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Abstract 

 

Most of the public key cryptosystems depend on the hardness of either the 

factorization or the discrete logarithm problems. However, computation both of them can be 

done in polynomial time on a quantum computer. Therefore, there exists an urgent need for 

alternative cryptosystems that resist attackers designed on quantum computers. Code-based 

cryptography is one of the most promising alternatives for post-quantum cryptography where 

its security depends on the problem of decoding unknown error-correcting codes, which is 

known to be ࣨ࣪-hard. McEliece cryptosystem belongs to this class of crypto-schemes and is 

based on the difficulty to decode an unknown linear code. Encoding and efficient decoding of 

a certain code in the presence of a fixed number of random errors are the key idea of 

McEliece cryptosystem. The main advantages of this system are fast encryption and 

decryption procedures, while the main drawback is the large public key size when the Goppa 

codes are originally used. For this reason, McEliece cryptosystem has not stood up to RSA 

for practical applications, i.e., it was assumed to be impractical for many applications. 

However, attempts to reduce the public key size by using alternative codes, while 

maintaining the same security levels, lead to promising results. 

This thesis focuses on the QC-LDPC/MDPC code-based McEliece cryptosystems. 

QC-LDPC/MDPC codes are one of the most promising families of codes to replace the 

Goppa codes that still preserve the desired security properties of the cryptosystem. The 

drastic reductions in the public key size can be achieved by these codes. Security of the 

McEliece cryptosystem is directly determined by inability to detect the properties of codes 

from the intercepted sequences and the performance of an applied decoder. If the decoder has 

the advantage of being able to correct more errors, then more errors can be inserted during 

the encryption process, which have strong positive impact on the security. In addition, 

achieving low decoding failure rates is critical in McEliece cryptosystem such that the 

information bits can be extracted and sending the requesting retransmission can be avoided, 

which can help an attacker to detect the information bits. 

As long as that the decoding process is the most complex part in code-based 

cryptography, the selection of an efficient decoding algorithm is crucial to the overall 

performance. The complexity of the iterative decoding algorithms for LDPC codes only 

grows linearly in the code length. There are several iterative decoding algorithms that can be 

applied in the same LDPC codes with different performance and complexity. It is well-known 



IX 
 

that the Sum-Product Algorithm (SPA) has a superior performance but complexity of this 

algorithm is very high and decoding speed is limited. 

The decoders proposed in the thesis achieve the good performance, comparing with 

the state-of-the art soft decoding algorithms, with lower implementation complexity. We 

discuss the possible use of Probabilistic Gradient Descent Bit Flipping (PGDBF) and 

Multiple Decoding attempts and Random re-Initializations (MUDRI) decoders which achieve 

a significant advantage in terms of performance with limited complexity. 

The proposed decoding algorithm for LDPC/MDPC codes, as we will see, 

outperforms its competitors both in terms of computational complexity as well as decoding 

failure rate. A great flexibility in designing LDPC/MDPC decoding algorithms provides a 

possibility to improve the security level in McEliece cryptosystems. 
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Rezime 

 

Većina algoritama sa javnim ključevima svoju sigurnost zasniva na težini 

faktorizacije brojeva na proste činioce ili problemu izračunavanja diskretnog logaritma. Ipak, 

oba pomenuta problema su rešiva u polinomijalnom vremenu korišćenjem kvantnih računara. 

Iz ovog razloga, javila se potreba za razvojem alternativnih kriptosistema koji uspešno 

odolevaju napadima izvedenim pomoću kvantnih računara. Dobro rešenje za post-kvantnu 

kriptografiju predstavljaju kriptografski algoritmi zasnovani na teoriji zaštitnih kodova, pri 

čemu se njihova sigurnost zasniva na problemu dekodovanja nepoznatih zaštitnih kodova, a 

poznato je da je to NP-kompletan problem. Tipičan predstavnik ove klase kriptografskih 

algoritama je McEliece kriptosistem. Kodovanje i efikasno dekodovanje određenog koda u 

prisustvu fiksnog broja slučajnih grešaka predstavlja ključnu ideju McEliece kriptosistema. 

Osnovne prednosti ovog sistema su velika brzina šifrovanja i dešifrovanja, dok osnovnu 

manu predstavlja veličina javnog ključa, posebno u originalnoj varijanti algoritma sa Goppa 

kodovima. Iz ovog razloga, McEliece kriptosistem nije smatran adekvatnom zamenom za 

RSA, tj. smatran je nepraktičnim za razne primene. Ipak, pokušaji da se redukuje veličina 

javnog ključa korišćenjem drugih klasa kodova, uz zadržavanje istog nivoa sigurnosti, doveli 

su do znatno unapređenih rešenja.  

Ova teza pre svega se bavi McEliece kriptosistemima baziranim na QC-LDPC/MDPC 

kodovima. QC-LDPC/MDPC kodovi predstavljaju jednu od najpogodnijih familija kodova 

kojima se mogu zameniti Goppa kodovi a da se zadrži isti nivo sigurnosti kriptosistema. 

Primena ovih kodova dovodi do drastičnog smanjenja veličine javnog ključa. Sigurnost 

McEliece kriptosistema direktno je određena nemogućnošću da se odrede osobine koda iz 

presretnutih sekvenci, kao i performansama primenjenog dekodera. Ako dekoder ima 

sposobnost ispravljanja većeg broja grešaka, tada se više grešaka može utisnuti tokom 

procesa šifrovanja, što ima pozitivan uticaj na ostvareni nivo sigurnosti. Pored prethodno 

navedenog, postizanje male verovatnoće neuspešnog dekodovanja je kritično za uspešno 

funkcionisanje McEliece kriptosistema, da bi se izbegle retransmisije i tako otežalo napadaču 

da detektuje informacione bite.  

Pošto je dekodovanje najsloženiji korak u procesu dešifrovanja, izbor efikasnog 

algoritma dekodovanja je ključan za performanse kompletnog kriptosistema. Kompleksnost 

iterativnog algoritma dekodovanja LDPC kodova raste linearno sa dužinom kodne reči.  

Postoji nekoliko iterativnih algoritama dekodovanja koji se mogu primeniti na isti LDPC kod, 
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od kojih svaki obezbeđuje različite performanse i svakog odlikuje drugačiji nivo 

kompleksnosti. Dobro je poznato da algoritam sumiranja i proizvoda (Sum-Product 

Algorithm - SPA) ima superiorne performanse, ali kompleksnost ovog algoritma je velika i 

brzina dekodovanja je ograničena.  

Dekoderi predloženi u ovoj disertaciji postižu dobre performanse, uporedive sa 

standardnim algoritmima sa mekim odlučivanjem, uz značajno nižu kompleksnost 

implementacije. U disertaciji je razmotreno moguće korišćenje probabilističkog Gradient 

Descent Bit Flipping algoritma (PGDBF) i algoritma sa višestrukim pokušajima dekodovanja 

sa slučajnom reinicijalizacijom (Multiple Decoding attempts and Random re-Initializations - 

MUDRI), čija primena rezultuje značajnim poboljšanjem performansi uz ograničenu 

kompleksnost.  

Predloženi algoritam dekodovanja za LDPC/MDPC kodove, kao što će biti pokazano, 

prevazilazi performanse drugih predloženih rešenja kako u pogledu kompleksnosti dekodera 

tako i u pogledu postignutog nivoa verovatnoće greške. Velika fleksibilnost u dizajniranju 

algoritama za dekodovanje LDPC/MDPC kodova rezultuje mogućnošću da se unapredi 

stepen sigurnosti McEliece kriptosistema. 
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In the symmetric cryptosystem, the same key is used for the encryption and 

decryption procedures. The private key must remain secret and cannot be disclosed to a 

person or persons who are not intentional receivers of an encrypted message. In the case 

when the private key becomes compromised, any message encrypted using that key might be 

compromised. The private key cryptosystem is sometimes referred as the symmetric 

keysystem, since the same key is used in both ends of the system. In this kind, two main 

problems appear when the private key-based system is used: (i) key generation and (ii) key 

distribution. The system requires that ൫ࣥଶ൯ secret keys need to be distributed over a secure 

communication channels for ࣥ communications partners, i.e., each information flow needs 

different secret key. Moreover, the secure communication channels can be difficult to 

achieve. Common examples of symmetric key encryption schemes are One-Time Pad (OTP) 

[1],[2], the Data Encryption Standard (DES) originally specified in [3], International Data 

Encryption Algorithm (IDEA) [4] and the Advanced Encryption Standard (AES) [5]. DES 

with 56-bit key was the most widely used symmetric-key encryption algorithm, and even 

after thirty years of crypto-analysis, the most practical attack remains exhaustive key search. 

Triple DES (or 3DES) uses the same algorithm, applied three times with different keys giving 

it an effective key length of 128 bits [6]. The AES is intended to replace the DES and Triple-

DES. It primitive is (usually) based on it representing a keyed pseudo random permutation. 

For near term AES-128 is advised for using and for long term it will be AES-256.Symmetric 

key encryption algorithms have the fastest implementations in hardware and software. Thus, 

they are very well suited to the encryption of large amount of data.    

 

 

1.1. Public key cryptosystems 

Whitfield Diffie and Martin Hellman [7] first introduced the notion of the public-key 

cryptosystem in mid-seventies. In their cryptosystem, different keys are assigned to the sender 

and receiver, which solve the problem of private keys distribution, which exists in the 

symmetric cryptosystems. Mathematical one-way functions are used to generate many of the 

pair keys. These functions need to be easy to implement in order to create the keys, but hard 

to invert.  

The public-key encryption schemes are basically slower than symmetric-key 

encryption algorithms. Symmetric key operations are often based on low-level bit 
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manipulation primitives while public-key operations are often based on exponentiation of 

large integers. In addition, public keys must have many more bits than symmetric keys that 

achieve the same level of security. For this reason, public-key encryption is commonly used 

in practice for encryption of small data items and/or for transport of keys, subsequently used 

for data encryption by symmetric-key algorithms. Therefore, symmetric key and public key 

cryptography complement each other to provide cryptosystems used in practice.  

Authentication and digital signatures are very important applications of public key 

cryptography. For instance, Pretty Good Privacy (PGP), first released in 1991, is a software 

package that provides encryption and authentication for e-mail and file storage applications. 

It uses Rivest, Shamir and Adleman (RSA) public key cryptosystems [8] for key transport 

and IDEA for bulk encryption of messages. Similar schemes are used for the 

Secure/Multipurpose Internet Mail Extensions (S/MIME) secure e-mail standard. Disk 

encryption systems like Microsoft’s Bitlocker also uses a similar approach on systems 

equipped with Trusted Platform Module (TMP) chips. The bulk encryption of the data on the 

disk uses AES and then encrypted using RSA. The SSH (or Secure Shell) network protocol 

widely used for remote connections to Unix-like operation systems can also use public key 

cryptography for logging in operation. 

In this context, RSA, Rabin, ElGamal and Elliptic Curve are the most famously used 

public-key cryptosystems [8-12]. The security of the known cryptosystem depends on the 

hardness of a number of theoretic problems such as integer factorization problem (IFP) and 

the computations of discrete logarithm problem (DLP) in finite fields or in groups of points 

on an elliptic curve.   

RSA is a public key encryption system designed by Rivest, Shamir, and Adleman in 

1978, as a signature and encryption scheme. It has received a lot of attentions and it is 

commonly known how to choose its parameters that guarantee the security against the best 

known attacks using current computer platforms. In this algorithm, both encryption and 

decryption are executed using exponentiation. The security of RSA system comes from the 

difficulty associated with factoring large prime numbers, which are incorporated into public 

and private keys. Thus, the ability to decipher plaintext from the use of a public key and 

ciphertext is the equivalent of factoring two large primes. The commonly used key size for 

RSA is 1024-bits, due to the progress on the factorization problem, it is expected that 

changing the key size is required. Therefore, the key sizes that are considered to be secure 

today are even longer.  
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In 1985, Koblitz and Miller suggested the use of the elliptic curves to design public 

key cryptography systems [11], [12].An elliptic curve cryptography (ECC) based on elliptic 

curve theory that can be utilized to produce the faster, smaller and more efficient 

cryptographic keys instead of the traditional method of creation, which are based on the 

products of very large prime numbers. Equations based on elliptic curves have a 

characteristic that is useful for cryptography purposes: they are relatively easy to accomplish, 

and extremely hard to reverse. An ECC is used in the most advanced technologies as TLS, 

PGP and SSH on which advanced web and new IT world are based. In addition, ECC is 

based on the intractability of the Elliptic Curve Discrete Logarithm Problem (ECDLP) that is 

much more difficult to defy compared to IFP, at the equivalent key lengths. For comparison 

between RSA and ECC, it is extensively thought that the same level of security 128-bit, it can 

be achieved using ECC with the key size is 256 bits while RSA needs 3072-bits [13]. 

Efficient ECC hardware implementations for curves can be found in [14-16] which all give 

good performance at moderate resource requirements.  

In 1998, Hoffstein, Pipher and Silverman introduced NTRU cryptosystem [17]. This 

system depends on the algebraic structures of certain polynomial rings. The hard problem 

which NTRU depends on it can be defined as a problem of finding a short vector in a given 

lattice. A mixing system used in the encryption procedure relies on polynomial algebra and 

reduction modulo two numbers. The decryption procedure uses un-mixing system whose 

validity depends on elementary probability theory. For comparison between NTRU, RSA and 

ECC, the procedure NTRU cryptosystem is significantly faster than the RSA and it is two 

orders of magnitude faster than ECC, but the keys of NTRU are longer than ECC keys [18].  

Another important class of the public key cryptography is code-based cryptography. 

Typically, error-correcting codes are used for increasing the reliability of communication 

transmission, which is in all its forms subjected to the channel noise. Starting from 

observation that the Goppa codes allow fast and efficient error correction, Robert J. McEliece 

in 1978 proposed a public key cryptosystem based on the coding theory [19]. In fact, the 

cryptography system proposed by McEliece is not only the first encryption scheme based on 

the coding theory but over the years remain resistant to the attacks attempting to recover the 

secret key [20]. Soon after the McEliece’s publication, a number of researchers adapted his 

idea and started to refine and improve the original concept. The Niederreiter cryptosystem is 

known as a coupled version of McEliece cryptosystem where Generalized Reed-Solomon 

(GRS) codes are used [21] and the new update version can be found in [22] where the Goppa 

codes are used. It uses the smaller public key sizes and equivalent security. They notice some 
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drawbacks of McEliece’s scheme, among of them, the necessity for a large key, for 128-bit 

security the best known attacks force a key size is around 192192 bytes which prevent its 

widespread adaption. In the McEliece cryptosystem, the message is represented as a binary 

vector and mapped to a unique transmitted message by the redundancy bits. The proportion 

of useful data (non-redundant) transmitted in each codeword is called the transmission code 

rate.  The transmission code rate used in the classical McEliece cryptosystem is 0.5 which is 

considered low compared with the full code rate in RSA. Worth mentioning that the 

McEliece cryptosystem is free to use counter to another public-key cryptosystems such as 

NTUR cryptosystem where is patented by the company NTUR Cryptosystems [23]. 

 

 

1.2. Post-quantum cryptography 

Wineland [24] said: “Perhaps the quantum computer will be built in this century. If so, it will 

change our lives in the same radical way as the classical computer transformed life in the 

last century”. Physicists are prophesying that large–scale quantum computers may be 

available in the next 15 to 20 years due to the technological progress. The quantum 

computers are a new class of computers which essentially differ from the classical computers. 

In quantum computing, the fundamental unit can hold both 0 and 1 value at the same time; 

this is known as a superposition of two states. These quantum bits are known as qubit. The 

quantum information theory is considered as a suitable framework to describe their 

computational features rather than classical information theory.  

The quantum algorithms can be simply defined as the sequence of the basic of 

manipulations of qubits, and these algorithms specifically required for the quantum 

computers to operate intelligible upon information processing, which cannot be run on 

classical computers. Regardless that the large quantum computers exist today or not, the 

mathematicians try to improve the algorithms that convenient to carry out the functions on 

this modern computer architecture during the period of time preceding. It has been shown 

that some issues can be solved in remarkably less running time by quantum algorithms in 

contrast to the traditional algorithms running on the classical electronics circuit hardware, as 

shown in Figure 1.2. 
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(a)                                                        (b)  

Figure 1.2. Eavesdropper obtains the public key from public directory (a); Quantum computer can 
break security by reverse computing private key faster than a classical computer (b) 
 

The first algorithm for quantum computing introduced by Peter Shor in 1994 with 

great importance for effective implementations, and in 1996 he again considerably improved 

the original algorithm [25], [26]. Shor showed how to do so in a futuristic scenario. Actually, 

Shor’s algorithm is considered as a probabilistic algorithm that divided into two parts, a 

classical part and a quantum algorithmic part. The original Shor’s algorithm aims to 

decompose a non-negative composite integer N in its prime factors on a quantum computer. 

