new
characteristic was obtained and referred to as a cross-sectional area (CSAy). Afterwards, CSA was
normalized and expressed as a percentage of the CSA; maximum value. By calculating the introduced
characteristic, temporal changes of the finger-tapping activity were described. The samples of the
CSA characteristic were compared with two thresholds: THs, = 50% of the average CSA; value,
and TH,s = 25% of the average CSA; value. Samples valued below the threshold TH,s were
considered as part of freezing sequences. Similarly, samples with values above the threshold TH,z,
but below the threshold T Hg, were assigned to hesitation sequences. A limitation was applied to the
detected hesitation sequences: if a hesitation sequence lasted at least three times longer than the
person’s average finger-tapping cycle duration then this sequence was observed as a freezing
sequence. Furthermore, sequences shorter than one half of the person’s average finger-tapping cycle
duration were discarded from further analysis. The number of hesitation sequences H,,, and the
number of freezing sequences E,,,, were provided as the final parametric results. By using the
thresholds that were based on the average value of the CSA characteristic, adaptive thresholding was
achieved, and detection of signal irregularities was adjusted to the inherent properties of each
individual signal. In this way, the signal parts with noteworthy power drops (compared to the average
performing power) were determined as irregularities. The threshold values were verified and tested
through an extensive analysis of the used signal database. Additionally, neurologists visually
inspected video recordings and confirmed all detected irregularities.

An example of the introduced CSA; characteristic is given in Figure 7.6, together with the
analysed signal. The threshold values were presented with horizontal lines of different texture and
greyscale colour: solid light grey marked the average CSA; value, dashed darker grey showed THs,
threshold, whereas the darkest grey dotted line represented TH,s. Detected irregularities were
bounded with dotted red vertical lines and labelled with “H” for hesitations, and “F” for freezes.
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Figure 7.6 Procedure for detection of irregularities, presented with the dominant component of the
relative angular velocity w,; (upper panel), and the calculated CSA characteristic (lower panel). The
light grey solid horizontal line showed the average CSA; value. Thresholds THg, and TH,s were
marked with dashed and dotted grey horizontal lines, respectively. Similarly, red vertical lines bound
areas detected as hesitations (“H”) and freezes (“F”’). An example is provided for one PSP patient.
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7.1.45. Speed

The speed of repetitive movements represents an important criterion for the evaluation of
bradykinesia symptom. In the case of the finger-tapping movement, neurologists evaluate how fast
subjects tap their fingers. For faster movements, a larger number of repetitions is executed during the
15 s long finger-tapping test, and vice versa. In this sense, speed can be evaluated by observing the
number of performed taps and their duration. Still, this approach only gives a rough estimate of speed,
which can be very variable from tap to tap. Because of that, in this study, changes in the tapping
rhythm were observed on the level of each individual sample. In order to achieve that, the calculated
matrix of the CWT coefficients was used for the detection of the most prominent frequency for each
time step. A vector of the CWT coefficients (corresponding to one sample) was extracted from the
matrix. The dominant frequency was computed as the frequency at which the highest coefficient was
located for that time sample. This procedure was repeated for all time samples. In this way, a new
sequence was obtained describing the change of the dominant finger-tapping frequency over time (or
instantaneous finger-tapping frequency) and referred to as f®. The final parametric result was
calculated as the average value of the extracted sequence of the tapping frequency and marked as fa(,i).

An example of the procedure for calculating the introduced metric is shown in Figure 7.7. The
scalogram of the analysed signal is presented, together with the procedure for detecting the
instantaneous finger-tapping frequency. On the smaller upper panel, the CWT coefficients for the i™®
time sample are presented. The dominant frequency is calculated from the extracted vector of

coefficients using the described procedure and marked as fi(i).
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Figure 7.7 Procedure for calculating the instantaneous finger-tapping frequency. A scalogram of
CWT coefficients was presented on the lower panel. The vector of coefficients at the it* sample was
marked with dashed black line on the scalogram and then visualized on the smaller upper panel. The
most prominent frequency (at which the highest coefficient was detected for i*"* sample) was labelled

with red dashed line (marked as ]‘i(i).). An example is provided for one PSP patient.
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7.1.4.6. Additional movement characteristics

Previously introduced parametrization described essential properties of the finger-tapping
movement. These movement characteristics are observed and evaluated in clinical practice by
neurologists, and they are of crucial importance for the evaluation of patients’ state, symptom
severity, and disease progression. Therefore, the abovementioned analysis and introduced metrics
represent a foundation of the analysis for the evaluation of bradykinesia severity (later referred to as
“basic feature set”). However, during the extensive analysis of the used signal database, some other
movement properties were noticed. Because of that, a more detailed and profound analysis of the
finger-tapping movement was performed (later referred to as “additional feature set”) [141], [142].

7.1.4.6.1. Movement intra-variability

By observing movement sequences of different subjects, it was shown that some subjects
performed the finger-tapping test more consistently from tap to tap compared to others. The amplitude
and the rhythm of their finger-tapping was uniform, and without movement irregularities during the
period of 15s. On the other hand, there were some subjects who performed the finger-tapping test
very differently throughout the recorded movement sequence: significant changes of tapping
amplitude or rhythm, or appearance of several hesitations or freezes. Therefore, those subjects
performed the finger-tapping movement with more expressed intra-variability. In order to quantify
movement variability from tap to tap, a method based on Welch’s estimation of power spectral density
(PSD) was applied to the dominant component of the relative angular velocity w,4 [143]. This method
applies the fast Fourier transform to the shorter segments of the analysed signal and estimates the
power spectral density by averaging modified periodograms of these shorter segments. It was already
applied in the literature for the assessment of intra-gait variability [144].

Prior to estimating the power spectral density, the analysed signal was standardized by
dividing it with its standard deviation. In this study, PSD estimation was performed using a window
size of 800 samples, with an overlap of 50% between the consecutive windows. FFT length was set
to be two times the power of 2 higher of the signal length. For the most prominent peak, two features
were extracted: 1) width of the peak — calculated at the half of the peak’s maximum amplitude
(referred to as wpgp [Hz]); 2) slope of the peak — calculated from the point located at the half of the
peak’s maximum amplitude to the point of the maximum peak’s amplitude (referred to as
spsp [psd/Hz]) [144]. Smaller values of the slope and higher values of the width feature indicate
greater intra-variability and vice versa. Two examples are presented in Figure 7.8. Recorded
movement sequences are presented on the left, whereas their power spectral densities and calculated
metrics are shown on the right. The patient on the upper panel had a consistent finger-tapping
performance. The second patient performed more variably from tap-to-tap, with significant amplitude
and rhythm changes after the 7" second. For both patients, the calculated metrics confirmed these
conclusions, with the higher peak width wpg, and lower peak slope spgp for the second patient
compared to the first patient.
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Figure 7.8 Presentation of the dominant component of the relative angular velocity w,4 (on the left)
with the calculated power spectral density function and derived features (on the right). In the graphs
on the right, red lines mark peak slopes, whereas blue lines show peak width. Examples are provided
for one PD patient (upper panel), and one MSA patient (lower panel).

7.1.4.6.2. Movement smoothness

Another specific movement characteristic was observed in the recorded signals. It was noticed
that some patients performed the finger-tapping movement with certain “shaking” while opening and
closing the fingers, usually as a consequence of another parkinsonian symptom — tremor. These
changes were different from the standard hesitations and freezes. While hesitations and freezes caused
breaks in the subject’s normal finger-tapping rhythmicity, these new changes did not alter the
rhythmicity, but they changed the shape of the finger-tapping pattern. In those cases, finger taps were
bumpier and less smooth compared to others. An example of a short finger-tapping sequence
containing such changes is shown in Figure 7.9. Red ellipse shows one of these “bumps” that may

appear in the signal.