In 2001, Shor’s algorithm was implemented on a 7-qubit quantum computer to factorize the 

number 15 by Chuang et al [27]. After ten years and using adiabatic quantum algorithms, the 

Chinese researches succeeded to factorize the number 143 [28]. The special feature of this 

algorithm is that its running time can be considered the smallest compared with any known 

algorithm and can be applied to solve the related DLP. However, in the past time there is a 

significant progress to solve the integer factorization and discrete logarithm problem using 

the classical computers [29-31].  

 “Is cryptography dead?”—Bernsteinet al. asked in the beginning of the book [32]. In 

fact, the quantum computers will not end the secure of telecommunication system, but other 

public key cryptosystems require taking place of the famous cryptosystem as RSA and ECC.   

It can be believed that the quantum computers have ability to solve problems in 

polynomial time and these problems are designed to be adamant for the classical computer. 

So, novel security model have to be improved to resist the quantum adversaries. 

The post-quantum cryptography relates to cryptographic systems that are secure 

against attacks by conventional computers and withstand against attacks by all known 
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quantum algorithms which are applicable in future. Most of current symmetric cryptography 

algorithms like AES are considered to be relatively secure from attacks by quantum 

computers, by increase the key sizes of the symmetric cryptosystems. We say that AES-128 

is a difficult for a classical computer to break while AES-256 would be difficult for a 

quantum computer. Therefore, the post-quantum symmetric cryptography will be similar to 

the current symmetric cryptography. 

In the context of the quantum computers, fortunately, some classes of asymmetric 

cryptosystem can be considered as a post-quantum cryptography as shown in Figure 1.3. 

There are at least four classes of public key cryptosystem that survive according to [32]: 

hash-based as “Merkle’s hash-tree signature system”, code-based as “McEliece encryption”, 

lattice-based as “NTRU encryption” and multivariate-quadratic-equations as “HFE signature 

scheme” cryptosystems — to the best of our knowledge.  

Today, two known quantum algorithms, Grover’s and Shor’s [25, 26, 33] are used to 

break the current state-of-the-art cryptosystems. In fact, there are no applicable with the same 

impact on the code-based schemes. 

Bernstein used Gover’s quantum algorithms were applied on the McEliece 

cryptosystem in order to break it [36]. Fortunately, it was not able to break McEliece’s 

system or other code-based cryptosystems. Some adjustable parameters are suggested in the 

case of sturdy quantum computers like force the McEliece key size to quadruple.  In [37] the 

authors argued that quantum computers have only a small impact on the McEliece public-key 

system, reducing the attacker’s decoding cost from 2140 to 2133 for a code with length 4096 

and dimension 3556. 

 

In short: McEliece cryptosystem, together with cryptographic schemes based on 

lattices, multivariate polynomials, or on hash functions, is one of the oldest public key 

cryptosystems and the oldest that is conjectured to be post-quantum secure. 
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compared with the asymmetric cryptosystem as RSA which need longer key. Worth 

mentioning that ECC has the ability to keep its security with the key lengths similar to those 

of symmetric systems. For example, to provide security equivalent to AES, then RSA would 

have to range approximately between 3072 and 15000 bits long, which is so large that 

standard embedded hardware would be unable to provide reasonable levels of performance or 

throughput, while ECC key of 256 bits would provide at less than 1/2 the size as shown in 

Table 1.1 [13]. 

 

Table 1.1. Key size comparisons ECC, RSA and McEliece bit 
size requirements for AES to achieve different bit-security 
level 

 AES-128 
small 

AES-192 
medium 

AES-256 
large 

Bit-security level 128 192 256 

ECC 256 384 512 

RSA 3072 7680 15360 

McEliece 460 647 -  7 667 885 

 

In this thesis we focus on code-based cryptosystem, especially on the McEliece 

cryptosystem. It is based on the problem of decoding a general linear code. Its security based 

on the hardness of correcting errors in linear codes and the hardness of distinguishing the 

public code description from random. It is considered immune to quantum computer attacks 

[20]. Therefore, there is a clear perspective to be a candidate for post-quantum encryption 

scheme.  

In McEliece cryptosystem, the most of operations in the encryption and decryption 

procedures are based on the binary linear codes which can be implemented efficiently in 

dedicated hardware. Moreover, factoring problem (FP) and DLP based cryptosystem require 

computationally expensive multi-precision integer arithmetic while the operations on binary 

codes do not need it, so it is beneficial for small computing platforms. McEliece 

cryptosystem performs great in comparative criterion and has a time complexity of ܱሺ݊ଶሻ, 

while RSA has a time complexity ofܱሺ݊ଷሻ. Therefore, the longer key sizes in the McEliece 

cryptosystem lead to higher complexity but, in fact, it is very low compared with RSA, even 

when Goppa codes are used. Table 1.2 shows that the McEliece system and its Niederreiter 

[22] dual version (homologue) display lower encryption and decryption complexity than the 
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asymmetric schemes as RSA with respect to the same security level. Additionally, in some 

applications the profits of very fast encryption and decryption are surpassed by the costs of 

communicating and storing these keys. In the case of the post-quantum cryptography 

algorithms, larger key sizes are required than in commonly used "pre-quantum" public key 

algorithms. In [40] introduces the parameters that satisfy a minimum security level of the 

McEliece cryptosystem.  

 

Table 1.2. Parameters of the original and modified McEliece cryptosystem 

 Key Size a Rate ࢑ ࢑/ࢉ࢔ࢋ࡯ ࢈  Ref ࢊ		࢑/ࢉࢋࢊ࡯ ࢉ

McEliece 
(1024,524) 

67072 0.51 524 514 5140 [51] 

Niederreiter 
(1024,524) 

32750 0.57 284 50 7863 [51] 

RSA,1024-bit 
mod. Public exp.17 

256 1 1024 2402 738112 [51] 

QC-LDPC 6144 0.75 12288 658 4678 [50] 
a Expressed in bytes 
bInformation block length (bits) 
c Number of binary operations per information bit for encryption 
d Number of binary operation per information bit for decryption 

 

Several attempts have been made to propose alternatives to the classical Goppa codes. 

The main motivation is to additionally reduce the size of the public and private keys. The 

recent solutions seek to use cyclic or quasi-cyclic codes (QC) in code-based public key 

cryptosystems. The main idea of this method consists in considering quasi-cyclic generator 

matrices of a code, so that rather than giving the whole generator matrix, it is only sufficient 

to give a few rows from which the whole matrix can be derived, i.e., only some rows of the 

generator matrix are stored in the memory (Block RAM), and the other rows can be obtained 

by simply rotating the store values. In [41] they used a very large set of subcodes of a given 

BCH code as a large set of Goppa codes with key of size 12 Kbits for length 2047 and 20 

Kbits for length 4095, and for the modern cryptosystem to assure a good security the 500 

Kbits needed for length 2047. The drawbacks of presented versions are that (i) the public 

code comes from a primitive BCH code i.e., an adversary is able to enumerate all of BCH 

codes for the suggested parameters and (ii) the permutation (used to hide the secret code) is 

too restrictive [42]. 

One such alternative is based on random Low Density Parity Check (LDPC) codes 

which is considered as a first implementation with McEliece cryptosystem [43]. 
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Unfortunately, random-based LDPC codes do not allow to decrease the key size and the 

system will be unsecure. In [44] again exploited the QC-LDPC codes to overcome those 

limitations and the authors propose a public key size that is about 48 Kbits to achieve a 

security equivalent of 2048 bit RSA. This is a reduction of key size by a magnitude of ten 

from the original McEliece cryptosystem while maintaining the advantage of fast encoding 

and decoding as shown in Table 1.2.Some weaknesses of this method are summarized in 

[42], [45]. However, the authors responded in [46] when QC-LDPC codes are used in 

McEliece cryptosystem and recommended to change values of some parameters to avoid the 

known attacks. Recently, a variant of McEliece encryption scheme from Moderate Density 

Parity-Check (MDPC) codes and another from quasi-cyclic MDPC codes are introduced in 

[47]. Public key size in bits to achieve 128 bits of security is 9856 and private key is 19714 

bits. The McEliece cryptosystem based on LDPC\MDPC codes use the suitable decoding 

algorithms for trying to correct all intentional errors added to the transmitted messages. The 

Sum-Product Algorithm (SPA) [48] and the Bit-Flipping (BF) [49] are the decoding 

algorithms usually used in the modified McEliece cryptosystem. The SPA based on the soft 

decision and requires high complexity to obtain the best performance while BF based on the 

hard decision and requires very low complexity with poor performance.     

The main goal of this thesis is design low complexity decoder suitable for LDPC and 

MDPC codes that will result in additional reduction of complexity for the same security level. 

Dramatic increase in the dimension of the LDPC\MDPC codes employed in the McEliece 

cryptosystem is needed to guarantee the high level security in the quantum-computing. It is 

known that the size of the public keys increases linearly with the code dimension (length). 

Therefore, designing novel low complexity decoders employed in the McEliece cryptosystem 

is significant, since can reduce the complexity of a hall system. The decoders proposed in the 

thesis give high flexibility to approach the low complexity decoders with the relatively good 

performance. In this moment we discuss the possible use of Probabilistic Gradient Descent 

Bit Flipping (PGDBF) and Multiple Decoding attempts and Random re-Initializations 

(MUDRI) decoders which give a significant advantage in terms of complexity and 

performance. 

The complexity of these decoding algorithms will be analyzed in details and the 

corresponding McEliece cryptosystem. From the point of view the security, impact of 

applications of these decoding algorithms on the security will be also given and practical 

implementations will be considered. 
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1.4. Contributions and Outline 
 
The rest of the thesis is organized as follows: 
 

Chapter 2 provides the background on McEliece cryptosystem based on error-

correcting codes. It describes the original McEliece cryptosystem, depiction of its advantages 

and the main drawbacks. Some previous attempts of reducing the key size of this system are 

introduced. We focus on the QC-LDPC and QC-MDPC codes which are functional to reduce 

the key size of the McEliece cryptosystem with respect to the level security.   

Chapter 3 provides the background on class of linear block codes, LDPC codes and 

iterative decoding algorithms. In this chapter, the definitions, notations and bipartite graph 

representation for LDPC codes are introduced. Also, we give short explanation for some 

constructions of LDPC codes and encoding process. It is then followed by short survey of the 

message-passing decoding algorithms. Furthermore, their advantages and disadvantages will 

be full presented through comparison. 

In Chapter 4 some LDPC decoding algorithms designed for AWGNC are presented. 

After the introduction and comparisons of these decoding algorithms, the motivations of our 

work can be seen more obviously. We propose a new decoding approach based on Gradient 

Descent Bit Flipping (GDBF) algorithm. The GDBF algorithm will be adapted to work over 

BSC. This chapter discusses in detail analysis performance of the novel algorithm PGDBF 

over BSC. Also we provide the MUDRI decoder to approach to the better performance. 

Furthermore, performance of these decoders under faulty hardware components and their 

robustness are discussed. The rest of this chapter we introduce implementation of PGDBF 

decoder on hardware.  

Chapter 5 introduces the most dangerous attacks against the McEliece cryptosystem 

reported in the literature. Performances of some LDPC\MDPC codes used in McEliece 

cryptosystem are evaluated. Security and complexity of the McEliece cryptosystem based on 

QC-MDPC and our proposed decoders are evaluated. 

In chapter 6, we will present the conclusions on the proposed decoding algorithms and 

some notions for possible future works. 
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Chapter 2 

McEliece Cryptosystem  

 

Code based cryptography is one of the most promising applications for post quantum 

cryptography. To date, the McEliece cryptosystem is considered as a post-quantum 

cryptographic scheme, i.e., it is believed that to be renitent to quantum computers [32]. The 

McEliece cryptosystem is classified as asymmetric cryptographic system, and relies on the 

hardness of decoding a linear block code without any visible structure for the key. Two keys 

are used in this system, private key and public key, and they are related to the generator 

matrix of a binary linear block code. The important advantage of the McEliece system is its 

fast encryption and decryption procedures, which require significantly lower number of 

operations compared with other system.  

The McEliece cryptosystem depends on employment a huge family of codes, i.e., a 

collection of codes with the same length and dimension, where choice of a code (from the 

set) can be unpredictable. Efficiency of the McEliece system depends on hardness to find the 

solution of the decoding problem for the third part (intruder). 

In McEliece system cryptography, two keys are used: the first (private) key is a 

generator matrix of the code and the second (public) key is a matrix transmitted and assigned 

as a public code, i.e., the code which generated by the public generator matrix. The low cost 

of the encryption and decryption procedures in the McEliece system gives code based system 

a special significance. Furthermore, it can be observed that the speed of these procedures is 

high when compared to other state-of-the-art public key algorithms, like RSA or ECC 

cryptography system. Decoding of a long linear block code, with no information about 

structure of a code, leads to difficult decoding and is known to be an ࣨ࣪ complete problem 

[52], where the classical decoding problem is assumed to be hard on average, i.e., it is 
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difficult to find a codeword of an arbitrary linear code with minimum distance to a given 

vector. Therefore, potential use of error correcting codes have cryptography comes natural. 

Although the McEliece cryptosystem is less complex then other public key systems, there are 

some communications systems where a less complexity is strongly desirable. Thus, simpler 

methods used in practice where were believed to be secure adequate in the sense that no 

possible attacks were investigated. 

2.1. Goppa codes 

McEliece cryptosystem is the first code-based cryptosystem, originally proposed using 

Goppa codes. For appropriate system parameters, McEliece system with Goppa codes still 

remains resistant to the all known cryptanalysis techniques but leads to very large public 

keys. Two main reasons are to use Goppa codes: (i) diversity in choosing the desired code 

gives a large number of potential public keys, and (ii) efficient decoding algorithm capable to 

correct up to a certain number of errors.  

A number of algebraic codes are considered as subfield subcodes of generalized 

Reed-Solomon (GRS). These codes are defined as alternant codes, and include Goppa codes 

and Bose-Chaudhuri-Hocquenghem (BCH) codes. In [53], [54] Goppa introduced a family of 

linear block codes defined as Goppa codes. The Goppa code Γሺܮ, ݃ሺݔሻሻ is defined by Goppa 

polynomial	݃ሺݔሻ, which is a polynomial of degree ݐ	over the extension field	ܨܩሺ݌௠ሻ for	݌	a 

prime, and an accessory subset	ܮ	ofܨܩሺ݌௠ሻ	

݃ሺݔሻ ൌ ݃଴ ൅ ݃ଵݔ ൅ ⋯൅ ݃௧ݔ௧ ൌ෍ ௜݃ݔ௜
௧

௜ୀ଴

, (2.1)

ܮ ൌ ሼߙ଴, ଵߙ … , ௡ିଵሽߙ ⊆ ௠ሻ݌ሺܨܩ , (2.2)

which are not zeros of ݃(ݔ). A Goppa codes that are able to correct ݐ errors is defined as a set 

of vectors ܿ ൌ ሺܿ଴, ܿଵ, … , ܿ௡ିଵሻ over ܨܩሺ݌ሻ, such that  

෍
ܿ௜

ݔ െ ௜ߙ
≡ 0 mod ݃ሺݔሻ.

௡ିଵ

௜ୀ଴

 (2.3)

The set ܮ is called the support of the code. The polynomial ݃ሺݔሻ with degree ൒ 1 is 

said to be irreducible over the field ܨܩሺ2௠ሻ if it cannot be represented as a product of two 

polynomials (with coefficients of	ܨܩሺ2௠)) of nonzero degree. The code is called as 

irreducible Goppa code if the polynomial ݃ሺݔሻ is irreducible, and the code can have 
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maximum length ݊ ൌ  .௠ሻ݌ሺܨܩ ௠ when the support of the code contains all the elements of݌

The parameters of a code are the size ݊, dimension ݇ and minimum distance ݀	where the 

dimension of the code satisfies ݇	൒݊-݉ݐ and the minimum distance of the code satisfies ݀	൒	

 irreducible polynomial generates a various irreducible code, we can ݐ-൅1. Since any degreeݐ

say the number of various irreducible Goppa codes with the same parameters and correction 

capability is very high. For each irreducible polynomial of ݐ degree over ܨܩሺ2௠ሻ there is a 

binary irreducible Goppa code with maximum length ݊=2݉. The matrix of the Goppa codes 

has no intrinsic structure and the parity-check matrix of a Goppa codes has the following 

form 

ࡴ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

ଵ

௚ሺఈబሻ

ଵ

௚ሺఈభሻ
ఈబ

௚ሺఈబሻ

ఈభ
௚ሺఈభሻ

… ଵ

௚ሺఈ೙షభሻ

… ఈ೙షభ
௚ሺఈ೙షభሻ

⋮ ⋮
ఈబ
೟షభ

௚൫ఈబ
೟షభ൯

ఈభ
೟షభ

௚ሺఈభሻ

⋱ ⋮

…
ఈ೙షభ
೟షభ

௚ሺఈ೙షభሻے
ۑ
ۑ
ۑ
ۑ
ې

 . (2.4)

The parity-check matrix of Goppa codes has no essential structure, and thus there is 

no way to expedite its storage. Consequently, a whole parity-check matrix with ݎ	 ∙	 ݊	bits 

needs to be stored. Goppa codes employ a fast polynomial time decoding algorithm [55] and 

are easy to generate but hard to find. Any irreducible polynomial over a finite field ॲ2݉	of	

݊ൌ2݉elements can be used to create a Goppa code, but the generator matrices of Goppa 

codes are nearly random [56]. For any fixed length ݊, there are many different Goppa codes. 

Though the exact number of Goppa codes, given ݊ and ݐ, is not known, Ryan and Fitzpatrick 

[56] found a way to calculate upper bounds, which are exact for some small parameters. For 

example, the upper bound for the number of Goppa codes of length 128 which are able to 

correct at least 10 errors is approximately 1.04 × 1015, while the upper bound for Goppa 

codes of the same length able to correct at least 15 errors is approximately 2.38 × 1025. In 

fact, the number of Goppa codes increases exponentially with the length of the code and the 

degree of the generating polynomial [56].  

2.2. Description of the McEliece cryptosystem 

In the McEliece version of the proposed system, Bob chooses a polynomial of degree ݐ at 

random and verifies that it is irreducible. The probability that a randomly chosen polynomial 

is irreducible is about 1/ݐ. After that, Bob computes his secret key as the ݇	× ݊	systematic 

generator matrix ࡳ of the linear block code over	 ॲ݌.	 In addition, another two randomly 
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matrices are used as parts of the private key of Bob: a dense ݇	× ݇	non-singular “scrambling” 

matrix ࡿ such that the codewords  of  the  public  code  should  appear  random  to  an 

attacker, i.e., sends the chosen generator matrix to another one, and an ݊	× ݊ permutation 

matrix ࡼ to reorder the coordinates. 

The public key is saved in the public directory and any one can get it. Finally the 

public key is given by this form 

ᇱࡳ ൌ ࡿ ∙ ࡳ ∙  (2.5) .ࡼ

So, the matrices ࡼ and ࡿ seek to hide the structure of ࡳ, in the other words, try to 

disguise a decodable linear code in a way that the construction of the code can no longer be 

deduced. The produced public key ࡳ′is used to carry out an encryption procedure on the 

message planned for the receiver Bob and is the generator matrix of a linear code with the 

same rate and minimum distance as that generated by ࡳ. Alice uses the public key from the 

public directory to encrypt the message. The data transmission is assumed to be error-free 

and errors are purposefully injected into a codeword as a part of the encryption process. The 

original message is divided into ݇-bit blocks and the encrypted message ܠ is given by 

ܠ ൌ ܝ ∙ ᇱࡳ ൅ ࢋ ൌ ࢉ ൅  (2.6) ,ࢋ

where ܝ is one of the information blocks and an ࢋ is a local vector added at the transmitter 

and it can be controlled to the weight ݐ and length ݊. If an encrypted message is transmitted 

over the noisy channel and additional error influences on the message, so it is important to 

take into account this influence that decoding algorithm can correct all the errors in order to 

allow the reconstruction of the original message. 

When Bob receives the encrypted message from the channel, he uses an iterative 

inverse procedure to obtain the plaintext. He computes ܠ′	 ൌ 	ܠ	 ∙  ଵ is theିࡼ ଵ whereିࡼ	

inverse of the permutation matrix ࡼ (that coincides with its transpose) 

ᇱܠ ൌ ܠ ∙ ଵିࡼ ൌ ሺܝ	 ∙ 	ࡿ ∙ ࡳ ∙ ࡼ ൅ ଵିࡼሻࢋ ൌ ܝ ∙ ࡿ ∙ ࡳ ൅ ࢋ ∙  ଵ. (2.7)ିࡼ

Therefore, x′ is a codeword of the secret Goppa code chosen by Bob affected by the 

error vector ࢋ	 ∙  ଵ of the positions of theିࡼ Remarkably, the permutation by .ݐ ଵ of weightିࡼ	

errors in the intentional error vector does not lead to change weight of the vector ݐ, in the 

other words, it does not impact on the decoding process to correct the errors. Using 

Patterson’s algorithm, Bob can hence correct the errors and recoverܝᇱ ൌ ܝ ∙  is ܝ and ,܁

obtained from an easily computed through multiplication byିࡿଵ.  
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The cryptography system is secure against adaptive chosen ciphertext attacks CCA2 

[57] (as a strongest security notion) if an attacker has no benefit in deciphering a given 

ciphertext. In addition, it is considered to be indistinguishable in the CCA2-model if an 

attacker has no profit in conclusion for a given ciphertext and two plaintexts which of them 

were encrypted. For example, encryption of the same message twice creates two various 

ciphertexts which can be distinguished to extract the original message as long as it is an 

improbable that the same added positions of error can be repeated for the two messages 

twice. According to an above decryption, the McEliece cryptosystem is not immune for the 

effect of chosen-ciphertext attacks [58]. That means it is unable to achieve the "IND-CCA2 

security". However, [59] and [37] suggested making the system CCA2-secure by using the 

idea of scrambling the message inputs. In the other words, to ruin any relations of two 

dependent messages that can be exploited by an adversary. There are several versions of the 

McEliece cryptosystem which achieve CCA2 security and the ߛ-conversion of Kobara and 

Imai considered as the best candidate for quantum-immune encryption scheme with the best 

information rate [59], [57].  
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Figure 2.1 Original procedure of the McEliece cryptosystem with Goppa codes

 

The McEliece cryptosystem has some advantages as it is remarkably faster than RSA 

two or three orders of magnitude and it is resistant against attack, where there is no efficient 

algorithm to extract the parameters of the Goppa codes from a generator matrix of a 

permutation equivalent code and no chance for brute force attack on the McEliece 

cryptosystem because of the large possibilities for ࡿ ,ࡳ and ࡼ:  
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- Number of irreducible polynomials of degree ݐ	50 = is about 10ଵସଽ for ݊ = 1024. 

- Possible random ݇ × ݇ scrambling matrices ࡿ are 2ହଶସ
మ
for ݇ = 524. 

- Possible ݊ × ݊ permutation matrices ࡼ are 1024! 

For all that, there are main limitations for this system as the large size of the public 

key. Without a doubt, any standard PC can contain millions of such keys and CPUs can 

smoothly treat the McEliece cryptosystem. It is not the case for small devices. The original 

version of the McEliece cryptosystem used Goppa codes with ݊ = 1024, ݇ = 524 and the 

small rate ܴ = 0.5. For comparison, the McEliece uses the public key with 67072 bytes long 

while RSA with equivalent security uses public key with 256 bytes long. Some suggestions 

were made to change McEliece original method [41], [61-63], most of them alternate the 

Goppa codes with other family codes. However, most of them have been subsequently 

broken or inefficient compared to McEliece original system. 

 

2.3. Modifications of McEliece cryptosystem based on LDPC codes 

The classical McEliece cryptosystem based on the Goppa codes remains secure to this date 

but leads to very large public keys. There are a number of ways to overcome the drawbacks 

of the McEliece cryptosystem. They are based on reducing the representation of a linear code 

besides the matrices of the linear transformations. However, this usually leads to serious 

security flaws, since security of a system partially depends on error correction capability of 

Goppa codes. The chosen code families must achieve some conditions to ensure the security: 

(i) the codes family must to be large enough to keep away from any enumeration, (ii) a 

generator matrix of a permutation equivalent code must be obscure that no permit recover the 

secret code from the public code, i.e., does not give any information about the structure of the 

secret code, and (iii) the code has efficient algorithm to correct the codewords, i.e., the 

receiver is able to read the transmitted ciphertext over the unsecure channel. 

We provide a brief overview of state-of-the-art modified McEliece-based 

cryptosystems. One of the modifications for the McEliece cryptography interested on raise an 

immunity of the system by choosing the parameters that would maximize resistance against 

some of known attacks [51], [64], [65]. On the other hand, Niederreiter introduced a 

randomized variant of the McEliece system [21] and proposed using Generalized Reed-

Solomon (GRS) codes instead of Goppa codes, which it was proved in [66] that this choice 

was insecure. In 1994, Sidelnikov proposed employing Reed-Muller codes [63]. His scheme 

was afterwards broken in [34]. In 1996, Janwa and Moreno studied the use of algebraic 
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geometric codes [67], which was broken in [68]. Gaborit proposed using BCH codes in [41] 

and [69] where it was proved that this variant of McEliece cryptosystem can be broken. 

McEliece was modified in [70], [71] by considering quasi-cyclic or quasi-dyadic versions of 

Goppa codes where the key size can be reduced with a factor ݐ ൌ ෨ܱሺ݊ሻ smaller than generic 

Goppa codes. However, the added structure permits a drastic reduction of the number of 

unknowns in algebraic attacks. The kind of these attacks can be prevented by picking smaller 

cyclic or dyadic blocks for these schemes such that number of unknowns of the algebraic 

system will be increased.  

Because of the sparse of the parity check matrix of the LDPC codes, many attempts 

have been studied to exploit this property to overcome those limitations of the first version of 

the McEliece cryptosystem, where their storage sizes increase linearly in the code length.  

The first implementation for random-based LDPC codes with McEliece is proposed in 

[43], where the receiver, Bob, receives the encrypted message from the transmitter, Alice. 

Bob chooses a parity check matrix ࡴ in the set Γ with high cardinality. The matrix ࡴ is a 

sparse matrix with no structural properties, i.e. it is randomly constructed. To disguise the 

construction of the matrix ࡴ, Bob chooses an ݎ	  non-singular random transformation ݎ ×

matrix, ࢀ, and the public key is given by ࡴ′	 ൌ ࢀ	 ∙  keeps the sparse of the ࢀ The matrix .ࡴ

parity check matrix ࡴ, so ࡴ and ࡴ′ describe codes have the same distance properties. The 

impact of the matrix ࢀ on the public key is appearance of many short length cycles in graph 

representations of ࡴ′, which makes it high density matrix, and the attacker Eve is unable to 

exploit the public key to decrypt the secure code. In [43], the authors described that when ࢀ is 

a sparse matrix, then there is a high chance to attack the secure code and recover the private 

key form the public key. Therefore, we need to have a dense ࢀ and dense ࡴ′ to avoid this 

kind of attacks. Actually, these codes do not allow to reduce the key size and the system will 

be unsecure (ࢀ is a sparse), where the dual attack of the secret code is able to entirely break it 

with restricted complexity, unless when some its parameters are guardedly chosen. Because 

of these reasons, the random-based LDPC codes system is no longer vindicated. The main 

problem can be resolved with structured LDPC codes to obtain the sparse public keys. 

The parity check matrix of the QC-LDPC codes as we will see in the Chapter 3, in 

general, can be entirely depicted by a single row of them (as the first row). On the other hand, 

the families of these codes can be modeled with a diversity of rates, even meaningfully larger 

than 0.5. For these purposes, exploit the QC-LDPC to overcome some drawbacks of the first 

attempt must be ensured that neither the public code nor its dual code allow any too sparse 
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representation. In the context of the code-based McEliece cryptosystem and with QC-LDPC 

codes, an interesting and a simple case of the “circulant block” form which is defined as a 

circulant matrices class. A circulant block is completely described by its first row (or 

column). A special class of quasi-cycles codes having the parity-check matrix in the form of a 

single row of circulant blocks. The private key is formed by the sparse parity check matrix ࡴ, 

randomly chosen, having the following form  

ࡴ ൌ …|ଵࡴ|଴ࡴൣ หࡴ௡బିଵ൧ , (2.8) 

where each matrix ࡴ௜, ݅ = 0 … ݊0 ‐1, is a ݌	݌ × circulant matrix given by 

 

௜ࡴ ൌ

ۏ
ێ
ێ
ێ
ۍ
݉଴ ݉ଵ

݉ሺ௣ିଵሻ ݉଴
݉ሺ௣ିଶሻ ݉ሺ௣ିଵሻ

݉ଶ
… ݉ሺ௣ିଵሻ

݉ଵ
… ݉ሺ௣ିଶሻ

݉଴
… ݉ሺ௣ିଷሻ

⋮ ⋮
݉ଵ ݉ଶ

⋮ ⋱ ⋮
݉ଷ … ݉଴ ے

ۑ
ۑ
ۑ
ې

. (2.9) 

The first row of the matrix ࡴ௜, ݅ = 0 … ݊0 ‐1, can be denoted as ݄݅, ݅ = 0 … ݊0 ‐1, 

which contains the positions of symbols 1, where݄௜ ൌ ሺ݉଴,݉ଵ,… ,݉௣ିଵሻ and it can be 

written as݄௜ሺݔሻ ൌ ሺ݉଴ ൅݉ଵݔ ൅⋯൅݉௣ିଵݔ௣ିଵሻ. The matrix ࡴ is quasi-cyclic low density 

parity check code if each ࡴ௜ is sparse. It can be noted that, if all the ݄݅ vectors have disjoint 

sets of differences modulo ݌, the cycles with length-4 in matrix ࡴdisappear in its associated 

Tanner graph. The secret code can be easily constructed by randomly selecting ݊0 vectors ݄݅ 

with such property. This permits us to obtain large families of codes with identical 

parameters [72]. 

The matrix ࡴ has a length ݊	= ݊0·݌, dimension ݇	= ݇0·݌ and redundancy ݌ = ݎ	are 

adopted, where ݊0 is a small integer (e.g., ݊0 = 3, 4), ݇0 =	݊0 -1, and ݌ is a large integer (on 

the order of some thousands), then the code rate is ܴ	=	ሺ݊0 -1ሻ/݊0. When the row and column 

weight of ࡴ௜ is equal to a constant, then the code is regular, otherwise is irregular code. 

Without loss of generality, we can consider that ࡴ௡బିଵ is non-singular (has full rank), so a 

systematic generator matrix (in reduced echelon form) for the code isࡳ ൌ ሾࡼ|ࡵሿ, where ࡵ 

represents the ݇	× ݇	identity matrix and 
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ࡼ ൌ

ۏ
ێ
ێ
ێ
ۍ ൫ࡴ௡బషభ

ିଵ ∙ ଴൯ࡴ
்

൫ࡴ௡బିଵ
ିଵ ∙ ଵ൯ࡴ

்

⋮
൫ࡴ௡బିଵ

ିଵ ∙ ௡బିଶ൯ࡴ
்
ے
ۑ
ۑ
ۑ
ې

	, (2.10)

where superscript ܶdenoted transposition. It is important to select an efficient algorithm to 

calculate the inverse of a circulants matrix ࡴ௡బିଵ
ିଵ  and it can be found in [72].  

Two methods can achieve the desired purposes during QC-LDPC codes: 

 

- Like in the original McEliece cryptosystem, by using permutation equivalent private 

and public codes, and choosing a private code such that it does not admit any too 

sparse representation. 

- By using non-permutation equivalent private and public codes, such that the sparse 

nature of the private code is lost in the public code. 

 

2.3.1. Permutation equivalent private and public codes 

In this system, Bob chooses the private key as a parity-check matrix ࡴ of a QC-LDPC code 

to accomplish the decoding process and correct the secure word with high efficiency. The 

QC-LDPC codes have good error correction capability and it is necessary to correct all the 

intentional errors in the secure codeword. Bob again selects two matrices: ݇	× ݇ non-singular 

random scrambling matrix ࡿ and a random permutation matrix ࡼ, that also considered as his 

secret key, and the public key is given as the first original version except for the fact that they 

used the inverse of ࡿandࡼ, and these procedures do not affect the properties of matrix, 

density and randomness. We have 

ᇱࡳ ൌ ଵିࡿ ∙ ࡳ ∙ ଵିࡼ ൌ ଵିࡿ ∙ ࡳ ∙ (2.11) ,்ࡼ

where ࡳis a the corresponding generator matrix in systematic form, such that ࡴ	 ∙ ࢀࡳ	 ൌ 	૙.  

In the last relation, the private and the public codes are permutation equivalent. In the other 

word, their codewords coincide, except for a permutation of their bits. Of course, the 

permutation equivalent between the private key and the public key admits an Eve to search 

low weight codewords in the dual of the secret code, thus aiming at recoveringࡴ, which can 

be achieved by Information Set Decoding (ISD) algorithms [39], as we will see in Chapter 5.  

The encryption procedure is repeated, i.e., Alice divides the message into blocks with 

length ݇ bits, gets the public key from the public directory, encrypts the message with public 
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key and adds the intentional errors with weight ݐ. The decrypted procedure of this system is 

the same decrypted procedure of the original version. It is noticeable that to keep the QC 

nature in the public matrix, the matrices ࡿ and ࡼmust be designed by ݇0 × ݇0 and ݊0 × ݊0 

blocks of ݌ × ݌ circulants, respectively. Generally, the eavesdropper Eve is unable to 

conclude the matrix ࡴ from familiarity of the public key, and will not be able to correct the 

secure codeword by the efficient LDPC decoding algorithm. Therefore, Eve resorts to use 

some generic decoding algorithm, like ISD to correct the intentional errors.  