Smoothness generally represents a very important movement property, and it was observed in
many studies. In the literature, different solutions were presented for evaluating the smoothness. In
this study, two techniques were applied to the dominant component of the relative angular velocity

Wrg-

One of them is the Spectral Arc (SPARC) method [145]. SPARC method was already
implemented for evaluating the smoothness of different sensorimotor behaviour [146], [147]. It is
based on the calculation of the arc length of the Fourier spectrum of the analysed signal. The arc
length is computed within the selected frequency range [145]. The final measure of the signal
smoothness is expressed as the negative logarithm of the calculated arc length. In this study, arc length
was calculated in the frequency range from 0.05 Hz to 20 Hz, since it was shown that significant
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frequency content of the finger-tapping movement does not exceed the limit of 20 Hz. Using the
markers of the maximum opening and closing angular velocity (red circular and squared markers in
Figure 7.9), rising and decreasing edges of individual taps were extracted from the analysed signal.
The SPARC measure was calculated separately for the rising and decreasing edges, and the result
represented the sum of these two SPARC measures. The procedure was repeated for each individual
finger-tapping cycle. The final measure of smoothness was given as the average value of the
smoothness values obtained for the individual cycles and referred to as ssparc. Higher values of the
parameter indicated smoother movements, and vice versa.

Other smoothness measure observed the analysed signal in the time domain. Once again,
rising and decreasing edges of the finger-tapping sequence were extracted using the maximum
opening and closing angular velocity markers. For each edge, a count of smaller bumps or peaks was
detected. The obtained values for the rising and decreasing edges were summed for each individual
finger-tapping cycle, and then averaged for all individual cycles, providing the final measure of the
signal smoothness, marked as Spgaxs.
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Figure 7.9 Short sequence of the dominant component of the relative angular velocity w,4, with three
consecutive taps. Red circular markers show maximum closing angular velocity per each tap, whereas
red squares represent maximum opening angular velocity per each tap. Red ellipse shows a “bump”
in the signal. An example is given for one MSA patient.

7.1.5. Expert system for prediction of motor scores

Due to the nature of the observed problem, an expert system was developed for the prediction
of clinical scores. The presented expert system utilized the basic feature set (previously defined in
this Chapter), theoretical knowledge in this field, and a set of expert rules that completely objectified
the instructions provided within the UPDRS scale for assigning the scores.

The basic feature set evaluated movement characteristics that were observed in the clinical
practice, including the finger-tapping amplitude (quantified with «,,), the finger-tapping speed
(quantified with fafé)), the amplitude decrement (quantified with i;,.), and the number of hesitations
(quantified with H,,,,,,) and freezes (quantified with F,,,,,). These features were provided in a form
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that was completely understandable and intuitive for the physicians. The additional feature set
evaluated other movement characteristics (intra-variability and smoothness), which provided a more
detailed assessment and insight into disease and symptoms progress. However, these features were
not observed within the expert system since they quantified movement properties that were not
analysed nor included in the instructions provided in the UPDRS test.

7.1.5.1. Knowledge base

In clinical practice, the finger-tapping movement is used and examined as part of the
bradykinesia severity assessment. The knowledge base was developed according to the detailed
instructions and evaluation criteria from the UPDRS scale, Part 111 — Motor examination, task 3.4
Finger tapping [42] are presented in Table 7.2.

Table 7.2 The evaluation criteria for the finger-tapping test, as provided in the UPDRS scale, Part 111
— Motor examination, task 3.4 Finger tapping.

Movement characteristic

Score . :
Rhythm Amplitude decrement Interruptions
0 — Normal Fast moveme_nt with None None
large amplitude
. . . Amplitude decrements around I
1 - Slight Slight slowing the tenth tap 1 — 2 hesitations
2 — Mild Mild slowing Amplitude decrements midway 3 — 5 hesitations

through a 10-tap sequence

Amplitude decrements after the  More than 5 hesitations

3—Moderate  Moderate slowin .
g first tap or at least one freeze

Cannot or can only barely perform movement due to highly expressed slowing,

4 — Severe ] ]
interruptions or decrements

Although clinical knowledge is unambiguously determined for certain criteria (amplitude
decrement and hesitations/freezes), this is not the case for movement speed and amplitude (they are
evaluated based on examiner’s experience). Furthermore, the instructions indicate that the lowest
score is assigned to “normal” finger-tapping movements, without deeper explanations and numerical
values that could describe this type of movement in detail. Therefore, the knowledge base was
extended with some additional information that was collected and extracted using the unsupervised
learning process and basic feature set.

The first step was to define feature values that could be considered as “normal” or reference.
Because of that, the subset of the input feature set corresponding to healthy subjects with no signs of
bradykinesia (scored with 0 by both neurologists) was extracted.

During the examination of the signals and video recordings, it was noticed that subjects
performed the finger-tapping movement in two ways. One batch of subjects performed the finger-
tapping test with the largest amplitude at the highest possible speed that allowed such wide tapping.
Others tapped their fingers at their fastest pace, but with lower amplitudes. The selected subset of
healthy subjects was divided into two clusters using the k-means algorithm: cluster C;— ,,wider and
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slower, ““ and cluster C,— ,,narrower and faster* finger-tapping performance. The k-means algorithm
divides data to exactly k clusters that are defined by their centroids [148]. Firstly, k initial centroids
are chosen, and each observation is assigned to the closest cluster based on the calculated point-to-
centroid distances. The observations are reassigned to a different cluster if that decreases sum of
squares of all point-to-centroid distances within one cluster. New centroids are then calculated as the
average of all observations within the corresponding clusters. The procedure is repeated when cluster
assignments stop changing, or the algorithm reaches maximum number of iterations.

The clustering was performed using the features describing the finger-tapping amplitude and

speed (a,, and fa(,?, respectively). The coordinates of the two cluster centers were then applied for
discriminating the two types of finger-tapping performance. Fifty percent of the observations were
randomly selected from all three patient groups and assigned to the testing group. Each testing
observation was then assigned to one of these two clusters based on the calculated Euclidian distance
between the cluster centers and the coordinate pair (@, a(l?) of that observation.

The scores given by the specialists were provided as the final score evaluating the overall
regularity of the finger-tapping movement. Therefore, these scores did not provide information about
the individual aspects and characteristics of the examined finger-tapping performance. Because of
that, the unsupervised learning algorithm was applied for analysing the intrinsic properties of the
features and finding a natural grouping among analysed data. By using the k-means algorithm, the

values of one of the features (a,,, or fcf,?) assigned to one of two clusters (C; or C,) were additionally
split into four clusters, which corresponded to 0-3 scores. Although a finger-tapping movement can
be evaluated with five scores, the data was divided into four clusters, because the highest score is
given to patients that can barely perform the task, and such movement is affected by several types of
disruptions simultaneously. The decision boundaries were then calculated using the coordinates of
the cluster centers (¢ ¢, c3 c,) as follows:

CitCit1 .

bi = T, i = 1,2,3 (78)

where and c¢; and c;,; represented centers of two neighbouring clusters, and b; represented the
calculated boundary separating the two succeeding scores. The procedure was repeated for both

features a,, and f‘g) and both clusters C; and C,, separately (1: C; and a,, 2: C, and a,,, 3: C; and

fa(,?, 4: C, and f(f,?). This clustering resulted in four sets of decision boundaries, each comprising
three values. The decision boundaries were chosen from those four sets for each observation
individually. Decision boundaries for the features i .. and Hy,y,m, Fum features were defined to match
the specifications given within the UPDRS scale (as presented in Table 7.2).