2.3.2. Non-permutation equivalent private and public codes 

The permutation equivalent permits the attacker to conclude the parity-check matrix ࡴ, by 

searching for low weight codewords in its dual code that makes the matrix ࡴ is insecure. To 

solve this problem, in [72] introduced the solution through hiding the sparse structure of the 

secret code in a public code whose dual does not contain codewords with too low weight. As 

in the previous system, Bob chooses the private parity check matrix ࡴ and computes the 

corresponding generator matrix ࡳ in the systematic form. The remaining parts of the private 

key are the scrambling matrix ࡿ with a ݇ × ݇ dimensions and another matrix ࡽ is a sparse 

random non-singular transformation matrix with ݊ × ݊ dimensions that the public code 

prevents sparse characteristic matrices. The matrix ࡽ has average row and column weight 

equal to ݉. The matrix ࡿ instead is dense, with average row and column density around 0.5. 

If the matrix ࡿ is sparse, then the average of row and column weight is ݏ≪	݇. 

On the other hand, in the case of QC-LDPC codes, the matrices ࡿ and ࡽ will have 

circulants structure where ࡿ with ݇0 × ݇0 and ࡽ with ݊0 × ݊0 block of ݌ × ݌ circulants, so the 

public matrix preserves the QC nature. The public key is given by  

ᇱࡳ ൌ ଵିࡿ ∙ ࡳ ∙ ଵ. (2.12)ିࡽ

In the case when a suitable CCA2-secure conversion of the system used, then the 

public key ࡳᇱ can be used in the systematic form and the scrambling matrix and permutation 

matrix are eliminate and ࡳᇱ ൌ  .ࡳ

Alice encrypts an intended message ܝ to ܠ ൌ 	ܝ	 ∙ 	′ࡳ	 ൅ 	ࢋ	 ൌ 	ࢉ	 ൅  is an ࢋ where,ࢋ	

intentional errors vector with length ݊ and weight ݐ. In this system, the private key must be 

able to correct a number of errors ݐ<′ݐ. Bob runs the inverse procedure to get the corrected 

codeword as  

	′ܠ ൌ 	ܠ	 ∙ ࡽ	 ൌ ܝ ∙ ଵିࡿ ∙ ࡳ ൅ ࢋ ∙ (2.13) .ࡽ
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It is noticeable, that the codeword is affected by an error vector ࢋ	 ∙  which hasࡽ	

average weightݐ′ൌ	 	ݐ ∙	 ݉.	By an efficient LDPC decoding algorithm, Bob can recover the 

original message after the decoding process and then through multiplication by ࡿ.	

In [73] introduced an efficient class of transformation matrices that have a limited 

propagation effect on the intentional error vectors such that permit to obtain the better 

disguise for the private key into the public one with a controlled error propagation effect. 

The main purpose is avoiding the dual of the public code from containing very low 

weight codewords even when the private code is an LDPC code with very low weight 

codewords in its dual. Let assume that the secret LDPC matrix is ࡴ, which defines a dual 

code with low weight codewords corresponding to its row, so this matrix results the 

codewords with weight row is ܿߩ, whereܿߩ is the row weight of the matrixࡴ, so 

ࡴ ∙ ࢀࡽ ∙ ᇱࡳ	
ࢀ
ൌ ࡴ ∙ ࢀࡽ ∙ ሺିࡿଵ ∙ ࡳ ∙  ଵሻ்ିࡽ

ൌ ࡴ ∙ ࢀࡽ ∙ ሺିࡽଵሻ் ∙ ்ࡳ ∙ 	 ሺିࡿଵሻ் 

ൌ ࡴ ∙ ்ࡳ ∙ ሺିࡿଵሻ் ൌ ૙. 

(2.14)

Therefore, the matrix ࡴᇱ ൌ ࡴ ∙  is a valid parity-check matrix for the public codeࢀࡽ

and this matrix has a more density compared with a matrix ࡴ. The weight of the rows of 

ᇱࡴ ൌ ࡴ ∙ 	ܿߩ ,is about the product of their row and column weights, that isࢀࡽ ∙	݉. In fact, 

when two sparse binary vectors are summed together, it is very likely that the weight of the 

resulting vector is about the sum of their weights. Therefore, if the value of ݉ is properly 

chosen, the minimum weight of the codewords in the dual of the public code can be made 

sufficiently high to make dual code attacks unfeasible. Therefore, Bob must be able to correct 

a number of errors that is about ݉ times larger than the weight ݐ of the intentional errors 

vectors added by Alice.  

Therefore, it is proposed to adapt ࡽ matrices with block diagonal form, in which the 

circulant blocks along the main diagonal have row/column weight ݉	

 

ࡽ ൌ ൦

଴ࡽ ૙
૙ ଵࡽ

૙ ૙
૙ ૙

૙			 ૙
૙ ૙

⋱ 								૙
૙ ௡బିଵࡽ

൪. (2.15)

Due to its low density, matrix ࡽ is among the weakest components of the new system. 

In fact, an attack could be tempted on each of the first ݊଴ െ 1	blocks along the main diagonal, 
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noted by ࡽ௜, ݅ ∈ ሾ0, ݊଴ െ 2ሿ, if ࡽ௜ is known, the attacker could multiply the block in the ݅-th 

column of ࡳ′ by ࡽ௜, thus obtaining the ݅-th column of ିࡿଵ (due to the reduced echelon from 

of [69] (ࡳ. However, such approach would require, at least, ቀ
݌
݉ቁ ∙ ݌ ∙ ݉ binary operations, 

where ݌ ∙ ݉ binary operations have been considered for multiplication byࡽ௜. 

Using LDPC codes instead Goppa codes in the McEliece cryptosystem creates some 

differences that should be taken into account. Error correction capability of Goppa codes 

associated with the Goppa polynomial of degree ݐ	 (can correct the full design number of 

errors), while for LDPC codes is generally unknown. In addition, transformation matrix ࡽ 

has effect on the error correction performance, so design QC-LDPC codes with high error 

correction capability is required. On the other hand, the decoder at the receiver has an 

important role to extract the secure code with high probability. Despite all these procedures to 

guarantee correction the codeword, there is a small probability that Bob fails to recover the 

secret message. There are different methods can be executed to impede that occurrence. 

Because of the huge number of codes that can be achieved by the random-based approaches, 

as random difference families [44], Bob can carefully select QC-LDPC codes which have the 

relatively good properties, rather than the randomly selects the codes. The request 

retransmission can be used when Bob cannot correct the secure word, by sending the request 

to resend the same secure word but with different error positions or with lower weight of the 

intentional error vector ࢋ. An Automatic Repeat Request (ARQ) protocol can allow Alice to 

know whether Bob is able to correct all the errors she has randomly introduced or not. In 

principle, this exposes the system to message-resend attacks, but simple modifications of the 

cryptosystem are known which prevent these attacks without significant drawbacks [59], 

[74]. 

 

2.4. Moderate Density Parity Check (MDPC) codes 

Some kinds of attacks can risk the McEliece cryptosystem either by message attacks based on 

standard decoding algorithms or key recover attacks by finding low weight codewords in the 

dual of the public code, as we will see in Chapter 5. In addition, inappropriate choices of the 

parameters in the case of QC-LDPC maybe lead to non-secure system. Of course, using 

sparse matrices ࡿ and ࡽ allows reducing the encryption and decryption complexity but 

according to the OTD attack which can recover the secret key [69] and Baldi advised to use 

density matrix ࡿ instead sparse matrix to avoid this attack. 
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In [47] it is introduced new method that can protect the system from those attacks. 

Moderate Density Parity Check (MDPC) codes used instead LDPC codes where these codes. 

They have higher weight of rows and columns of the parity check matrix. Transformation 

matrix ࡽ that is used in the case of LDPC codes can be replaced with the permutation 

matrixࡼ, similarly as in the original McEliece with Goppa codes. Increase the density of the 

parity check matrix in the most situations leads to a greatly degraded error correction 

performance when compared to the standard LDPC codes performance. However, MDPC 

codes are still adequately valid to keep from the impressiveness of the standard decoding 

algorithms. The authors in [47] suggested employ Bit Flipping (BF) decoding algorithm to 

correct the intentional error vectors. However, the high weight of the rows ܿߩ in the parity 

check matrix and the highly existence of short-cycles in the Tanner graph maybe lead to an 

increase number of iterations. To decrease the number of iterations, some modifications are 

inserted to the BF decoding algorithm [47].  

There is only one variance between LDPC and MDPC codes where the LDPC codes 

have small constant weight of rows (typically less than 10) while for MDPC codes the weight 

of rows in the scale of	ܱሺඥ݊ log ݊ሻ. In the form of single row of the circulant blocks and for 

regular codes, these codes can be formed as LDPC codes, i.e., QC-MDPC codes and for 

given parameters 0݊ ,݌ andߛ௩ , the number of various random matrices in the form (2.8) is 

 

ܰெ஽௉஼ ൌ
ଵ

௣
ቀ
݌
௩ߛ
ቁ
௡బ

. (2.16)

To keep away from some kinds of attacks in the case of LDPC-code base 

cryptography, it is necessary to avoid presence low weight codewords in the dual code of the 

public code. Eve is able to recover the secret key or a key equivalent to the secret one by 

using ISD techniques (as we will see in Chapter 5). An attacker can find a set of low weight 

codewords in the dual of the public code, and through any decoding algorithm like BP or 

perform syndrome decoding to evaluate the intentional error vector. The row weight value ܿߩ 

should be chosen such that the message recovery and key recovery attacks are of the same 

order of complexity [47]. The ܿߩis selected according to 

  

௖ߩ ൌ ൫1 ൅ ሺ1ሻ൯ඩ݋
݊ ln ݊ lnቀ1 െ ݇ ݊ൗ ቁ

lnቀ݇ ݊ൗ ቁ
. (2.17)
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 The number of errors which can be corrected by the Bit Flipping algorithm is of order  

 

ݐ ൌ ൫1 ൅ ሺ1ሻ൯݋
݊
௖ߩ4

ln ൬ߩ௖ቀ1 െ ݇ ݊ൗ ቁ൰. (2.18)

 

Since the parity check matrix of these codes is already quite dense, then there is no 

need for a transformation matrixࡽ, so a standard permutation matrix can be used, as in the 

original McEliece cryptosystem. In addition, using MDPC code in McEliece cryptosystem 

instead LDPC code considered as a good solution to avoid some kinds of attacks and solve 

the problem how to select parameters ݉ and ݐ to guarantee the security and successful 

decoding process. On the other hand, if the public code is MDPC, it contains moderate 

weight codeword in the dual space of the public code, and if Eve is able to find those 

codewords, than she is also able to decrypt the ciphertext, but the already cited ISD 

techniques (that are always NP), are not able to find moderate weight codewords in 

reasonable time. 

 

2.4.1. Procedure of the MDPC/QC-MDPC code-based McEliece 

Here, a (݊, ܿߩ,ݎ)-QC-MDPC codes are considered, such that the parity-check matrix has the 

form of (2.8), where ݊=݊0 ݌ is the code length, ܿߩ is a row weight of the parity check matrix 

  .݌ =	ݎ and ࡴ

Procedure of the McEliece cryptosystem based on the MDPC/QC-MDPC can be 

described as follows: 

Step 1: a parity check matrix ࡴ is constructed, where ࡴ ∈ ॲଶ
௥ൈ௡ of a ݐ-error 

correction (݊, ܿߩ,ݎ)-QC-MDPC code. The matrix ࡴ considered as a private key in this 

system. The generator matrix ࡳ can be constructed as ࡳ ൌ ሾࡼ|ࡵሿ where ࡳ ∈ ॲଶ
ሺ௡ି௥ሻൈ௡ in row 

reduced echelon form and ࡼ has form of (2.10). The generator matrix ࡳ considered as a 

public key of the McEliece cryptosystem and saved in the public directory. Using QC form of 

MDPC leads to significantly decrease of storage requirements, by storing the first rows of the 

circulant blocks.  

Step 2: Alice uses the public key ࡳ to encrypt the message ݉ ∈ ॲଶ
ሺ௡ି௥ሻ and obtains 

the ciphertext	ݔ ∈ ॲଶ
ሺ௡ሻ, an intentional error vector ݁ ∈ ॲଶ

௡ of wtሺ݁ሻ ൑  which is generated ݐ

randomly and added to the ciphertext. 
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Step 3: by LDPC/MDPC decoding algorithm ψࡴ which specified to the sparse parity-

check matrix ࡴ to refine the ciphertext form the error according to		݉ࡳ ← ψࡴሺ݉ࡳ ൅ ݁ሻ and 

the plaintext ݉ can be obtianed from the first (݊	− ݎ) positions of ݉ࡳ. 

The description of this system does not use the permutation matrix ࡼ and scrambling 

matrixࡿwhich are considered in the original McEliece cryptosystem. The public key matrix ࡳ 

in the systematic form can be used without loss of security according to the CCA2-secure 

conversion [57]. The QC-MDPC variant has a public-key of size (݊ − ݎ) and the MDPC 

variant of size (݊ − ݎ).  

 

2.5. Implementations of McEliece cryptosystems 

The McEliece system rarely used in real world applications because of its large public key 

size.  We here provide some examples of McEliece cryptosystem on embedded hardware and 

software platforms, which illustrate its applicability. 

The McEliece cryptosystem was considered impracticable on such small and 

embedded systems because of the large size of the private and public keys. Almost, all 

devices could only supply a few hundred bytes of RAM and ROM which was a strict 

restriction for application designers. One of the solutions that can be used in the case when 

the public key is too large is retransmission of the public key for each encryption [75]. 

However, this solution has a passive effect on the transmission rate and the speed of the 

encryption procedure. 

The first implementations of the McEliece cryptosystem introduced by [76] on a 

popular 8-bit AVR microcontroller and the Xilinx Spartan-3AN 1400 FPGA. They used the 

code-length 2048 for an estimated 80-bit security where an external memory is used for the 

public key structures, and the private key (parity check matrix) stored in 192 kB Flash 

memory. Another implementation introduced for the same code-length (2048) where spent 

84% of slices and 50% of BRAMs (2700Kb) [77]. 

One of the important implementation of the McEliece cryptosystem was introduced in 

[78]. The low cost implementations that use QC-MDPC codes instead of Goppa codes are 

also presented in this chapter. The implementation is on 8-bit AVR along with the Xilinx 

Virtex-6 XC6VLX240T FPGA. For FPGA implementation, the public and secret key do not 

have to be stored in external memory as it was necessary in previous FPGA implementations 

of McEliece using Goppa codes. Only 4800 and 9600 bits are used for the public and secret 
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key at 80-bits security where in the beginning of the procedure the first row of the key is 

given and by rotating by one bit position of the row yields the next row and so forth. The QC-

MDPC McEliece requires 0.59 k Byte which is only a fraction of the 100.5 k Byte public key 

of [77]. The results of this implementations show that QC-MDPC McEliece is better than 

other currently used public key systems with the same security levels, for more details show 

Table 2.1. and Table 2.2.  

 
 

Table. 2.1 Performance comparison of microcontroller implementations for different public 
encryption schemes 

Scheme Platform Time ms/op Ref 

Goppa code,  
  ,40 = ݐ ,1024 =	݊

62-bit sec. 

Infineon SLE76CF5120P, 16-bit CPU 
Enc@33MHz, 
Dec@33MHz 

 
970 ms, 
690 ms 

[79] 

Goppa code,  
   ,50 = ݐ ,2028 =	݊

102-bit sec. 

Infineon SLE76CF5120P, 16-bit CPU 
Enc@33 MHz, 
Dec@33 MHz 

 
1390 ms, 
1069 ms 

[79] 

Goppa code  
 ,27 = ݐ ,2048 = ݊

 80-bit sec. 

AVR ATxMega 192, 8-bit CPU 
Enc@32MHz, 
Dec@32MHz 

 
450 ms, 
618 ms 

[76] 

QC-MDPC  
 ,84 = ݐ ,9600 =	݊

 80-bit sec. 

AVR ATxmega256A3, 8-bit CPU 
Enc@ 32MHz, 
Dec@ 32MHz 

 
800 ms, 
2700 ms 

[78] 

ECC-P160 (SECG) ATMegal128 @8MHz 
203 ms  

( at 32MHz) 
[76] 

RSA-1024 ATMega128 @8MHz 
20748 ms 

 ( at 32MHz) 
[76] 

 

 

 

Table. 2.2 Performance comparison of FPGA implementations for different public key 
encryption schemes 

Scheme  Platform/ f Time/Op Ref 
Goppa code, 
 =	ݐ ,2048 =	݊	
27, 80-bit sec 

 
Spartan-3AN 1400 FPGA, 

  Enc@150MHz, 
Dec@85MHz 

 
1.07 ms, 
10.82 ms 

[76] 

Goppa code, 
 =	ݐ ,2048 =	݊

50, 102-bit sec 
 

Xilinx Virtex-5, 
Enc@163MHz, 
Dec@163MHz 

 
0.5 ms, 
1.4 ms 

[77] 

QC-MDPC, 
 =	ݐ ,9600 =	݊
84, 80-bit sec 

 
Xilinx Virtex-6, 

Enc@351.3MHz, 
Dec@190.6MHz 

 
0.14 ms, 
0.86 ms 

[78] 

ECC-P160 
(SECG) 

 Spartan-3 1000-4 
5.1ms 

(at 32MHz) 
[76] 

RSA-1024  Spartan-3E 1500-5 51ms [76] 
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Chapter 3 

LDPC Codes and Iterative Decoding 
Algorithms 

Error control coding is one of the most used concepts for increasing the reliability of 

communication transmission and to utilize capacity as much as possible. Shannon in his 

paper mentioned that only the long codes have capability possible to operate near capacity, 

but they are impractical, i.e. it cannot be practically encoded and decoded. In the 1960s, R. 