7.1.5.2.  Inference process

The inference process started with calculating the patient’s data with the previously described
procedure for the extraction of basic features. Afterwards, the patient’s speed and amplitude data is

assigned to one of these two clusters, based on the Euclidian distance of the coordinate pair (a4, fa(f;))
to the centers of the clusters C; and C,: if the coordinate pair is closer to the center of the cluster
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C;, then this observation was assigned to the cluster C;, and vice versa. The decision boundaries
(ba1,2,3 and byq , 5) Were then selected for the corresponding cluster.

A block diagram of the developed and implemented reasoning is presented in Figure 7.10.
The first part of the decision-making process consisted of four blocks (marked with dashed black

lines). The inputs to these four blocks were «,,;, fa(,?,idec and H,,,,,, Foum features. Each block
implemented a defined set of rules and calculated a score for one individual movement characteristic:
amplitude, speed, amplitude decrement, and movement interruptions. Therefore, the outputs from
these blocks included four sub-scores: Sy, Sy, Sgec, and Syg, respectively. If the sub-score “3 —
Moderate” was obtained for at least three out of four movement characteristics, then the final score
Spr Was set to “4 — Severe”. Otherwise, the final score Sy was computed as the maximum obtained
sub-score among the four sub-scores evaluating the individual movement properties.

F

num? " num

(1)
bfZ < fav < bf

(1)
b, < " <b

At least three
scores equal to 3

Y N
SFT = 4 SFT = maX(Sa,Sf ’ Sdec7SHF)

Figure 7.10 Block diagram of the developed and implemented reasoning. The decision-making
process was divided into four blocks (marked with dashed black rectangles). The inputs to these four
blocks were features: ag,, a(;) lgec and Hyym, Eoum, respectively. Each block implemented a
different set of rules and calculated a sub-score for one individual movement characteristic
(amplitude, speed, amplitude decrement, and movement interruptions, respectively). The final score

was calculated based on the sub-score values.
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7.1.6. Statistical analysis and evaluation of the expert system

The agreement between the scores given by two neurologists was calculated using Cohen’s
kappa coefficient, which provided a measure of the intra-rater reliability. For each feature, two groups
were compared using the corresponding statistical test. The test was applied based on data
distribution. If both groups being compared satisfied the normal distribution, the independent t-test
for two samples was applied. Otherwise, the Mann-Wilcoxon test was used. The normality of the data
was found by observing several parameters simultaneously, including data skewness and kurtosis z-
values, the Shapiro-Wilk test p-value, and histograms, normal Q-Q plots and box plots. For p < 0.05,
the null hypothesis that two groups had the same mean rank was rejected. In that case, it was found
that the two groups were showing statistically significant differences. Statistical analysis was
performed in IBM SPSS Statistics v26.0 (IBM, Armonk, New York, U.S.A.).

In order to evaluate the efficiency of the proposed method, the scores given by the expert
system were compared to those provided by the two specialists. The results were presented using the
confusion matrix and the accuracy metric. The accuracy Ac [%] was calculated as the percentage of
scores that were equally signed by the expert system and neurologists. Confusion matrix (or a
contingency table) represents an evaluation approach that contains information about the true and
predicted scores [149]. It is usually presented as a matrix, where cells on the main diagonal represent
the percentage of correctly assigned scores, and other cells mark the error or percentage of incorrectly
predicted scores. Two evaluation scenarios were analysed: using all observations (later referred to as
“Case I”) and using only observations that were equally scored by both neurologists (later referred to
as “Case II7).

7.2. Results

In this study, 111 recordings were analysed in total, which included 26 recordings from 13
PD patients, 34 recordings from 17 MSA patients, 27 recordings from 14 PSP patients, and 24
recordings from 12 healthy controls. Examples of the recorded finger-tapping movement are given in
Figure 7.11, for one subject from all four participant groups.

HC subject tapped with the highest speed and the biggest amplitude. This movement was
much more vigorous compared to the performance of the three patients (the fastest tap is accentuated
with red colour). Also, HC performed the finger-tapping consistently throughout the 15 s of the test.
Although they were in the same stage of the disease development (H&Y=2), three patients had very
different finger-tapping movement patterns. Among all three patients, the PD patient had the most
vigorous performance, with some changes in the standard rhythmicity (or insecurities) around the
12" and 14" s (marked with red ellipses). The finger-tapping pattern of the PD patient had the most
similar shape with HC. In contrast, MSA had a consistent tapping, but the corrupted pattern — it
contained a lot of bumps in the signal (marked with red rectangle), as a consequence of the hand
tremor which was visible during the recording. The most changeable movement was seen in the PSP
patient. This patient performed the finger-tapping with very variable rhythm and amplitude. The
shape of the finger-tapping changed throughout the sequence (the point of visible change of rhythm
is marked with red dashed line): at the beginning, his/her taps looked more like normal finger-tapping,
whereas later in the sequence, his/her taps were more irregular with expressed bumps and insecurities
while performing the movement (shown with red rectangle).
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Figure 7.11 Representation of the dominant component of the relative angular velocity w,.4, recorded
during the repetitive finger-tapping movement. Examples are given for one PD patient (first panel),
one MSA patient (second panel), one PSP patient (third panel), and one HC subject (fourth panel).
Three patients were in the second stage of disease severity (H&Y=2).

Descriptive statistics (averagexstd) for the basic and additional feature sets are shown in Table
7.3 and Table 7.4, for each subject group separately. Table 7.5 presents the results of the performed

statistical analysis.
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Table 7.3 Descriptive statistics (averagexstd) for the basic feature set, presented for each subject
group separately.

Feature PD MSA PSP HC
5:1); [Hz] 2.04+0.87 1.71£1.26 2.37+1.11 3.32+0.89
Aoy [°] 63.08£8.54 56.27+36.11 44.87+31.74 80.48+26.55
igec [#] 5.00£5.66  4.03t4.74 5.62+4.88 11.00+10.99
Hum [#] 0-4 0-7 0-4 /
Fpum [#] 0 0-2 0-1 /

PD — Parkinson’s disease patients; MSA — Multiple system atrophy patients; PSP — Progressive supranuclear palsy
patients; HC — Healthy controls.

HC performed finger-tapping movement with the highest speed and amplitude, as shown with

a4, and fa(,ﬁ) parameters. The slowest tapping was detected in MSA patients, whereas PSP patients
performed the finger-tapping with the highest frequency. However, the amplitude in PSP patients was
significantly lower compared to PD patients, who performed the widest finger taps. This
disproportion in the values for the tapping amplitude and speed for the PD and PSP groups confirmed
the need for distinguishing two types of the finger-tapping movement (described by clusters €, and
C,). Results for the amplitude decrement provided comparable results between three groups. HC also
experienced some decrease in the tapping amplitude; however, this was noticeable much later in the
finger-tapping sequence (on average after the 10" tap). None of the HC subjects experienced any
movement irregularities. On the other hand, patients from all three groups showed some episodes of
hesitations (the largest number of hesitations in one movement sequence was seen in the MSA group).
Freezes were detected only in patients with atypical forms of parkinsonism (MSA and PSP patient

groups).

Table 7.4 Descriptive statistics (averagezstd) for the additional feature set, presented for each subject
group separately.

Feature PD MSA PSP HC
wpsp [Hz] 0.48+0.17  0.46%0.15 0.51+0.18 0.42+0.06
spsp [psd/Hz] 3.07£1.79  3.20+1.75 2.59+1.59 3.90+£1.24
SSPARC -6.91+0.63 -7.60+£1.52 -6.59+0.58 -6.55+0.24

Speaxs[#]  2.83t1.60 5.75+431  2.43+160  1.52+0.38

PD — Parkinson’s disease patients; MSA — Multiple system atrophy patients; PSP — Progressive supranuclear palsy
patients; HC — Healthy controls.

The features wpgp and spgp showed that HC subjects performed the finger-tapping test with
the smallest tap-to-tap variability. For PD and MSA patients, comparable results were obtained. The
most prominent intra-variability was established in PSP patients, who, on average, had the highest
value for the peak’s width and the lowest value for the peak’s slope, compared to the other three
subject groups. Both features for smoothness quantification showed that HC performed the finger-
tapping movement with the utmost easiness. Among all patient groups, MSA patients had the
bumpiest and the least smooth performance.
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Table 7.5 The results of the performed statistical analysis for comparison of two groups and features
from both feature sets, separately.

Compared groups

Feature
PD-MSA  PD-PSP  PD-HC MSA-PSP MSA-HC PSP-HC

A 0.230 0.017 0.053 0.221 0.009 0.001
@ 0.033 0.239 <0.001 0.008 <0.001 0.005
{dec 0.496 0.164 0.113 0.009 0.023 0.663

Hopum 0.862 0.836 / 0.710 / /

Frum / / / 0.430 / /
Wpsp 0.849 0.212 0.824 0.106 0.727 0.025
SpsD 0.925 0.317 0.090 0.223 0.070 0.005
SSPARC 0.029 0.005 0.012 <0.001 0.001 0.802
SPEAKS 0.006 0.282 <0.001 0.001 <0.001 0.016

PD-MSA — Comparison of the PD and MSA groups; PD-PSP — Comparison of the PD and PSP groups; PD-HC —
Comparison of the PD and HC groups; MSA-PSP — Comparison of the MSA and PSP groups; MSA-HC — Comparison
of the MSA and HC groups; MSA-PSP — Comparison of the MSA and PSP groups; PD — Parkinson’s disease patients
MSA — Multiple system atrophy patients; PSP — Progressive supranuclear palsy patients; HC — Healthy controls.

Features showing the most expressed statistically significant differences between the

compared groups were those describing the finger-tapping speed and movements smoothness (fa(l?,
Ssparcy Speaks)- For features describing movement variability, significant differences (p < 0.05)
were seen only for the comparison of PSP patients, and HC subjects. H,,,,,, and F,,,, showed no

differences between the compared groups.

The scores given by the two neurologists are provided in Table 7.6, together with the results
of Cohen’s Kappa statistics describing the agreement between the given scores. For patient groups,
the scores are presented separately for the less and more-affected hand and averaged for all patients
in the group. In the case of the HC group, the scores were averaged for both hands and all subjects.

As shown in Table 7.6, there were some discrepancies between the results given by two
neurologists (more prominent for MSA and PSP groups). This result is also confirmed by Cohen’s
Kappa coefficient k = 0.79, showing a moderate level of agreement between the scores given by the
two neurologists.
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Table 7.6. Descriptive statistics (averagexstd, median) for the finger-tapping scores given by two
neurologists, presented separately for the less and more affected hand and each subject group.

FTni1 scores FTn2 scores
Less AH More AH Less AH More AH
Averagezstd 1.67+0.89 2.17+0.94 1.75+0.97 2.17+0.94

Group Statistics

PD

Median 2 2 2 2

MSA Averagetstd  2.31+0.70 2.81+0.54 2.38+0.72 2.81+0.54
Median 2 3 2.5 3

PSP Averagetstd  2.17+0.94 2.62+0.77 2.08+0.79 2.77+0.73
Median 2.5 3 2 3

He Averagezstd 0.44+0.63 0.50+0.73
Median 0 0

Total agreement k=0.79

PD — Parkinson’s disease patients; MSA — Multiple system atrophy patients; PSP — Progressive supranuclear palsy
patients; HC — Healthy controls; FTn1 scores — Scores given by the first neurologist; FTn2 scores — Scores given by the
second neurologist; Less AH — The less affected hand; More AH — The more affected hand.

In Figure 7.12, the features representing the finger-tapping frequency fcflf)and angle a,, are

scattered as the function of the calculated scores. Two performance clusters are presented using
markers of different colours and shapes. Both tapping frequency fa(lf) and angle «a,,, features show a
decline in values with higher scores, which is in agreement with the clinical UPDRS criteria for
evaluation of the finger-tapping and related movements. Furthermore, movement sequences assigned
to the cluster C; are characterized by a lower tapping frequency f;B and higher tapping angles a,
compared to the cluster C,.

"Wider and slower" performance "Wider and slower" performance
140 r X "Narrower and faster" performance 5 X "Narrower and faster" performance
120 o
4t
100 |
— 'E‘
2. 80t E o3 X
S &8 x
60 | 5l X
40| g i
1 L
0| :
o X
0 . . X 0 .
0 1 2 3 0 1 2 3
Score Score

Figure 7.12 Dependence of feature a,,, values on calculated scores (left), and feature f;? values and
calculated scores (right). Observations from two different clusters are shown with colour- and shape-
coded representation: grey circles show observations from the cluster C; (“wider and slower” finger-
tapping performance), and black crosses mark samples from the cluster C, (‘“narrower and faster”
finger-tapping performance).
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The results of the expert system, expressed through the Ac metric, are presented in Table 7.7,
for each patient group separately, as well as summarized for all patients. In the left column, the results
are shown for the first evaluation scenario, Case I, which included all observations (87 observations
in total, PD: 26, MSA: 34, PSP: 27). The shown results were averaged for both raters. In the right
column, the results are presented for the second evaluation scenario, Case Il, including only the
observations equally scored by both raters (76 observations in total, PD: 25, MSA: 29, PSP: 22). For
both evaluation scenarios, results are also presented by a confusion matrix in Figure 7.13.

Table 7.7 Results of the expert system presented through the Ac metric, for each patient group and in
total. The results are provided for two evaluation scenarios: 1) when all observations were included
in the evaluation (Case I), and 2) when only observations equally scored by both neurologists were
included in the evaluation (Case I1).

Group Ac %]
Case | Case Il
PD 82.69+2.72 84.00
MSA 82.36+8.32 89.65
PSP 83.76+7.86 90.91
Total 83.33+6.50 88.16

PD — Parkinson’s disease patients; MSA — Multiple system atrophy patients; PSP — Progressive supranuclear palsy
patients.

Output Output

0 1 2 3 4 0 1 2 3 4
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Figure 7.13 Confusion matrix for Case | - all observations included in the evaluation (left), and Case
Il - only observation equally evaluated by both raters included in the evaluation (right). The fields on
the diagonal present the percentage [%] of accurately assigned scores, whereas the fields outside the
diagonal present the percentage [%] of wrongly predicted scores.

The expert system provided scores that matched the scores estimated by the neurologists with
good accuracy. For the first evaluation technique, Case I, with all observations included in the
analysis, similar results were obtained for all three patient groups, showing accuracy above 82%. The
results were improved for the second evaluation technique, Case 11, when only observations equally
scored by both raters were included, showing matching of almost 90% between the scores given by
the expert system and those estimated by the neurologists. Furthermore, based on the results provided
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in Figure 7.13, it can be seen that the scores provided by the expert system and the scores estimated
by the neurologist did not exceed a difference of one score (except for one patient).

Example results of the developed support for the evaluation of bradykinesia severity are
presented in Figure 7.14. The finger-tapping amplitude sequence is presented, together with the
detected movement disturbances (amplitude decrement and movement irregularities) and calculated
features describing basic movement characteristics. For comparison, the example is provided for two
patients (one MSA and one PSP patient) who were equally evaluated by both raters and developed
expert system (score Spr).