Gallager invented low-density parity-check (LDPC) codes, which are nowadays known as 

Gallager’s codes [49]. Iterative algorithms also proposed in the Gallager’s original paper 

achieve the capacity approaching performance but these algorithms need complicated 

calculations which make them unusable at that time. In the 1995s MacKay and others 

rediscover these codes [80]. Near-capacity performance of LDPC codes can be achieved in 

practice by decoding algorithms whose complexity is linear in the code length. These codes 

are used in many techniques of communication as encryption and compression. LDPC codes 

have proved their superiority over many other classes of linear block codes. They are used in 

many applications since their ability to correct errors of the received message and low 

decoding complexity is highly desirable in modern communication systems. Some wireless 

and wire-line communications standards that specify LDPC codes are, digital video broadcast 

(DVB-S2), WiMAX wireless (IEEE 802.16e) and 10 gigabit Ethernet (IEEE 802.3an). 

LDPC codes are linear block codes, constructed by sparse parity check matrixࡴ. 

There are many methods to construct matrix ࡴ in order to obtain the best performance and 

simple way to implement encoding and decoding procedures. Structural LDPC codes with 

intermediate block lengths are popular in recent research, noticeably the algebraic 

constructions which are shown to perform within a fraction a dB away from the Shannon 

limit. Several of these LDPC code constructions include the Reed-Solomon based codes [81], 
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array-based codes [82], as well as Quasi-Cyclic (QC) LDPC codes [83]. These codes share 

the same property that their parity check matrices can be written as a two-dimensional array 

of component matrices of equal size, each of which is a permutation matrix. The main 

advantage of these constructions principle compared to randomly constructed codes is that 

their encoding procedure is easier to implement.  

The decoding algorithms of the LDPC codes fall into highly intensive research arena. 

The decoding algorithms of the LDPC codes are iterative and depend on graph which consists 

of check and variable nodes [84]. Under an iterative algorithm and when the noise level is 

below some fixed point, the bit error probability for LDPC codes (when length tends to 

infinity) is arbitrary small [49].  

Generally, decoding algorithms are divided into two types: (i) soft decision as a Sum 

Product algorithm (SPA) which requires high complexity to obtain the best performance [60], 

[48] and (ii) a hard decision as Bit Flipping (BF) algorithm with very low complexity but it 

has poor performance [49]. All researches are seeking to reduce its computations complexity 

for platform implementations. 

3.1. Linear Block Codes 

We assume that transmitted message is presented in a binary format and before transmission 

the data bits are organized in order to be able to correct errors. A block coding is one of 

mechanisms for adding redundancy. Basically with the linear block codes, there are two types 

of streams (sequences) when sending messages over noisy channel by error correcting codes. 

A sequence of ܭ data bits is mapped into ܰ code bits where ܰ>ܭ. The sequence bits ܭ is 

called a data word while the corresponding sequence of ܰ bits is called a codeword. An 

encoder at transmitter can add (ܰ−ܭ) bits to the original message as redundant bits by 

different ways. The systematic codes are especially interesting, where the block comprising ܭ 

information bits is not changed in the codeword, and ܰ-ܭ control bits are added, forming a 

codeword of length ܰ. This code is denoted as (ܰ,	ܭ) code and code rate is ܴ=ܭ/ܰ. The 

receiver recovers the message information by inverse operation. This procedure is called a 

decoding process and after the error correction, an information message is recovered.  

Block code has capability for correcting a noisy codeword, this ability has been 

attributed to minimum distance ݀݉݅݊. This parameter denotes the minimum number of 

components that are changed by the noisy channel in such a way that converts the original 

codeword into another codeword of the same code. 
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Figure 3.1. The basic channel coding model 

 

In the other words, the error detection capability of the block code is determined by 

the minimum distance. If the number of errors is less than (݀݉݅݊−1) codeword cannot be 

converted into another codeword caused by the noisy channel. Linear code block can correct 

any noisy codeword with error pattern of weight	ݐ ൌ ሺ݀௠௜௡ہ െ 1ሻ 2⁄  .ۂ

A linear code may be described in terms of a generator matrixࡳor in term of a parity 

check matrixࡴ. LDPC codes are a class of linear block codes whose parity-check matrix has 

1% or fewer 1 entries. If only binary codes are considered code can be described as a ܭ-

dimensional subspace C of vector space ॲଶ
ே of binary ܰ-tuple over the finite field ॲଶ. Given a 

 C is obtained by∋ܠ a codeword ,ࡳgenerator matrixܰ×ܭ

ܠ ൌ ݉ ∙ ࡳ , (3.1)

where ݉ is a binary row vector containing ܭ bits. Accordingly, an (ܰ-ܭ)×ܰ parity check 

matrixࡴ forms the null space C┴ so that ࡴ ∙ ்ࡳ ൌ ૙, where (T) denotes transposition and the 

dimension of matrix 0 (all element equal zero) are (ܰ-ܭ)×ܰ. It is obvious, because the 

subspaces are orthogonal each other. Therefore, instead of using generator matrix, at the 

receiving end, from the parity-check matrix ࡴshould be found and verify to the received 

vector is in the subspace orthogonal to the subspace generated byࡴ. Solution of the above 

equation is very simple if matrix ࡳ corresponds to a systematic code. In most designs, we 

need to transform ࡴ into ࡳ by using a transition matrix ࡼ such ࡴ ൌ ሾࡼ|ࡵሿand ࡳ ൌ ሾࡵ|்ࡼሿ, 

where ࡵis a unity matrix with dimensions (ܰ-ܭ)(	ܰ-ܭ). 

Let a vector (ܰݔ ,...,2ݔ ,1ݔ) = ܠ denote a codeword of C if and only if ܠ ∙ ࢀࡴ ൌ ૙which 

means that every codeword ܠ is orthogonal to the rows of ࡴ, where ்ࡴ is the transpose of ࡴ. 

In addition, a parity check matrix ࡴ is used to verify if any ܰ binary vector is a codeword that 

belongs to C or not. For decoding the received word ܡ	 that can be any vector of the	2ܰ, the 
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following vector should be foundܛ ൌ ܡ ∙ 	.்ࡴ It is called syndrome, dimension are 1(ܰ-ܭ) 

and its element are parity checks. We can consider that variable nodes are the bits of the 

codewords. For example, if C is the binary linear code with the parity-check matrix 

0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0

=

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

H , (3.2)

then C		is the set of all binary 8-tuples that satisfy the four following equations expressed in 

the matrix ࡴ	

ଵݏ ൌ ଶݎ ⊕ ସݎ ⊕ ହݎ ⊕ ݎ଼  

ଶݏ	 ൌ ଵݎ ⊕ ଶݎ ⊕ ଷݎ ⊕  ଺ݎ

ଷݏ ൌ ଷݎ ଺ݎ	⊕ ⊕ ଻ݎ ⊕ ݎ଼  

ସݏ	 ൌ ଵݎ ⊕ ସݎ ⊕ ହݎ ⊕  ଻ݎ

 

(3.3) 

 

To simplify the implementation on hardware and lower power consumption, a linear 

block LDPC codes are used. Considering that LDPC codes the best solution for many 

applications in the communication systems which used coding for error correction as 

transmission mode forward error correction (FEC), they have met a lot of interest to 

overcome their imperfection. In the next section, we introduce the basic concepts regarding 

LDPC codes, how they are constructed, encoded and in particular how they decoded with the 

various classifications. 

 
 
3.2. Preliminaries 

Following the known graphical representation of convolutional codes. Tanner in his 

pioneering work observed that it is possible to represent LDPC codes by a bipartite graph, 

later called Tanner graph or TG for brevity [84]. He introduced the principle of equivalence 

between the construction of codes by matrix ࡴ and graphs and that the characteristics of a 

graph can be utilized to extract bounds on the minimum distance of the code. Each variable 

node corresponds to a code symbol of the codeword and each check node represents one 

check equation. The TG introduces an efficient way to describe iterative decoding algorithms 

for LDPC codes. 
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Let TG denote the Tanner graph of an (ܰ,ܭ) binary LDPC code C of rate ܴ=ܭ/	ܰ, as a 

linear block code, which consists of a set of ܰ variable nodes ܸ(ܶܩ) ={2 ,1,…, ܰ} and a set 

of ܯ check nodes C(ܶܩ)={ܯ ,…,2 ,1}. The parity check matrix ࡴ is the bi-adjacency matrix 

of TGsince it is composed by ܭ linearly independent row vectors.  
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Figure 3.2. The TG for the parity check matrix (8,4)ࡴ given in (3.2) 

 

Two nodes in TG are neighbors if there is an edge between them. An edge 

corresponds to the value 1 in the parity check matrixࡴ.  The degree of a node ݒ is the number 

of its neighbors and is denoted as ݒߛ. Graph TG is said to be ߛ-variable node regular if all 

variable nodes in ܸ	have the same degree, ߛ =ݒߛ. The degree of a check node ܿ is ܿߩ, and ρ-

check-regular codes are defined analogously. We denote regular codes by (ߩ ,ߛ). Otherwise, 

it’s an irregular LDPC code. Degree of variable node ݒߛ determines abilityof the LDPC codes 

to correct the errors. With high ݒߛ, node ݒ	 can receive more information from the its 

neighbors, which has a great opportunity for error correction during the decoding process. On 

the other hand, a check node can with high ܿߩ helps its neighbors, variable nodes, which have 

low ݒߛ by sending useful information. For finite block length, the performances of irregular 

LDPC codes are better than those of regular LDPC codes in waterfall region. The sets of 

neighbors of nodes ݒ and ܿ are denoted as ௩ and ௖, respectively. The length of the shortest 

cycles in the graph is called girth ݃	of TG. The presence of cycles in the Tanner graph is not 

avoidable due to the restriction on the block length. All mechanisms for construction of 

LDPC codes seek to maximize the girth as much as possible. The negative impact of the short 

cycles in the bipartite graph is degraded when length of codes increases. However, avoidance 

of short cycles can be available for proportionately short-length LDPC codes when these 

codes are designed with an appropriate construction.  
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3.3. Encoding of LDPC codes 

The LDPC codes can achieve near-capacity performance with iterative message-passing 

decoding and sufficiently long block sizes for random or pseudorandom constructions. An 

algebraic construction is one of the methods for constructing LDPC codes. This type is used 

for relatively short or medium long codes. When an application uses these code lengths, then 

it is preferred to use an algebraic construction since is no difference between them in the 

performance. However, there are many additional reasons that algebraic method is desirable 

in many applications. Construction principles of LDPC codes are evaluated in terms of error 

performance, as well as complexity of encoding and decoding operations, with is especially 

pronounced applications such as magnetic recording and optical communications. The 

performance of LDPC codes depends on the code constructions and decoding algorithms. 

There are many methods and each of them attempt to overcome problems typical for this 

class of codes such as short cycles and trapping set. Here we give short explanation for some 

constructions of LDPC codes which are used in our numerical results.  

3.3.1. Progressive edge growth construction 

The important LDPC code class is made by PEG method [85]. In this procedure the 

constructed graph created by adequately connecting variable and check nodes in an edge-by-

edge manner. Based on a number of variable and check nodes and a variable - node - degree 

sequence, the optimum connection at the time is established. That way, the graph is updated 

an edge by an edge, taking care that girth is as large as possible. As a result, regular and 

irregular PEG LDPC codes can be produced. This is a very simple and efficient algorithm 

that provides flexibility in codeword length and code rate. In the improved algorithm IPEG 

[86], a check node is selected which maintains the highest degree of connectivity for the 

newly created cycles to the rest of the graph. That way these cycles will receive a great 

amount of information from the rest of the graph which will decrease their negative impact. 

The PEG LDPC codes are known to have the error capability performance as good as random 

codes in spite of they are composed by algebraic construction. 

First, we determine ܰ variable nodes ܸ= {ܰݒ ,...,3ݒ ,2ݒ,1ݒ}and ܯ parity check nodes 

C ={ܿ1,ܿ2, ܿ3, …,ܿܯ}. Then, the degree distribution is defined as 
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ሻݔሺߣ ൌ ෍ ௜ݔ௜ߣ
ఊౣ ౗౮

௜ஹଶ

, (3.4) 

where ߣ௜ presents fraction of edges emanating from variable nodes of degree ݅and ߛmax is a 

maximum degree of variable nodes. After that, by using density evolution, variable node 

degree sequence ߛ௩ ൌ ሼߛଵ, ,ଶߛ ,ଷߛ … ,  ேሽ has to be determined in non-decreasing orderߛ

ሼߛଵ ൑ ଶߛ ൑ ଷߛ ൑ ⋯ ൑  ேሽ.The rest of the procedure will be explained in one illustrativeߛ

example. 

For example, ܰ	=6, 3=ܯ and degree distribution ߣሺݔሻ ൌ ݔ0.8576 ൅  ଶ, byݔ0.14237

using density evolution [87] we get five variable nodes with degree two and one variable 

node with degree three. To illustrate the procedure of PEG we assume the PEG arrives at 

variable node 6ݒto establish its edges, bipartite graph is given in Figure 3.3 and the parity 

check matrix is 

ܪ ൌ ൥
1 1 0
1 0 1
0 1 1

				
1 1 0
1 0 0
0 1 0

൩. (3.5) 
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Figure 3.3. Bipartite graph before PEG procedure 

Here, we define ௩೔
௟  as the set contains all of the check nodes reached by a sub-graph 

spreading from variable node ݒ௜ within depth ݈. The complementary of that set is donated 

asഥ௩೔
௟

, i.e., C\௩೔
௟ , as shown in this example. Now for variable node 6ݒ, the PEG will put the 

connections from 6ݒ to three check nodes. 

Stage 1: At the first connection step (݇=1), PEG directly selects a check node which 

has the minimum degree. In this case we have two check nodes with degree of three (ܿ2 and 
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ܿ3), PEG randomly selects one of them, and we suppose the PEG adds the first edge to ܿ2, as 

shown in Figure 3.4 (depth ݈=0). 

Stage 2: At the second connection step (݇=2), PEG algorithm starts from 6ݒ as 

follows: the variable 6ݒhas only one connection to ܿ2so during depth (0): 

{௩ల
଴ =ሼܿଶሽ,ഥ௩ల

଴
ൌ ሼܿଵ, ܿଷሽ }, 

PEG moves to depth (݈=1):  

{௩ల
ଵ =ሼܿଵ, ܿଶ, ܿଷሽ,ഥ௩ల

ଵ
ൌ ∅}, 

the PEG algorithm calculates summation of check nodes in termination of every depth, so if 

summation is equal to ܯ, then PEG algorithm stops. In this case, the summation is equal to 

three, so PEG returns to the previous depth and selects from ഥ௩ల
௟ିଵ

 check nodes one that has 

minimum degree (ܿ3), Figure 3.4. 

 

Stage 3: As a third connection (݇=3), like the previous stage, PEG algorithm adds an 

edge to c1 and resulting parity check matrix is:  

 

ࡴ ൌ ൥
1 1 0
1 0 1
0 1 1

				
1 1 0
1 0 1
0 1 1

൩. (3.6) 
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Figure 3.4. The second stage from procedure PEG for 6ݒ	
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Figure 3.5. Illustration of parity-check matrix of PEGReg (504, 252) LDPC code; the blue dots 
correspond to positions of the value 1 in the parity check matrix 

 

3.3.2. Quasi cyclic construction 

The QC LDPC block codes are desirable to use in many applications. The main advantage of 

this construction  principle  compared  to  randomly  constructed  codes and PEG codes  is  

that  QC-LDPC  encoding  procedure  is  easier  to implement using simple shift registers due 

to the regularity in their parity-check matrices. These codes consist of circulant submatrices, 

which could be either based on the identity matrix or a smaller random matrix. The parity 

check matrixࡴof a QC-LDPC code is constructed by a concatenation of circulant submatrices 

as shown in the following 

2 1

2 1

1 1 2 1 1 1

1

,

k

k

j j j k j

a a a

b ab a b a b

b ab a b a b

I I I I

I I I I

I I I I
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

    

 
 
   
 
  




    


 
(3.7) 

where ݔܫ represent an identity matrix which rows are cyclically shifted to the left by positions 

 and ߩ = (ܽ)and parameters ܽ and ܾ are two nonzero elements with multiplicative orders o ,ݔ

o(ܾ) = ߛ, respectively. The parameters ܽ and ܾ should be chosen from Galois field GF(݉), 

where ݉ is a prime number. For example, by choosing ݉=31, ܽ=2, ܾ=5, which produces 

regular code with parameters 5=ߩ and 3= ߛ and ܰ=155. It is so-called Tanner code (155,64). 