ID: MSA11l ID: PSP14
120 120 A noE_HOH
100 |1 Amplitude decrease |
80 | l
o 60 1
S 40
20 1
0N
0 5 Time[s] 0 15 0 5 Time[s] '© 15
Qg = 53.44 +15.01° Qg = 23.49 + 26.42°
) ~ 1.86 4+ 0.17 Hz O _ 187+ 1.58 Hz
lgec = 2 lgec = 5
Hym =0, Bym =0 Hym =4 Eym =1
SFT =3 SFT =3

Figure 7.14 Example results of the developed support for the evaluation of bradykinesia severity. It
comprises a graphical representation of the calculated finger-tapping amplitude sequence with
marked disruptions (amplitude decrement and rhythm irregularities), calculated features describing
different movement characteristics, and the score provided by the expert system. The example is
provided for one MSA patient (left), right hand, and one PSP patient (left), right hand.

7.3. Discussion

This chapter presents a new method for the evaluation of the bradykinesia symptom. The
method was developed and validated on the example of the finger-tapping movement, which is a
standardized motor test for the evaluation of bradykinesia severity. Results include a new
parametrization that describes important biomechanical movement properties and completely
quantifies clinical evaluation criteria. This parametrization included two feature sets: basic and
additional. The basic feature set comprised metrics that quantified movement characteristics, which
are visually observed in the clinical practice and used for evaluation of patients’ symptoms and degree
of their motoric impairment. However, during the extensive analysis of the used signal database, some
other movement properties were noticed and included in the analysis. The metrics quantifying
movement variability and smoothness were developed and included as the additional feature set.
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Although additional features target some movement characteristics that are not observed nor included
in the clinical examination, the use of both feature sets enables more detailed movement analysis,
providing deeper insight into the development of some other symptoms (such as tremor).

The continuous wavelet analysis was used for describing temporal changes of the dominant
finger-tapping frequency, which gave an estimation of the tapping speed on the level of one sample.
It was also successfully applied for the detection and localization of movement irregularities
(hesitations and freezes) that might endanger the normal movement rhythmicity. The amplitude was
quantified with the tapping angle, which was calculated by integrating the dominant component of
the relative angular velocity of two fingers, following the procedure described in the Chapter 6.
Significant amplitude drops were detected using a thresholding technique, which represented a new
way for quantifying the amplitude decrement criterion. Welch’s estimation of the power spectral
density was used to evaluate the finger-tapping intra-variability. The width and slope of the most
dominant peak in the power spectral density provided a measure of a tap-to-tap variability. Movement
smoothness was assessed and quantified using two different measures: one implemented on a signal
representation in the frequency domain as the length of the spectral arc length, and other calculated
as the number of signal “bumps” in the time series.

The designed parametrization and medical knowledge defined in the UPDRS scale
represented the basis for the development of a new expert system for the prediction of clinical scales
and severity of symptoms. The expert system implemented simple decision rules that objectified and
matched the standardized UPDRS criteria. Decision boundaries for the tapping amplitude and speed
criteria were defined using a clustering technique and the testing data that was obtained from healthy
controls and randomly selected patients. In this way, decision boundaries were not defined
empirically nor linearly; they were established based on natural grouping of some randomly selected
testing data. This approach distinguished two types of the finger-tapping movement: “wider and
slower” (cluster C,, grey circles in Figure 7.12) or “narrower and faster” (cluster C,, black crosses in
Figure 7.12). Each movement type was described with two sets of boundaries. The reasoning process
included selection of corresponding boundaries for each patient individually, based on the type of
their movement. Decision boundaries for the other two movement properties (amplitude decrement
and hesitations/freezes) completely matched decision rules defined in the UPDRS scale.

The efficiency of the proposed expert system was evaluated for the entire range of finger-
tapping bradykinesia severity scores (0-4). In the literature, most studies included severity stages up
to 3, indicating that the highest scores were given to patients that cannot execute the task at all.
However, in this study, three patients that barely managed to perform the finger-tapping movement
were included. Their performance was poor and influenced by multiple movement disruptions
simultaneously (visible for one or both of their hands), and therefore evaluated with the highest
bradykinesia severity score (4).

The obtained results were compared with the scores provided by two neurology specialists.
The expert system predicted the scores with overall accuracy Ac of 83.33+£6.50% (averaged for both
raters). On the level of the individual patient groups, accuracy Ac was 82.69+2.72%, 82.36+8.32%,
and 83.76+7.86% for PD, MSA, and PSP groups, respectively. By analysing only observations that
were equally evaluated by both neurologists, the accuracy of the expert system Ac achieved 88.16%.
On the level of the individual patient groups, the accuracy was 84.00%, 89.65%, and 90.91% for PD,
MSA, and PSP patients, respectively. In the latter case, the expert system predicted the wrong scores
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for only nine observations (out of 76 observations). The expert system provided very good results for
patients with idiopathic PD, but also for the patients with atypical forms of parkinsonism who may
perform finger-tapping movements differently compared to the PD patients [71]. The predicted scores
and clinical scores did not exceed a difference of one score (as shown in the confusion matrices in
Figure 7.13), except for one PD patient. In that case, the expert system predicted the score lower (for
two values) than the scores given by both raters. By recording and analysing the data from the larger
pool of subjects, decision boundaries could be fine-tuned providing even better results.

Example results of the developed clinical support for two patients are presented in Figure
7.14. The first patient performed wider and slower finger taps (quantified with higher values for the

a,,, Teature and lower values for the fa(l? feature). Furthermore, during the performance, this patient
experienced significant amplitude decrement after the first tapping cycle (quantified with the i,
feature), which represented the criterium for assigning the score Spr = 3. The second patient
performed the finger-tapping with more considerable variations in speed and amplitude, with the
appearance of four hesitations and one freeze. A large number of irregularities resulted in the score
Sgr = 3. Although their performances were different, both patients were equally scored not only by
the expert system but also by both neurologists. Based on the instructions provided in the UPDRS
scale, one score is given if any of the evaluation criteria is satisfied (tapping amplitude, speed,
amplitude decrement, or hesitations/freezes). In the case when different patients satisfy different
criteria for obtaining the same score, their performances cannot be compared. This raises a question:
is a scale with only four grades sufficient for evaluating such complex movements? In order to solve
this problem, in the literature, continuous scoring is proposed for the evaluation of repetitive
movements. Although such solutions provide more thorough scoring, the continuous evaluation does
not correspond to a standardized clinical scoring system and, therefore, may be confusing and not
fully applicable for physicians. Because of that, the presented expert system can provide the final
score, but also scores for individual movement properties. Furthermore, the result of the developed
support includes graphical representation of the movement amplitude, together with metrics
describing important movement properties. The metrics are provided in a form that is intuitive and
understandable for the potential end-users (neurologists). In this way, the results of the different or
the same patient can be compared.

The list of subjects included patients with idiopathic Parkinson’s disease and two types of
atypical parkinsonism, as well as healthy controls. The inclusion of different forms of parkinsonism
(both typical and atypical) allowed developed analysis and metrics to be examined for different
symptom manifestations. In addition, the calculated parameters showed some differences between
groups (especially visible for the features describing finger-tapping speed and movement
smoothness), which proved their potential for distinguishing patients with different forms of
parkinsonism. Furthermore, by applying the developed analysis to the recordings of healthy subjects,
it was possible to test and determine the normal characteristics of the tapping movement.

Although the movement analysis and expert system were validated on the example of the
finger-tapping movement, developed decision support is completely applicable and adjustable for all
clinically relevant repetitive movements that are used for evaluation of bradykinesia symptom. The
evaluation criteria are the same for these movements (which besides finger-tapping includes hand
opening-closing, hand pronation-supination, and foot-tapping), and therefore the developed analysis
can be easily adapted and applied for all these movements.
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8. Decision support system for assessment of patients
with neurodegenerative disorders: Presentation of
results on the example of one patient

The results of the developed support are presented on the example of one male patient (ID:
M.M.). In 2015, the patient came to the Clinic of Neurology, Clinical Centre of Serbia, School of
Medicine, University of Belgrade, Belgrade, Serbia. At the time, he was 64 years old, with no other
medical history. During the visit, the gait of this patient was recorded using the wearable wireless
sensors system. The patient M.M. walked along a straight path for 8 s. The observed and processed
walking sequence had 14 feature dimensions including normalized ground reaction force GRFy, 3
accelerometer axes a,,, , and 3 gyroscope axes wy.,, ,, as shown in Figure 8.1. The data was fed to
developed deep learning models: long short-term memory network and convolutional neural network.
In Figure 8.1 right panel, the results of the decision support are presented in the form of a probability
that that patient had PD, separately for the LSTM and CNN models.

| -ID: M.M. LSTM model
z. PDgeore = 98.70%
o
~ 05F
© HCypre = 1.30%
0 1
0 1 2 3 4 5 6 7 8
200 X axis y axis z axis
JE CNN model
£
S
20k PDy.pre = 100.00%
0 1 2 3 4 5 6 7 8 HCseore = 0.00%
5r X axis y axis z axis
T 0
3
_5 1 1 1 1 1 1 1 |
0 1 2 3 4 5 6 7 8
Time [s]

Figure 8.1 Presentation of the recorded walking sequence (data recorded from the more affected leg),
together with the results given by the two deep learning models.
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As shown, both models suggested that the patient M.M. had PD, with high probability (98.7%
by the LSTM and 100% by the CNN model). The output given by the decision support based on deep
learning models was presented in a way that is intuitive and understandable for the clinicians. The
results agreed and supported the diagnosis given by two specialists in movement disorders.

A severe progression of the disease was observed in the following years, with more expressed
bradykinesia symptom. During the visit to the Clinic of Neurology, the examination of the patient’s
motor abilities was executed. The patient performed the finger-tapping test for 15 s following the
instructions provided in the UPDRS test and the measurement procedure (as introduced in Chapter
6). The movement was recorded with a miniature inertial sensor system and processed using the
developed method for the objective movement analysis (as defined in Chapters 6 and 7). The
symptom severity was evaluated using the developed expert system for the prediction of clinical
scores (as shown in Figure 8.2).
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of | \ , Ser=2
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Time [s]
Figure 8.2 Presentation of the calculated finger-tapping movement amplitude, together with the
metric describing important biomechanical properties and bradykinesia severity score.

During the examination, the patient performed wider but slower finger taps, with no
hesitations nor freezes. The significant decrement in the movement amplitude was visible after the
9" tap. The decision support system predicted the bradykinesia severity score of S, = 2. Additional
movement properties are shown as well, including features describing smoothness and intra-
variability of the movement. Although the movement was not smooth, its variability was not
significantly expressed. This indicated the presence of another symptom during the examination —
tremor. In this way, a detailed and precise analysis of the movement is given as the output of the
developed decision support, providing detailed insight into the patient’s motor state and abilities.
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9. Conclusion

9.1. Contribution of dissertation

The contribution of the research presented in this thesis primarily includes the research and
development of a new intelligent clinical decision support system. The presented tool provides an
objective, automatic and precise assessment of patients with neurodegenerative diseases, supporting
disease recognition and evaluation of symptom severity in these patients. Analysis of repetitive hand
and leg movements represents the basis of the developed system. The observed movements are part
of standardized clinical motor tests or everyday activities.

The system has a high practical value. Movement patterns are captured using small,
lightweight, and simple wireless wearable sensors. The necessary measurement systems do not
require complicated set-up and can be easily applied in both clinical and everyday environments.
Although in this system custom-made sensors are used, the designed DSS can be applied with any
sensors that allow recording of inertial or force data in the same manner.

The system is a hybrid; different parts of the system apply diverse types of reasoning.
Intelligent algorithms are carefully selected and designed to meet all the necessary requirements of
the desired clinical decision support, type of performed movement analysis, and expected outcomes.
The whole processing is automatic, repeatable and does not require any manual work or engineering
skills of potential end-users to implement it.

The system is designed as a suggestion DSS — the clinical staff can seek for an assistance or
a consultation while assessing the patients with neurodegenerative disorders. Because of that, the
result is presented in a form that is intuitive and understandable for the potential end-users. It includes
a graphical presentation of the analysed signals and parametric values that describe important
movement properties and provide a diagnostic recommendation or symptom severity score.

Objective and automatic decision support for recognizing patients in the early stage of the
disease development

The first part of the developed support is dedicated to the provision of objective identification
of PD based on the intelligent and automatic analysis of the human gait. The support was developed
using the nonknowledge-based reasoning, since it does not require any apriori knowledge about the
observed problem.
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For that purpose, deep learning models were designed. The initial database was augmented
with walking segments of different sizes, which were segmented using two different techniques. The
augmentation strategies provided several datasets (containing from a few hundred to a few thousand
samples) for training and testing. The models were evaluated on a subject level: model performance
was tested using data from a previously unseen subject. In this way, it was assured that the deep
learning algorithms learned features that described subjects’ health status and not some other intrinsic
properties of the subject’s gait related to their identity.

Developed deep learning models distinguished PD patients from healthy controls with high
accuracy (above 90%). Recognition of PD patients in the early stage of the disease development was
also performed with very good accuracy (above 80%). Although LSTM models are designed to find
long-term dependencies in data, CNN outperformed LSTM for both classification tasks, proving great
capabilities of these deep learning algorithms.

In addition to high accuracy results, the performed study has another important contribution
— examination of the influence that walking duration and conditions might have on the efficiency of
designed models. Although recognition of PD is based on very short sequences, and for those, high
accuracy results are obtained, longer walking sequences would probably contribute to even better
identification of PD in the early stage of the disease, especially in the case of the LSTM network.
Walking segments that were recorded with a cognitive occupation were in larger percent correctly
classified. These results showed that cognitive load while walking caused meaningful changes in the
gait and contributed to more efficient early PD recognition. The literature already suggested that
executive functions are impaired early in PD, which is demonstrated in an inability to separate the
cognitive resources that are required for the simultaneous performance of different activities [150].
The obtained results complied with these conclusions and showed possible directions for the future
development of the objective and automatic diagnosis of patients with neurodegenerative disorders.

The developed and presented method is the first that implements deep learning algorithms for
automatic and objective early PD recognition, based on gait data recorded with wireless, wearable
sensors. One may wonder why this is important. Deep learning algorithms process raw data; they do
not require a high level of engineering skills for developing features that can capture desired patterns
and subtle changes in data. In the practical sense, developed DL models have high potential — they
can be easily applied for new previously unseen data; they are repeatable, automatic and do not
require complicated data processing or apriori medical knowledge. The output is provided in the form
of a probability that a person might have Parkinson’s disease. The designed models are not too
complex, which is especially notable for the LSTM model, which required training of only 56,301
parameters. Therefore, developed models can be easily applied to some mobile or web platforms and
accessible for a large number of potential users.

Furthermore, the designed support is based on one of the most common everyday human
activities — walking. Having a tool that can detect the appearance of one of the most common
neurodegenerative disorders based on just a few strides may contribute to more efficient and
widespread early recognition of this disease and consequently improve disease treatment and progress
monitoring from its early stage. Additionally, the gait data is recorded with simple, inexpensive
instrumentation that does not require a complicated set-up, and it can be applied at any time and any
place. Therefore, presented support has high applicability and potential for the provision of automatic
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and objective recognition of PD in the clinical environment, but also for the everyday self-
management of healthy people that might have a predisposition to develop this disease.