The regular and irregular codes can be designed by this form. Commonly, these codes suffer 

from restrictions on code length and rate with keeping the good performance. The main 
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problem lies in changing structure of parity check matrix to avoid that the number of ones 

increases which creates the short cycles. There are many methods to construct QC LDPC 

codes with different forms, and every method tries to overcome disadvantages mentioned 

above. Some of them are seeking to design LDPC codes with flexible code rate and length 

[35]. 

 

Figure 3.6. Illustration of parity-check matrix of Tanner (155, 64) LDPC code; the blue dots correspond 
to positions of the value 1 in the parity check matrix 

The parity-check matrices obtained by PEG and QC code construction principles are 

illustrated in Figure 2.5 and Figure 2.6, respectively, where each 1 in the respective parity-

check matrix is shown as a dot and each 0 is shown as a white space. The encoding procedure 

of QC LDPC codes is easier to implement and it can be implemented by using a series of 

shift registers, which allows its complexity to be proportional to code length [88]. 

3.3.3. Encoding process 

Most of algorithms that design the parity check matrix ࡴdo not give this matrix with the 

systematic form suitable for directly deriving the generator matrix	ࡳ ൌ ሾࡼ	ࡵ|௄ሿ. Instead, the 

Gaussian elimination (modulo-2) is used for converting the resulting matrix ࡴ into a 

systematic formࡴᇱ ൌ ሾࡵேି௄்ࡼሿ, where ࡵேି௄is the identity submatrix of dimension (ܰ−ܭ) × 

 to systematic form is (ܰ3)ࡴ In general, the computation cost of reducing the matrix .(ܭ−ܰ)

and for actual encoding is (ܰ2).  The matrix ࡴcan be written as ࡴ ൌ ሾ࡭	࡮ሿ, where ࡭ is square  

non-singular matrix submatrix with dimension ܰ−ܭ. Result of ሾ࡭	࡮ሿ ∗  ଵ equivalents to theି࡭

systematic form of ࡴ. This procedure is useful for PEG LDPC codes. The main problem for 
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some of constructions is that the matrix ࡭ is singular, and then cannot be obtained the 

generator matrix.    

It is useful to exploit the sparseness of matrix ࡴ to reduce the cost complexity for 

encoding. In [83] the authors presented method (encoding by erasure decoding) that used the 

encoding process is exactly the same as decoding for transmission over the binary erasure 

channel (BEC) after supposing that bit nodes corresponding to parity bits are assumed to be 

unknown. However, success of this method is restricted to the case when matrix ࡴ is free of 

stopping sets [89].   

Here we investigate the approach presented by [90]. This approach is called a Greedy 

Permutation Algorithm which converts the ࡴmatrix by permutation rows and columns into 

two forms: approximate lower triangular (ALT) form and systematic approximate lower 

triangular (SALT) form. The first work was presented by Richardson et al in [91]. The 

computations cost for encoding is (ܰ+݄2), where ݄ is called a gap of the matrix ࡴand 

depends on its type and dimensions. This means that complexity of the encoding increases 

almost linearly with the code length if ݄≪ܰ. The gap is defined as the number of rows which 

decrease dimensions of the triangular submatrix ࢀ. The value of ݄	 cannot be determined 

directly especially for large code lengths, so empirically we can test all possibilities such that 

the gap takes the smallest value.    

The first step is transforming the parity check matrix ࡴ into ࡴଵ with ALT form as 

illustrated in Figure 3.7. The main task is to obtain the diagonal structure for sub-matrixࢀ. 

The column with the minimum ݊݅݉ߛ in the matrix ࡴ is selected to permute with the column of 

index ܰof ࡴଵ. If there is more than one column with ݊݅݉ߛ or the matrix ࡴ is a regular code, 

then the selection can be random. Then ݊݅݉ߛ positions of ones for this column are appeared at 

the right-down of ࡴଵby permutation of rows. This column is excluded from any next 

procedure and the current ࢀ submatrix arises to up from the row index ܯ-݄. Now all columns 

left of the column (1,..., ܰ‐1) are used for formation the submatrix ࢀ by searching the 

columns with the minimum weight on or above the main diagonal of ࢀ to facilitate the 

procedure. By permutation the columns and rows, the procedure continues until we reach the 

first row with the main diagonal of the matrix ࢀ. During the converting from ࡴ to ࡴଵ, all 

permutations of the columns are saved to relocate bit-positions of the codeword. Then ALT 

form is obtained.   
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Figure 3.7. Approximate lower triangular (ALT) form 

The second step is converting the ࡴଵ ALT form to the matrix ࡴଶ with the SALT form 

presented in Figure 3.8.Cancelling all ones in the submatrix ࡱ is performed by adding rows 

from the submatrix ࢀ and by Gaussian elimination over ࡰ and࡯. This creates identity 

submatrixࡰ′. The gap ݄ may be reduced during Gaussian elimination such that produces some 

linearly dependent rows at the bottom of the matrix which are eliminated from the matrix. 	
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Figure 3.8. Systematic approximate lower triangular (SALT) form 
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3.3.3.1. Example of Greedy Permutation Algorithm 
 

We give simple example for this method and we use QC LDPC code with dimension ܰ=21, 

 ଶwith SALTࡴ ଵ with ALT form and ݄=1 and Matrixࡴ Matrix .(3 ,2) = (ܿߩ ,ݒߛ) and 14=	ܯ

form and ݄=0. 

  1     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0     1     0     0  
  0     1     0     0     0     0     0     1     0     0     0     0    

=H

 0     0     0     0     0     0     0     1     0
  0     0     1     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0     1
  0     0     0     1     0     0     0     0     0     1     0     0     0     0     1     0     0     0     0     0     0
  0     0     0     0     1     0     0     0     0     0     1     0     0     0     0     1     0     0     0     0     0
  0     0     0     0     0     1     0     0     0     0     0     1     0     0     0     0     1     0     0     0     0
  0     0     0     0     0     0     1     0     0     0     0     0     1     0     0     0     0     1     0     0     0
  0     0     1     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0     0     1     0
  0     0     0     1     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0     0     1
  0     0     0     0     1     0     0     0     0     0     0     0     1     0     1     0     0     0     0     0     0
  0     0     0     0     0     1     0     0     0     0     0     0     0     1     0     1     0     0     0     0     0
  0     0     0     0     0     0     1     1     0     0     0     0     0     0     0     0     1     0     0     0     0
  1     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0     0     1     0     0     0
  0     1     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0     0     1     0     0

,
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  1     0     0     0     0     1     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0  
  1     0     0     0     0     0     0     1     0     1     0     0   

=H

  0     0     0     0     0     0     0     0     0
  0     0     1     0     0     0     0     1     0     0     1     0     0     0     0     0     0     0     0     0     0
  0     0     0     1     0     0     1     0     0     0     0     1     0     0     0     0     0     0     0     0     0
  0     0     0     0     0     0     1     0     0     1     0     0     1     0     0     0     0     0     0     0     0
  0     1     0     0     0     0     0     0     0     0     0     1     0     1     0     0     0     0     0     0     0
  0     0     0     0     1     0     0     0     0     0     1     0     0     0     1     0     0     0     0     0     0
  0     0     0     1     1     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0
  0     1     0     0     0     1     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0
  0     0     0     0     0     0     0     0     1     0     0     0     0     0     0     1     0     1     0     0     0
  0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     1     0     1     0     0
  0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0     1     1     0
  0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     1     1
  0     0     1     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0     1

,
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  1    0    0     0     0     1     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0  
  1     0     0     0     0     0     0     1     0     1     0     0     

=H

0     0     0     0     0     0     0     0     0
  0     0     1     0     0     0     0     1     0     0     1     0     0     0     0     0     0     0     0     0     0
  0     0     0     1     0     0     1     0     0     0     0     1     0     0     0     0     0     0     0     0     0
  0     0     0     0     0     0     1     0     0     1     0     0     1     0     0     0     0     0     0     0     0
  0     1     0     0     0     0     0     0     0     0     0     1     0     1     0     0     0     0     0     0     0
  0     0     0     0     1     0     0     0     0     0     1     0     0     0     1     0     0     0     0     0     0
  0     0     0     1     1     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0
  0     1     0     0     0     1     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0
  0     0     0     0     0     0     0     0     1     0     0     0     0     0     0     1     0     1     0     0     0
  0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     1     0     1     0     0
  0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0     1     1     0
  0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     1     1
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The transmitted codeword ܠ is divided into three pieces 1݌ ,ݑ and 2݌.  According to 

the parity check condition	ࡴ ∙ ்ܠ ൌ ૙, equivalently the condition can be rewritten as: 

࡭ ∙ ்ݑ ൅ ࡮ ∙ ଵ݌
் ൅ ࢀ ∙ ଶ݌

் ൌ 0 , (3.8) 

where ݑ represents a sequence of ܭ information bits and 1݌ denoted the first parity bits with 

size ݄ and can be determined directly by multiplication with submatrix ࡯′	as	݌ଵ ൌ ݑ ∙  .ᇱ்࡯

The last part 2݌ of the codeword can be determined by back-substitution [91] as 

ଶሺ݈ሻ݌ ൌ෍࡭௟,௝ ∙ ௝ݑ ൅෍࡮௟,௝ ∙ ଵሺ݆ሻ݌ ൅෍ࢀ௟,௝ ∙ ଶሺ݆ሻ݌
௟ିଵ

௝ୀଵ

௛

௝ୀଵ

௞

௟ୀଵ

, (3.9) 

where ݌ଶ ൌ ሼ݌ଶሺ1ሻ, …,ଶሺ2ሻ݌ , ܯଶሺ݌ െ ݄ሻሽ. 

It should be noted that for any regular LDPC code where ߛ	2 =, the gap is always ݄=0 

and complexity of the encoding is totally linear cost with the code length. 

 
3.4. Decoding of LDPC codes 

The error correction capability of LDPC codes depends on two elements: construction of the 

parity check matrix ࡴ and an optimal decoding algorithm. Let assume that a codeword 

ܠ ൌ ሺݔଵ, ,ଶݔ … , ேሻݔ 	∈ ܡis transmitted over a noisy channel and is received as a vector ܥ ൌ

ሺݕଵ, …,ଶݕ ,  ො is the maximum aܠ ேሻ. The optimal decision rule used to determine the estimateݕ

posteriori (MAP) decoding rule, which basically selects a codeword ܠ ∈  that maximizes the ܥ

posteriori probability	Prሺܠ|ܡሻ ൌ ∏ Prሺݕ௜|ݔ௜ሻ௜∈௏ , i.e., ܠො ൌ argmaxܠ∈஼ Pr	ሺܡ|ܠሻ. The MAP 

decoding problem can be reduced to maximum likelihood (ML) decoding problem under 

assumption that all codewords are equally likely to be transmitted.  

Message Passing (MP) decoders have a significant attribute such that their procedure 

is comfortably described over a bipartite graph. For an infinite code length and assuming that 

the Tanner graph is a cycle-free or has a tree structure, the Belief-Propagation (BP) algorithm 

proposed by Gallager is considered as the optimal iterative decoding algorithm with linear 

complexity. 

During MP decoding messages are exchanged between a set of variable nodes ܸ and a 

set of check nodes C along edges of the Tanner graph, in order to calculate a posteriori 

probability of a codeword bit associated to each variable node. Two update functions are used 

in MP decoders, check node update function which updates the output messages of the check 
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nodes and variable node update function which updates the output messages of the variable 

nodes. These functions are symmetric functions on the incoming messages. This procedure is 

carried out until either ܠො is a codeword or maximum number of iterations is reached.  

In an MP algorithm, nodes along edges of the TG iteratively exchange the messages 

and every node uses incoming messages from its neighbors to calculate outgoing messages. 

These nodes carry out local decoding operations along the edges of the TG, e.g., calculations 

at a particular node are performed independent of the comprehensive structure of the code. In 

addition, the computations are distributed, i.e., computations are performed by all nodes in the 

graph and so an effective decoder implementation can be realized. The number of messages 

exchanged in an iteration of a message passing decoder is the same as the number of edges in 

the TG; a sparser TG means fewer computations. 

Only in the first iteration, the incoming messages at the variable nodes which are 

received from the channel, are immediately passed along the edges to the related neighboring 

check nodes and there no extrinsic messages from the check nodes in the first iteration. Every 

check node carries out the local decoding operations to determine the outgoing messages 

according to the incoming messages received from the neighboring variable nodes. After that 

outgoing messages from the check nodes are sent back to the related variable nodes and 

variable nodes perform the local decoding operations to determine the outgoing messages 

depending on the incoming messages received from the neighboring check nodes. The 

complete iteration is defined when the extrinsic message has passed in both directions along 

every edge. After every complete iteration the estimated codeword ܠො௟ is tested if it is valid 

codeword or not by calculating the syndrome. The decoding process continues if the result is 

a negative until maximum number of iteration is reached or the valid codeword is found.  

We suppose input sequence to the MP decoder is defined by 

௖௛ߤ ൌ ሺߤ௖௛ଵ, ,௖௛ଶߤ … , ,௜ݒ௟ሺߤ ௖௛ேሻ. Letߤ ௝ܿሻbe an extrinsic message passed by a variable node 

௟ሺߤ to the neighboring check node ݆ܿ in the ݈-th iteration and ݅ݒ ௝ܿ,  ௜ሻ the extrinsic messageݒ

passed by a check node ݆ܿ to the neighboring variable node ݒ௜ in the l-th iteration. Let 

ሺሺݒ௜ሻ, \௜ሻݒ௟൫ሺߤand ݅ݒ ௜ሻ denote a set of all incoming messages to the variable nodeݒ ௝ܿ,  ௜൯ݒ

denote a set of all incoming messages to variable node ݅ݒ except from check node ݆ܿ. Sets 

൫൫ ௝ܿ൯, ௝ܿ൯ and ߤ௟൫൫ ௝ܿ൯\ݒ௜, ௝ܿ൯ can be clarified in a similar manner.   

Two functions are required to complete the decoding process: variable update function 

	ܿݐ݂ܿ to update the extrinsic message to the check node and check update function ݒݐ݂ܿ to 

update the extrinsic message to the variable node, where: 
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,௜ݒ௟ାଵ൫ߤ ௝ܿ൯ ൌ ௩ݐ݂ܿ ቀߤ௖௛௜, \௜ሻݒ௟൫ሺߤ ௝ܿ, ௜൯ቁݒ , (3.10) 

௟ାଵ൫ߤ ௝ܿ, ௜൯ݒ ൌ ௖ݐ݂ܿ ቀߤ௟൫൫ ௝ܿ൯\ݒ௜, ௝ܿ൯ቁ . (3.11) 

After each complete iteration ݈ at the variable node ݅ݒ, a posteriori information for each 

variable node is computed as 

෤௩೔ߤ ൌ ௖௛௜ߤ ൅෍ߤ௟ሺሺݒ௜ሻ,  ௜ሻ, (3.12)ݒ

and a bit value is estimated by 

ො௜ݔ
௟ ൌ ቐ

0 if ෤௩೔ߤ ൏ 0
1 ifߤ෤௩೔ ൐ 0
signሺߤ௖௛௜ሻotherwise

, (3.13) 

where the sign function outputs a 0 if the sign of the argument is positive, and a 1 if it is 

negative. 

The MP decoder converges if an estimated codeword ܠො௟ for some number of iteration ݈ 

is a valid codeword, i.e. ݈ݏൌ0 and the decoding failed if not, i.e. ݈ݏൌ1, where ݏ௟ ൌ

ሺݏଵ
௟ , ଶݏ

௟ , … , ெݏ
௟ ሻis a syndrome vector calculated as, multiplying the temporarily decoded bit 

sequence ܠො௟ with the transpose of the ࡴ, i.e., ݏ௟ ൌ  The MP algorithm runs until a valid .்ࡴො௟ܠ

codeword is found or the maximum number of iteration is reached.  

The MP decoder is an optimal (i.e. maximum likelihood ML decoding) for those 

codes whose graph is cycles free otherwise is a sub-optimal due to closed paths (cycles) in the 

graph. So, if the codes have cycles then the MP decoder will perform close to ML decoder. 

Furthermore, the overall decoding complexity is linear with the code length.   
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Figure 3.9. Passed messages over TG for MP decoder at iteration ݈ 

 
3.4.1. Belief Propagation Algorithm 

The Belief Propagation (BP) algorithm, also known as Sum-Product Algorithm (SPA), is 

considered to be one of the most important algorithm in field of an error correction and 

represents the state-of-the art algorithm for decoding of LDPC codes. This algorithm belongs 

to a class of MP algorithms, where the messages passed between nodes along the edges are 

probabilities, i.e., this algorithm runs in the probability domain and intends to find the most 

probable transmitted codeword at every decoding iteration until reaches to the valid 

codeword. BP algorithm estimates a posteriori probability of each message symbol as a 

function of the received signal, the code information, expressed in the case of LDPC codes as 

parity equations, and the channel attributes. The BP also works in the log likelihood ratio 

(LLR) domain for numerical stability and to reduce the complexity calculations of the 

probabilistic approach where the value of the check node is determine by multiplication of 

probabilities for 0 and 1 in the probability domain. The operations are converted to 

summation in LLR domain where the messages are real-valued. Here we consider BP 

algorithm in LLR domain.   

The priori information in LLR domain is given by 

௖௛௜ߤ ൌ log ቆ
Prሺݕ௜|ݔ௜ ൌ 0ሻ

Prሺݕ௜|ݔ௜ ൌ 1ሻ
ቇ , (3.14)
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for the Binary Symmetric Channel (BSC) we can write 

௖௛௜ߤ ൌ ቐ
log ቀଵିఈ

ఈ
ቁ if ௜ݕ ൌ 0

log ቀ ఈ
ଵିఈ

ቁ if ௜ݕ ൌ 1
, (3.15)

where ߙ is a value of crossover probability in BSC and for AWGN we have  ߤ௖௛௜ ൌ
ଶ௬೔
ఙమ

 where 

 .degree ߛ be a variable node with a ݒ is a variance of a zero-mean Gaussian process. Let 2ߪ

Hence, 1-ߛ incoming messages to variable node ݒ are needed to determine an extrinsic 

message from node ݒ and these messages can be defined asሺߤଵ, ,ଶߤ … ,  ܿ ఊೡିଵሻ. Similarly, letߤ

be a check node with a degree ߩ. Similarly, 1-ߩ incoming messages to ܿare required to 

calculate an extrinsic message from node ܿ and defined as ሺߤଵ, ,ଶߤ … ,  ఘ೎ିଵሻ. The updateߤ

functions of the BP decoder are given as follows  

,௖௛௜ߤ௩൫ݐ݂ܿ ,ଵߤ	 ,ଶߤ	 … , ఊೡିଵ൯ߤ ൌ ௖௛௜ߤ ൅ ෍ ௝ߤ

ఊೡିଵ

௝ୀଵ

, (3.16)

,ଵߤ	௖൫ݐ݂ܿ ,ଶߤ	 … , ఘ೎ିଵ൯ߤ	 ൌ ෑ sign൫ߤ௝൯ ∙ ∅ ቎෍ ∅ሺ|ߤ௜|ሻ

ఘ೎ିଵ

௝ୀଵ

቏

ఘ೎ିଵ

௝ୀଵ

  

ൌ 2	 tanhିଵ ቌෑ tanh ቀ
௝ߤ
2
ቁ

ఘ೎ିଵ

௝ୀଵ

ቍ , (3.17)

where  ∅ሺݔሻ ൌ െ log ቀtanh ቀ
௫

ଶ
ቁቁ and sign denotes the standard signum function.	

The BP algorithm is a powerful algorithm with high error correction capability, but its 

applicability in practice is limited, due to its complexity and low throughput. In any event, the 

presence of cycles of relatively short lengths in the Tanner graph cannot be avoided, which 

leads to degradation of BP performance. Performance degradation of BP decoder is visible at 

some fixed point of channel error probability which is called the error floor phenomenon. This 

event can be noticed when Frame Error Rate (FER) curve slowly changes its tendency while 

the Signal-to-Noise (SNR) takes adequately large value. BP decoder at the error floor region 

cannot reach to arbitrary low error probability. Regardless of these drawbacks, the BP 

algorithm is significant and over the years there were some attempts to reduce computations 

complexity of the decoder in the LLR domain. The central idea concentrates about 
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simplification the check node updating function of messages, and leads to a much simpler 

Min-Sum (MS) algorithm. Although, the Min-Sum (MS) algorithm has lower complexity than 

BP, there is a significantly gap between their performances. However, ߣ-min decoding [92] is 

algorithm such tries to decrease the gap between BP and min-sum algorithms and sometimes 

offers the same performance. The complexity of λ-min decoding is lower than the complexity 

of the BP decoder. Another algorithm for that aims to reduce the performance gap is the offset 

min-sum decoder proposed by Chen et al [93]. The offset parameter seeks to reduce the 

overestimate of the outgoing message which is calculated by check node updating function. 

There are methods to pick this parameter [93] and could be determined or could be changed 

as a function of the SNR.  

A number ways are presented which try to reduce the complexity of procedures in the 

standard BP algorithm, and also computation cost, while preserving the performance up to 

certain level. Here we present a brief survey of simplified BP decoding algorithms. 

3.4.2. Reduced Complexity Decoders 

The largest values of the function ∅ሺݔሻ depend on the minimum values 	of	ݔ, so the function 

 that calculates an extrinsic message received by a variable node depends on the ܿݐ݂ܿ

minimum absolute value of the incoming messages to the check node. We assume the vector 

   :can be approximated as   ܿݐ݂ܿ smallest absolute value, then the ߣ is the [λݐ	,…,2ݐ	,1ݐ]

,ଵߤ	௖൫ݐ݂ܿ ,ଶߤ	 … , ఘ೎ିଵ൯ߤ	 ൎ ቌෑ sign൫ߤ௝൯

ఘ೎ିଵ

௝ୀଵ

ቍ ∅ሾ∅ሺ|ݐଵ|ሻ ൅ ∅ሺ|ݐଶ|ሻ ൅ ⋯൅ ∅ሺ|ݐఒ|ሻሿ, (3.18)

 this algorithm is called ߣ-min algorithm where ܿߩ>ߣ.	 

Min-sum algorithm also approximates the function ݂ܿܿݐin such a way thattakes only 

the minimum absolute value which corresponds to the largest magnitude of the incoming 

messages. The check-node update function of the MS decoder is given by 

,ଵߤ	௖൫ݐ݂ܿ ,ଶߤ	 … , ఘ೎ିଵ൯ߤ	 ൎ ቌෑ sign൫ߤ௝൯

ఘ೎ିଵ

௝ୀଵ

ቍ min
௝∈ሼଵ,…,ఘ೎ିଵሽ

൫หߤ௝ห൯. (3.19) 

The gap between the standard BP and the min-sum decoders is large specifically in the 

low to mid SNR regions, but its complexity is lower than BP algorithm. One important 

algorithm which narrows the gap is offset min-sum algorithm [93]. The update function of the 
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check node is modified by inserting one factor to reduce an excessively high estimate of the 

extrinsic message from a check node using the min-sum algorithm. This factor is called an 

offset or a correction factor. The modified function is given by 

,ଵߤ	௖൫ݐ݂ܿ ,ଶߤ	 … , ఘ೎ିଵ൯ߤ	 ൌ ቌෑ sign൫ߤ௝൯

ఘ೎ିଵ

௝ୀଵ

ቍmax ൬ min
௝∈ሼଵ,…,ఘ೎ିଵሽ

൫หߤ௝ห൯ െ ,ߟ 0൰. (3.20) 

It can be noted from ݂ܿܿݐ	 that an extrinsic message is zero if the magnitude of an 

incoming message is less than offset factor ߟ. There are many methods to determine value of 

this factor that assume that it could be fixed or code dependent. In the second case the offset 

factor value can be obtained by a brute force simulation. 

On the other hand, the authors in [94] proposed a very simple and powerful self-

correction algorithm for the min-sum decoding of LDPC codes. In that algorithm, an update 

variable function is modified by erasing unreliable messages, while the check node update 

function is the same as in the min-sum algorithm. The basic idea is track sign changes of a 

variable node message in the two consecutive iterations and deletes forces this message to 0 if 

a change is detected. After updating the extrinsic check messages ሺ݆ܿ,	  at iteration ݈ and	ሻ݅ݒ

determine a posteriori informationߤ෤௩೔, the extrinsic variable messages are calculated as: 

 

,௜ݒ௟൫ߤ ௝ܿ൯
୲୫୮

ൌ ෤௩೔ߤ െ ௟൫ߤ ௝ܿ, ௜൯ݒ , (3.21) 

,௜ݒ௟൫ߤ ௝ܿ൯ ൌ ቊߤ
௟൫ݒ௜, ௝ܿ൯

୲୫୮
ifsgn ቀߤ௟൫ݒ௜, ௝ܿ൯

୲୫୮
ቁ ൌ sgn ቀߤ௟ିଵ൫ݒ௜, ௝ܿ൯ቁ

0 otherwise
	. (3.22) 

When the message ߤ௟ାଵ൫ݒ௜, ௝ܿ൯ takes a zero value and arrives to the check nod to have 

both negative and positive signs in the next iteration we update the new variable node 

message byߤ௟ାଵ൫ݒ௜, ௝ܿ൯ ൌ ,௜ݒ௟ାଵ൫ߤ ௝ܿ൯
୲୫୮

.   

3.4.3. Gallager A\B decoder 

Gallager A\B algorithm is a hard decision iterative decoder. In spite of its simplicity, it 

belongs to the class of MP decoders. Gallager A\B decoder is a sub-optimal decoder for BSC 

channel with binary format.  

Gallager-B decoder is a hard decision decoder, which means that messages passed 

between nodes in Tanner graph are binary. The small range of values makes this decoder as a 
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hard decision, as opposite to a soft decision decoder which consumes a wide range of values. 

The procedure of Gallager-B decoder is a follows:  

The input of the Gallager-B decoder is defined by ࢟ൌ	 ሼ1ݕ,	 	,…,2ݕ  ሽas a binaryܰݕ

received signal. The update check function ݂ܿܿݐ is given by:                                             

,ଵߤ	௖൫ݐ݂ܿ ,ଶߤ	 … , ఘ೎ିଵ൯ߤ ൌ ቌ෍ ௝ߤ

ఘ೎ିଵ

௝ୀଵ

ቍmod 2 , (3.23)

and the update variable function is defined as:  

,ଵߤ	௩൫ݐ݂ܿ ,ଶߤ	 … , ఊೡିଵ൯ߤ	 ൌ

ە
ۖ
۔

ۖ
1ۓ if ෍ ௝ߤ ൒ ܾ௩,௟

ఊೡିଵ

௝ୀଵ

0				if		ߛ௩ െ 1 െ෍ ௝ߤ ൑ ܾ௩,௟
ఊೡିଵ

௝ୀଵ

௩otherwiseݕ

			, (3.24)

where ܾݒ, represents a threshold of the majority voter function in the variable ݒ, which in 

general can depend on iteration ݈-th and should be greater than (1‐ݒߛ)/2 and smaller than ݒߛ.	

After predefine number of iterations the final decision of transmitted bit is made on of the 

basis of majority of its estimate (݅ݒ,	݆ܿ). 

In a special case, when the threshold ܾݒ,is fixed at	ܾݒൌ1‐ݒߛ for all iterations and all 

variable nodes. Worth mentioning that Gallager-B decoder is more powerful than algorithm-

A while for ݒߛൌ3, both algorithms have the same performance. 

Performance of this algorithm is lower in both the waterfall and the error regions 

compared with BP. The error correction capability of regular 3=ߛ LDPC codes on the BSC 

decoded under the Gallager A\B algorithm has been analyzed in [95], [96]. We can 

summarize their results. For ݃≥10, where ݃ is the girth of the Tanner graph representation of 

a code, Gallager A\B can correct all error patterns with up to (݃/2-1) errors in the at most ݃/2 

iterations. This means that there is a relation between capability error correction and girth 

when ݃≥10 under Gallager A\B algorithm. However, when ݃≤ 8 it was shown that the girth is 

not sufficient condition for assurance correcting the errors with weight (݃/2-1). 

The Figure 3.10 and Figure 3.11 represent FER performance on Tanner code (155,64) 

by passing decoding algorithms over BSC and AWGNC, respectively. 
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Figure 3.10. FER performance on Tanner code (155,64) by passing decoding algorithms over BSC

 

Figure 3.11. FER performance on Tanner code (155,64) by passing decoding algorithms over AWGN
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Chapter 4 

Improvement of the Bit-Flipping 
Algorithm and Faulty Decoder 

All attempts for achieving the better balance between complexity of LDPC decoder and error 

performance, launched from two opposite directions: the first direction aims to diminish the 

high complexity of BP decoding with maintaining the high performance as much as possible 

as the mentioned algorithms in Chapter 3. The second direction aims to improve performance 

of hard-decision decoding to be closed to BP performance. In our research we follow the 

second direction. 

There are many differences between high and low complexity decoding algorithms. 

High-complexity decoding algorithms such as Believe Propagation (BP) algorithm can 

correct more errors created by the channel noise, and thus, they should be used when the 

complexity and computation time is not important. Low-complexity decoding algorithms, 

however, are more attractive when we demand the fast decoders for high-throughput systems 

or delay-sensitive applications. Low-complexity decoding algorithms have two main 

disadvantages. First, they have an inferior threshold of decoding compared to high-

complexity algorithms so, to ensure the better performance, a lower code rate should be used. 

Second, because of their relatively poor performance, some decoding algorithms need large 

number of iterations to obtain a wanted bit or frame error rate.  

Bit flipping algorithms are the fastest, least complex and easy to implement in 

hardware. Original BF decoding was introduced by Gallager in his seminal work. The BF 

decoders are hard-decision decoders and their performance gap can be significantly wider 

compared to for example the Gallager A\B. BF algorithm is a rather simple because its 

procedure only requires calculation the number of unsatisfied check nodes for every bit in 
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code, which can be done by the logical operations. Based on the specified threshold for each 

bit, the bit is flipped if number of unsatisfied check nodes is larger than the threshold.  

We begin by introducing some algorithms designed for the Additive White Gaussian 

Noise Channels (AWGNCs). These algorithms depend on the real values of the received 

signal to approach the better performance with lower computations cost. Our proposed 

algorithm is derived from Gradient Descent Bit Flipping (GDBF) algorithm which is designed 

only for an AWGNC [100]. By inserting some modifications on this algorithm, we can 

optimize this algorithm for BSC with sufficient performance. The optimization is performed 

by analyzing some of harmful trapping sets in the TG.   

4.1. Bit flipping algorithm 

Bit flipping BF is a simple iterative algorithm and it is classified with the hard decoding 

algorithms. In the BF algorithm the number of satisfied and unsatisfied check nodes that are 

connected to the certain variable node is determined and compared with a predefined 

threshold. The threshold is designed to optimize the error performance. Let ߰ୱ௟ሺݒሻ denote a 

number of satisfied check nodes and ߰୳ୱ௟ ሺݒሻ the number of unsatisfied check nodes, that are 

connected to variable node ݒ. The check node ܿ is satisfied if ݏ௖௟ିଵ ൌ 0 and unsatisfied if 

௖௟ିଵݏ ൌ 1 before a new iteration ݈. When ߰୳ୱ௟ ሺݒሻ ൐ ∆௩ then the value of the variable node is 

flipped, where ∆ݒ is a threshold for each variable node ݒ and it can be empirically selected to 

obtain the better performance and in general it could be selected as 2/ݒߛ. The procedure is 

repeated until all parity check equations are satisfied or a determined maximum number of 

iterations is reached. The BF decoder is given in Algorithm 0. 

In recent years, there are a number of improvements of the BF algorithm. Many of 

these algorithms depend on joining the bit-flip decision with the received symbols where the 

bit is represented in bipolar form [+1,-1]. Adding the received symbols in the bit-flip 

decisions improves performance of the decoding. The most of previous modifications of the 

BF algorithm, including some kind of reliability information of the received symbols in their 

decoding decisions, are designed for the AWGNC or any soft information channel.  
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Algorithm 0 Parallel Bit Flipping Algorithm over BSC 

Input: ࢟                                                                                                                  received word 

ො௩ݔ : ܸ∋ݒ∀
ሺ଴ሻ 	⟵  ௩ݕ

ሺ଴ሻ࢙ 	← 	 	ܿ∀ቀ்ܪሺ଴ሻܠ ∈ ܥ ∶ 	 ௖ݏ
ሺ଴ሻ 	←	⊕௨∈೎ ො௨ݔ

ሺ௟ሻቁcalculate the syndrome	

݈=0   

while ࢙ሺ଴ሻ ് ૙and ݈≤ ܮdo  
Compute ߰୳ୱ௟ :ܸ∋ݒ∀ ሺݒሻ 
 1=ݒ
while ݒ	൑	ܰ	do 

            if ߰୳ୱ௟ ሺݒሻ ൐
ఊೡ
ଶ

then 

ො௩ݔ
ሺ௟ାଵሻ 	← ො௩ݔ	⊕1

ሺ௟ሻ                             flip bit 
else  

ො௩ݔ
ሺ௟ାଵሻ 	← ො௩ݔ

ሺ௟ሻ 
end if 

ݒ ← ݒ ൅ 1 
end while 

ሺ௟ାଵሻ࢙ 	← 	  syndrome check     ்ܪሺ௟ାଵሻܠ
݈ ← ݈ ൅ 1 

end while 

Output: ܠොሺ௟ሻ 
 

4.2. Weighted Bit Flipping algorithm and modified   

Kou et al introduced the Weighted Bit-Flipping (WBF) algorithm [97]. In this algorithm a 

magnitude of the received symbol is used as a simple measure of the reliability of a received 

symbol. The checksums for each check node is weighted by the minimum magnitude of the 

received symbols which participate in the same check node. The bit-flip decision is 

determined by summation all weighted syndrome of check nodes, which are connected to the 

same bit (variable node). This summation can be defined as an estimation criterion of 

reliability the symbol. The bit with minimum estimation criterion value is selected to be 

flipped. The estimation criterion in the WBF algorithm, can be chosen in such a way that only 

one bit is flipped during a iteration, which slowdowns the convergence. The WBF algorithm 

significantly increases the complexity of computations as the minimum value estimation is a 

global function, which means that it is carried out over all variable nodes.  