A better understanding of analysed motor patterns and specific changes that may be visible in
the recorded signals

The second part of the decision support system allows assessment of the bradykinesia severity
using repetitive hand and leg movements. These movements represent standardized clinical motor
tests, and they are of crucial importance for evaluating PD symptoms.

Firstly, the method for capturing and calculating the amplitude of these movements is defined
and presented. The method includes the definition of the measurement procedure and instrumentation,
as well as the algorithm for calculating the movement amplitude. The procedure for recording
movements is simple, repeatable, and in agreement with the standardized clinical testing protocols.
The measurement system is lightweight, easy to mount, and does not interrupt subjects’ natural
performance. The algorithm for calculating the movement amplitude was initially developed and
validated for the finger-tapping test [134]. In this thesis, the algorithm is extended to the other three
movements as well: hand opening/closing, hand pronation/supination, and toe-tapping. The
particularly significant contribution is a detailed analysis of the motion patterns, which included a
definition of movement phases, and characteristic changes that are related to specific movement
events, such as “zero posture” of the fingers or hand, maximum amplitude, moments representing the
transitions between the successive phases, and others. The preformed analysis served as the basis for
the development of a new algorithm for the segmentation of these repetitive movements, which is
automatic and precise, and it can be applied for both normal and endangered movement patterns
because it is adaptive to the intrinsic movement properties. The performed detailed analysis represents
a significant basis for further analysis of these important hand and leg movements.

New metrics describing important biomechanical movement properties

Performed analysis of fast repetitive hand and leg movements resulted in new metrics. Feature
extraction is fully automatized, simple, repeatable, and does not require any manual or individual
processing. Signal processing techniques were carefully selected for each feature individually. The
developed parametrization has two sets. The first, basic set, comprises features that completely
quantify standardized movement properties: amplitude, speed, amplitude decrement, and
hesitations/freezes that may appear during the performance. For that purpose, time-frequency
analysis, numerical analysis and thresholding techniques were applied. Designed parameters are
presented in a form that is intuitive and understandable for physicians. The feature extraction is
adaptable to the inherent properties of each individual signal. Therefore, developed movement
analysis can be easily applied to new signals that were not used during the design and validation of
the method itself.

The metrics are complemented with some additional features describing other movement
properties as well. These motion characteristics do not represent part of the standardized clinical
evaluation; however, during the extensive search and examination of the used database, some
specifics in the movement patterns were observed that might be of interest to neurologists for the
long-term monitoring of patients and comparison with other patients. These include smoothness of
the movement and movement intra-variability, which were described with some simple and
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repeatable signal processing techniques. The features were designed with a time- and frequency-
domain signal processing techniques.

Furthermore, the results of the statistical analysis showed that the developed metrics have
great potential for differential diagnosis of parkinsonism and related disorders.

Automatic prediction of clinical scores based on the expert system

Developed support implements a new expert system for the prediction of clinical scores and
symptom severity. The expert system predicted scores with high accuracy of 88.16% for comparison
with the reference data given by two specialists in movement disorders.

Although machine learning algorithms could predict scores with high accuracy, in that case,
prediction of scores would require the use of labels that are visually estimated by neurologists. As it
was already mentioned, evaluation efficiency severely depends on the examiner’s knowledge and
experience, and therefore, the decision-making process is prone to subjectivity. The use of
subjectively estimated labels can cause subjectivity in the learning model and its results as well.
Because of that, this thesis offers a different approach to solve this problem. Since UPDRS scale
encompasses domain-specific knowledge that is expressed though the clinical evaluation criteria,
prediction of clinical scores was performed using the knowledge-based reasoning. The expert rules
for the discrete movement properties (the serial number of the tap with significant amplitude drop
and the number of hesitations/freezes) completely matched clinical rules and instructions for
assigning scores. In the case of continuous features (such as the amplitude and speed), the medical
knowledge does not comprise precisely defined criteria. Because of that, decision boundaries were
defined using a clustering technique. The clustering allowed the definition of expert rules based on a
natural grouping of data that was obtained from healthy subjects and randomly selected pool of
patients. In addition to the score describing the bradykinesia severity, the system can also output the
sub-scores evaluating the individual movement properties. Therefore, all movement characteristics
are considered simultaneously for providing the final score.

Furthermore, this is the only solution that observes the natural inter-subject diversity of these
movements. The extensive search and analysis of the used database showed that subjects perform the
finger-tapping movement in two different ways: 1) wider but slower finger taps and 2) narrower but
faster finger taps. When reasoning, the presented expert system also considers the type of movement,
and based on that, applies the corresponding set of decision boundaries. In this way, the patient’s
understanding of the given task does not influence the decision-making process. The whole procedure
is objective and automatic — the movement is automatically assigned to one movement type, and the
corresponding set of decision boundaries is selected.

The result of the support comprises a graphical presentation of the calculated movement
amplitude, detected movement irregularities and disturbances, calculated feature sets describing
important movement properties, and scores for prediction of symptom severity. Developed support
represents a valuable and practical tool that can assist neurologists. It provides an automatic and
objective assessment of bradykinesia, evaluation of symptom severity through prediction of clinical
scores, monitoring of disease progress and response to therapy, and comparison with other patients.

The expert system was validated on the example of the finger-tapping test; however, it is fully
applicable for other bradykinesia related movements as well. Instructions for evaluating these four
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movements are the same, including movement properties that should be observed and rules for
assigning scores. The movements differ only in the manner how movements are performed, and their
amplitude is observed, which is also analysed in this thesis. Therefore, although the expert system
was only validated on the example of the finger-tapping test, the developed analysis and expert system
are fully adaptable and applicable for other movements as well, proving the high practical value of
the developed support.

Validation of the developed decision support system on different groups of subjects

The intelligent algorithms, developed and presented in this thesis, were validated on several
groups of subjects. The patient groups reflected many features of real clinical cases, which enabled
the examination of the developed algorithms for a wide range of movement impairments. Data
recorded on healthy subjects allowed the definition of “normal” or reference movement patterns.
Designed deep learning models were cross-validated using the gait data recorded from PD patients in
different stages of the disease development. The particular focus was given to identifying patients
with PD in its early stage when symptoms endangering their gait are not significantly expressed and
visible.

Objective and automatic support for the assessment of bradykinesia symptom was validated
on the pool of patients, that included patients with several neurodegenerative disorders, more
specifically typical and atypical forms of parkinsonism, patients in different stages of the disease, and
different stages of the bradykinesia severity (ranging from normal to severely impaired motions). The
developed and presented movement analysis, and expert system gave high accuracy results for all
patient groups, regardless of the disease stage and bradykinesia severity, showing the great practical
potential of developed support for patients with different types of parkinsonism and different
symptom manifestations. Most studies only included patients evaluated with the test score up to 3. In
this thesis, several patients with the highest degree of bradykinesia severity were included. Those
patients performed the finger-tapping test very badly, expressing multiple movement disturbances
simultaneously. This caused their movement to be scored with the highest score, by both neurologists
and the expert system. In this way, the applicability of the developed support was examined for the
full range of scores 0-4.

9.2. Perspective and future research

Extension of the developed system for other neurodegenerative disorders or tasks

The obtained results gave potential directions for the future improvement and extensions of
the developed decision support system. The support will be extended to other neurodegenerative
disorders as well. This advancement primarily includes the differentiation of typical and atypical
forms of parkinsonism. In this thesis, it was shown that developed analysis of bradykinesia has great
diagnostic potential. These results represent a significant basis for future research, which will be
directed towards designing appropriate features that can capture significant patterns in movement
data and contribute to the precise differentiation of these patient groups. Furthermore, obtained results
showed that cognitive dual-tasking and longer sequences might play a significant role in the precise
early PD identification. Due to that, an effort will be put in developing experimental protocols that
can contribute to even better identification of PD patients in the early stage of disease development
or differential diagnosis with other neurodegenerative disorders.
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As for the expert system, planned extensions include validation of developed algorithms on
other bradykinesia related movements: hand opening/closing, hand pronation/supination and toe-
tapping. Furthermore, expansion of the entire system is planned, which will include the development
of an objective and automatic support for the assessment of other PD symptoms, such as tremor,
rigidity, postural instability, and others.

Collaboration with other groups for more widespread validation of the developed system

The main limitation of the developed system is a relatively small number of included subjects.
This represents the burning issue in the field of sensor-derived assessment of patients with
neurodegenerative disorders. Most research groups working in this field have collaboration with
medical institutions and put a lot of effort and resources to collect enough data for developing and
validating their intelligent algorithms. Data acquisition typically requires a lot of time and results with
only a few dozen of analysed patients, which is not enough to have a clinically acceptable system.
Therefore, the validation of developed decision support would benefit from increased and widespread
collaboration among different research groups in the world. Aligning experiment protocols,
validating algorithms using data recorded with measurement systems of different manufacturers or
from patients of different demographic features, and sharing data among researchers would provide
a good basis for the development of large-scale databases and more precise and clinically acceptable
systems.

Development of an intuitive graphical interface

In the future, a developed decision support system should be developed in the form of a mobile
or web application. This advancement would enable the system to be used by a larger number of
users, and it would additionally improve the accessibility and practical value of the developed
support.

The software application should have an intuitive and simple graphical interface, protected
with a password. It should provide a graphical presentation of recorded signals, numerical results of
features, diagnostic recommendations, scores and sub-scores, and statistical analysis. Furthermore,
the collected data should be saved for later analysis and monitoring and exported in a form that is
suitable for reporting and compatible with local electronic health records.
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"CHCTEM 32 NONPINKY OATYIHBAY, €Bayaljy i npaheme cTama nalyjeHaTa 060enux o HeypoAereHepaTHBHUX GonecTu'

(HacnoB Ha enrieckoM: "Decision support system for assessment of patients with neurodegenerative disorders”)
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IloTnuc ayTopa
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o]l HeypoAereHepaTHBHUX OonecT” (HacloB Ha eHrneckoM: "Decision support system
for assessment of patients with neurodegenerative disorders")
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(HacnoB Ha eHrneckoM: "Decision support system for assessment of patients with neurodegenerative disorders")
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TPajHO apXUBHpakbe.

Mojy nOoKTOpCKY AxcepTalyjy NoxpamweHy y JJUTUTaJlHOM peno3uTOpHjyMy YHUBeEp3UTETA Y
Beorpaay u I0CTYIHY Y OTBOPEHOM NPUCTYIY MOTY Zia KOPUCTe CBHM KOjU NMOIUTYjy ojipeade
cajpxaHe y ozabpaHoM Tuny jauueHue KpeatuBHe 3ajeaHune (Creative Commons) 3a kKojy
caM ce OAJIyYHO/J1a.

1. Ayropcrro (CC BY)
2. AyropcTBo - HekoMepujaaHo (CC BY-NC)
@AyTopCTBO - HeKoMepLuHjasHo — 6e3 npepaza (CC BY-NC-ND)
4. AyTOpCTBO - HEKOMepLHjalHO - ieJUTH nog UucTuM ycaoBruMa (CC BY-NC-SA)
5. Ayropcteo - 6e3 npepaza (CC BY-ND)
6. AytopcTBo - genuTH nog uctumM ycaosruma (CC BY-SA)

(MosiuMo fa 3a0Kpy>KHUTe caMO jeiHY 0/ IIeCT NOHYHEeHHX JHULIEHLIH.
KpaTak onuc qvLieHI U je cacTaBHHU [leo OBe U3jaBe).

IToTuc ayropa

Y Beorpapy, _2:11:2020.




1. AytopcrBo. /l03BO/baBaTe YMHOXKaBamwe, AUCTPUOYLMjy U jaBHO caolllTaBalbe JieJsa, U
npepaje, ako ce HaBeJe UMe ayTopa Ha HayuH ojipeheH o/ cTpaHe ayTopa WJHU JlaBaola
JIMLIeHIe, YaK U y KoMepLUjaaHe cBpxe. OBoO je Hajcio60HUja 0 CBUX JIMLIEHLH.

2. AyTOpCTBO — HeKOMepuHjaJHoO. [[03BO/baBaTe yMHOXaBalbe, AUCTPUOYLIMjY M jaBHO
caonuITaBame Jiesa, U Ipepajie, ako ce HaBeJe UMe ayTopa Ha HauuH oApeheH oj cTpaHe
ayTopa MJH AaBaola suueHue. OBa 1MIeHLa He /J03B0/baBa KOMepLMjaaHy ynoTpe6y /ea.

3. AyTopcTBO - HeKoMeplMjasHO - 6e3 mnpepajga. /lo3Bo/baBaTe YMHOXABakbe,
AUCTPUOYLMjY M jaBHO caoNllTaBarbe AeJa, 6e3 NpoMeHa, NMpeobJHKOBaa WK yroTpebe
Jles1a y CBOM JleJly, aKO Ce HaBeJle MMe ayTopa Ha HauuH oApeheH 0j CTpaHe ayTopa WJH
JAaBaoua juueHue. OBa JxLeHLa He J03Bo/baBa KOMEpLHjaJHYy YIOTpeOy Aea. ¥ ogHOCY Ha
CBe OCTaJle JHleHlle, OBOM JIMLEHL|OM Ce OrpaHH4YaBa Hajeehu 06MM npapa Kopulihewa Aesa.

4. AyTOpCcTBO - HeKOMepnMja/IHO - JAEJHUTH NoJ MCTUM YycjaoBuMa. /lo3BoJbaBaTe
YMHOXaBake, JUCTPUOYLH]y U jaBHO caoNliTaBake JeJsa, U Npepajie, ako ce HageJle UMe
ayTopa Ha HayuH oJfpeheH oJy CTpaHe ayTOpa WJM JlaBaola JiMLEHLEe U aKo ce npepaja
AUCTpUOyHpa 1Noj WCTOM HJIHW CJAHYHOM JuneHuoMm. OBa JMIeHI]a He J103BOJbaBa
KOMepLHjaJIHy ynoTpeby Aesa U ipepajia.

5. AyropcTBO - 6e3 mpepaja. /lo3Bo/baBaTe YMHOXAaBawe, AUCTPUOVLM)Y H jaBHO
caonuiTaBame jesa, 6e3 NpoMeHa, NpeobJUKOBakha UMK YIOoTpebe Jiesia y CBOM Jiesly, ako ce
HaBeJle MMe ayTopa Ha HauyMH oJ/ipeheH oJ] CTpaHe ayTopa WJH JlaBaolla JuueHue. OBa
JIMLeHLa A03B0/baBa KOMepLHjaJHY yIIOTpedy AeJa.

6. AyTOpPCTBO ~ JeJIMTH NOJ UCTUM YCI0BUMA. /l03B0O/baBaTe YMHOXKABAMLE, JUCTPUBYIIH]Y
M jaBHO CaollllTaBame /lesa, U Nipepaje, ako ce HaBejAe MUMe ayTopa Ha HauyWuH oApeheH of
CTpaHe ayTopa WJM JaBaolla JMLEHLEe M ako ce mpepaja AUCTPUOYHMpa NOJ UCTOM WU
cnuyHOM JauueHLnoM. OBa JiMieHLa [103BO/baBa KOMeplMjaJiHy ynotpeby Jesa U npepaja.
CaundHa je coPTBEPCKUM JIMLEHLAMa, 0JHOCHO JIMLeHllaMa OTBOPeHOr Koja.
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