We assume the message ࣑ ൌ ሺ߯ଵ, ߯ଶ, … , ߯ேሻ is transmitted in the bipolar format 

߯௩ ൌ ∓1across a noisy channel that adds a vector of independent, identically distributed 

Gaussian noise,࢔, to the message. At the receiver, a vector of samples,ࣁ ൌ ሺߟଵ, ,ଶߟ … ,  ேሻ, isߟ
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obtained and given by ࣁ ൌ ࣑ ൅  ௩ denote the value of the sample associatedߟ where ߯௩ and ,࢔

with variable node ݒ. 

As we said that improvement of the BF algorithm can be achieved by taking into 

account the reliability of the received samples. In weighted bit flipping algorithm WBF for 

AWGNC, an information reliability of the received sample can be considered by its 

magnitude|ߟ௩|. The reliability information is determined for each check node by selecting the 

minimum reliability of the variable nodes which are connected to a particular check node. 

Information reliability for each check node ܿߚcan be defined as:  

௖ߚ ≜ ሼminሼ|ߟ௩|ሽ ݒ	: ∈ ௖ሽ. 

An estimated sample at the beginning of the decoding process is defined by ߯̂௩
ሺ଴ሻ ൌ signሺߟ௩ሻ 

while an inversion function∆௩
ሺ௟ሻ is given by the sum of the weighted bipolar syndromes and 

can be defined as: 

∆௩
ሺ௟ሻሺ࣑ෝ, ሻࣁ ≜ ෍ ௖ߚ ෑ ߯̂௨

ሺ௟ሻ

௨∈೎௖∈ೡ

. (4.1) 

This function gives the measure of invalidness of symbol assignment on ݒ and the sign of an 

estimated bit ߯̂௩
ሺ௟ሻ is flipped if ∆௩

ሺ௟ሻሺ࣑, ሻࣁ ൌ ܾሺ௟ሻ. The threshold is defined as 

ܾሺ௟ሻ ൌ min൫∆ሺ௟ሻሺ࣑ෝ,  ,	ሻ൯ࣁ

while ∆ሺ௟ሻሺ࣑, ሻࣁ ൌ ቀ∆ଵ
ሺ௟ሻሺ࣑ෝ, ,ሻࣁ ∆ଶ

ሺ௟ሻሺ࣑ෝ, …,ሻࣁ , ∆ே
ሺ௟ሻሺ࣑ෝ,    .ሻቁࣁ

Zhang et al modified the WBF algorithm and added another term to the last 

summation [98]. In MWBF, a term is added to the inversion function which depicts the effect 

of the received symbol. For AWGNC if reliability of the symbol is denoted as |ߟ௩|, represent 

the absolute value of the received symbol, we have the following criterion function: 

∆௩
ሺ௟ሻሺ࣑ෝ, ሻࣁ ≜ ෍ ௖ߚ ෑ ߯̂௨

ሺ௟ሻ ൅ .ߙ |௩ߟ|
௨∈೎௖∈ೡ

, (4.2) 

where the weighting factor ߙ is a positive real number optimized for different signal-to-noise 

ratios [98]. 

Performance of MWBF is better than WBF but has the same problem of the high 

computation complexity, which is the negative side paid for the performance improvement. 

Another flipping algorithm is presented by Jiang et al [99]. In that paper, improvement of 

MWBF is made by taking into account that reliability of checksums involving this bit should 
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exclude the bit itself if its reliability is the minimum. In the other word, remedies the update 

of the check message in the min-sum algorithm. IMWBF algorithm demands additional 

computational complexity before decoding iterations.  

The WBF, MWBF and IMWBF are a single-bit flipping algorithms and need a large 

number of iterations during the decoding process to reach the valid codeword. Wadayama et 

al designed a new formulation for bit-flipping decoding based on the gradient descent model 

[100]. The GDBF decoding algorithm is designed to correct the errors over AWGNs as 

shown in Figure 4.1. This model is optimized for maximum likelihood ML decoding problem 

by combining the correlation of received samples with the syndromes. This model is called 

the objective function. The gradient descent inversion function for each bit is based on the 

partial derivative of the objective function. The error performance of GDBF algorithm is 

superior compared to the WBF, MWBF and IMWBF algorithms especially if the number of 

allowed iteration is limited to a small number. To reduce the number of iterations during 

GDBF decoding, the authors of GDBF modified the condition for bit-flipping. After 

specifying an inversion threshold, all bits are flipped if their inversion functions are smaller 

than this threshold.  

Most of the proposed algorithms improve original BF algorithm, but they depend on 

the soft information from a channel. Miladinovic and Fossorier introduced a new algorithm 

Probabilistic BF (PBF) on the BSC [101]. In their algorithm, a probabilistic parameter ݌ is 

used to convert the BF algorithm from the determinism to the probabilism. It uses an addition 

condition for bit-flip decision such that the bit is flipped if number of unsatisfied check sums 

is greater than the predetermined threshold, but the flipping will occur only with some 

probability 1≥݌. Probabilistic values of ݌ may be increased during decoding process with a 

certain step. For ߛ	3 = a significantly improvement is obtained and possible improvement 

quickly decreases as ߛ increases. PBF algorithm is designed for practical LDPC codes are 

represented by Tanner graphs which contain cycles. Because of the probabilistic nature of 

PBF algorithm the convergence of the decoding process is delayed. 

Recently, a new class of algorithms is designed to improve BF decoding on the BSC 

in [102]. These algorithms use two bits to represent variable node and another two bits to 

represent check node and are called two-bit bit flipping (TBBF) algorithms. For variable 

node, an additional bit can refer to strength of a variable node and the algorithms may 

decrease its strength based on a combination of satisfied and unsatisfied check nodes. For 

check node, an additional bit can refer to its reliability. In an efficient manner for failure 
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analysis of these algorithms, a concatenation of TBBF algorithms is used to give excellent 

improvement and a good performance complexity tradeoff has been proposed. 

 

4.3. Gradient Descent Bit flipping algorithm 

 

 

Figure 4.1. Simple telecommunication model for AWGNC using GDBF decoder

 

The BF algorithm can be seen as a process to minimize a hidden objective function 

with certain number of iterations. An objective function is designed to converge to the correct 

codeword with low complexity. The main idea behind the GDBF algorithm is combination 

two decoding processes. The first process is maximum likelihood (ML) decoding and the 

second process is sum of the bipolar syndromes of ࣑ෝ. The ML decoding problem for an 

AWGNC is process for finding an estimated codeword at the particular iteration which gives 

the largest correlation to a given received signal ࣁ. In the other words, ML decoding aims to 

find ࣑ෝ∈ܥ that maximizes the correlation 

ෝ࣑ ൌ argmax
஼∋࣑

෍ ߯̂௨ߟ௨

ே

௨ୀଵ

. (4.3) 

Actually, finding a set of all possible messages must subject to the parity constraint 

and this is a complexity method. One of the simple methods to solve ML decoding problem is 

joint it with the second process as a penalty term, so an objective function for GDBF 

algorithm can be defined as   

݂ሺ௟ሻሺ࣑ෝ, ሻࣁ ≜ ෍߯̂௩
ሺ௟ሻߟ௩ ൅෍ ෑ ߯̂௨

ሺ௟ሻ

௨∈೎

ெ

௥ୀଵ

ே

௩ୀଵ

, (4.4) 

i c t 

r

'i ,ˆ { 1, 1}N R    
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where ࣑ෝ ∈ ሼെ1	 ൅ 1ሽே and it is noticeable that the second term is maximized when ࣑ෝ ∈  ,ܥ

∑ ∏ ߯̂௨௨∈೎
ெ
௥ୀଵ ൌ ෝ࣑ i.e. all syndromes are equal to +1, and when ,ܯ ∉  at least one of the ܥ

syndromes is equal to -1 due to parity breach. An objective function is a nonlinear function 

and has many local maxima as shown in Figure 4.2. Wadayama in [100] defined an inversion 

function as 

∆௩
ሺ௟ሻሺ࣑ෝ, ሻࣁ ൌ ߯̂௨

ሺ௟ሻ ݂ߜ
ሺ௟ሻሺ࣑ෝ, ሻࣁ

௨̂߯ߜ
ሺ௟ሻ ൌ ߯̂௩

ሺ௟ሻߟ௩ ൅ ෍ ෑ ߯̂௨
ሺ௟ሻ

௨∈೎௖∈ೡ

, (4.5) 

i.e. move direction and position of the guess toward the objective function. An iteratively 

procedure for GDBF algorithm with respect to each symbol for convergence of the codeword, 

flips the sign of bits for which ∆௩
ሺ௟ሻሺ࣑ෝ, ሻࣁ ൌ ܾሺ௟ሻ. It can be noted that GDBF algorithm tries to 

maximize an objective function during iterations in a gradient ascent manner. An objective 

function can be used as a tool to describe the decoding process. In each iteration, maybe only 

a single bit is flipped corresponding to the condition. Wadayama [100] introduced a 

MultiGDBF algorithm in order to increase the speed of algorithm such that the bits are 

flipped in parallel, i.e., every bit is flipped whose inverse function value is higher than the 

threshold operation. To increase the decoding speed and to improve the stability, a sign of 

any bit ߯̂௩
ሺ௟ሻ is changed if ∆௩

ሺ௟ሻሺ࣑ෝ, ሻࣁ ൏  ൏0 is a threshold parameter. Worthߠ where ,ߠ

mentioning that procedure of GDBF gets stuck at the certain local maximum, i.e., decoder 

cannot converge to a correct codeword even if the number of iterations tends to infinity. 

There are many mechanisms to escape from the local maximum and to approach to the global 

maximum by inserting a random perturbation in the inversion function [103]. 

 

Figure 4.2. Convergence behavior and escape from local max
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The GDBF decoding is in way soft-decision decoding and to make the decisions, 

required real addition operations to compute an inversion function. It is well known that a real 

addition operation is much more complex than a logical operation, the computational 

complexities of GDBF decoding are dominated by the total number of real additions needed 

to decode a received sequence. In our proposed algorithm we optimize GDBF algorithm to 

work over BSC and most computations can be done by a logical operations. 

4.4. Optimize GDBF algorithm to the BSC 

To adapt GDBF for BSC, we first rewrite the polar based inverse function in a binary form. 

Let ܠ ൌ ሺݔଵ, ,ଶݔ … ,  that is transmitted over a BSC with crossover ܥ ேሻ denote a codeword ofݔ

probability ߙ and let ܡ ൌ ሼݕଵ, ,ଶݕ … ,  ேሽ is be a vector received by a decoder from BSCݕ

where ܡ ൌ 	ܠ ⊕ ܍ and܍	 ൌ ሺ݁ଵ, ݁ଶ, … , ݁ேሻ denotes the error pattern introduced by the BSC, 

and ⊕ is the component-wise modulo-two sum.  Let ߯̂௩
ሺ௟ሻ ൌ 1 െ ௩ݔ2

ሺ௟ሻ and ߟ௩ ൌ 1 െ  ௩, byݕ2

using modul-2 arithmetic, the inverse function can be written into: 

 

∆௩
ሺ௟ሻሺܠො, ሻܡ ൌ 2 െ 2ቀݔො௩

ሺ௟ሻ ⊕ ௩ቁݕ ൅ ௩ߛ െ 2 ෍ ໄݔො௨
ሺ௟ሻ

௨∈೎௖∈ೡ

. (4.6) 

This equation has constant terms and variable terms, as we have above mentioned that 

GDBF algorithm tries to maximize an inverse function and because of the negative values of 

the some variable terms, the modified inverse function (MIF) can be rewritten for BSC, 

where the above expression is minimized by maximization of the following modified inverse 

function 

Λ௩
ሺ௟ሻሺܠො, ሻܡ ൌ 1 െ 0.5 ∙ ∆௩

ሺ௟ሻሺܠො,  ሻܡ

	ൌ 	 ො௩ݔ
ሺ௟ሻ ⊕ ௩ݕ ൅ ෍ ໄݔො௨

ሺ௟ሻ

௨∈೎௖∈ೡ

െ 0.5 ∙  .௩ߛ
(4.7) 

For ߛ- variable-regular codes, the modified inverse function can be simplified as 

Λ௩
ሺ௟ሻሺܠො, ሻܡ ൌ ො௩ݔ

ሺ௟ሻ ⊕ ௩ݕ ൅ ෍ ໄݔො௨
ሺ௟ሻ

௨∈೎

.
௖∈ೡ

 (4.8) 

The values of the modified inverse function MIF are always positive and the range of 

these values is restricted to the set of positive integer values [0, 1+ߛ]. To minimize the 
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expression (4.6), the maximum value of the modified inverse function is found at the ݈-th 

iteration, and let ܾሺ௟ሻ ൌ max௩ሺΛ௩
ሺ௟ሻሺܠො,  ሻሻ be the largest value and as a counterpart, inܡ

AWGNC the minimum value, min௩ሺ ∆ሺ௟ሻሺ࣑ෝ,  ሻሻ, is found. The bit with maximum value isࣁ

flipped to get the convergence, the new decoder over BSC is given in Algorithm 1. Many 

variable nodes maybe satisfy the relation Λ௩
ሺ௟ሻሺܠො, ሻܡ ൌ ܾሺ௟ሻ, which has a negative impact on the 

algorithm convergence. If the flipping decision was wrong, the “flip messages” would 

propagate through the short cycles in TG. According to (4.8), for a (ߩ ,ߛ)-regular code it is 

necessary to calculate the parities in the neighboring check nodes, by using ߩ-input exclusive 

or (XOR) gates. An additional two-input XOR gate is required to check if the ݒ-th bit of the 

current estimate is the same as the bit initially estimated from the channel. The value of 

Λ௩
ሺ௟ሻሺܠො,  ሻ is equal to the number of non-zero outputs of the XOR gates. Combinational logicܡ

at the variable nodes is based on a set of majority logic (MAJ) gates, each having 1+ߛ inputs 

and adaptable threshold. The output of the ݒ-th MAJ gate in the ݈-th iteration is non-zero only 

if the modified inverse function value is equal to the threshold valueܾሺ௟ሻ. This threshold is the 

same for every variable node as presented in Figure 4.3 (a). The Figure 4.3 shows the variable 

node processing unit for GDBF and BF algorithms over BSC, it can be noted that both 

algorithms have the same structure and for GDBF there is two-input XOR logic gate to XOR 

an initial estimated value of the bit with current estimated value for the same bit.  

How threshold adaptation can be realized? 

The threshold can be adapted in hardware by three steps for every iteration: 

 The threshold may be initialized to the maximum valueܾሺ௟ሻ ൌ ߛ ൅ 1. 

 The threshold is decremented when all MAJ logic gate outputs are zeros, for instance 

by using N-input OR gate. 

 When the output of at least one MAJ gate is not equal to zero, the threshold is set 

toܾሺ௟ሻ ൌ max௩ ቀΛ௩
ሺ௟ሻሺܠො,   .ሻቁܡ

This is important for hardware implementation, as it significantly simplifies global operation 

of maximization of MIF. 

It seems interesting to investigate the performance of GDBF in binary model and 

compare it with GDBF in way soft-decision. We can compute the probability of error by this 

relation ߙ ൌ  ሻሻas a performance measure from BSC to AWGNC where	0_ܰ/ܾ_ܧሺ√ሺܿݎ݂݁	0.5
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 is a complementary error function [104]. Figure 4.4 shows important performance ݂ܿݎ݁

degradation for the GDBF in hard-decision compared with GDBF in soft-decision. 
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Figure 4.3. Illustration of the variable node processing unit for (a) GDBF and (b) BF algorithms over BSC

Figure 4.4 (a). Performance of GDBF in soft and 
hard ways for Tanner (155,64), 100=ܮ 

Figure 4.4 (b). FER performance comparison for the 
(155,64) Tanner code, 100=ܮ 
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Algorithm 1 GDBF Algorithm over BSC 

Input: ܡ                                                                                                                 received word 

ො௩ݔ : ܸ∋ݒ∀
ሺ଴ሻ 	⟵  ௩ݕ

ሺ଴ሻ࢙ 	← 	 	ܿ∀ቀ்ܪሺ଴ሻܠ ∈ ܥ ∶ 	 ௖ݏ
ሺ଴ሻ 	←	⊕௨∈೎ ො௨ݔ

ሺ௟ሻቁcalculate the syndrome	

݈=0   

while ࢙ሺ଴ሻ ് ૙and ݈≤ ܮdo  

Compute Λ௩ :ܸ∋ݒ∀
ሺ௟ሻሺܠො,  ሻܡ

ܾሺ௟ሻ 	← 	max௩ሺΛ௩
ሺ௟ሻሺܠො,  ሻሻ                                                       find the maximum valueܡ

 1=ݒ
while ݒ	൑	ܸdo 

                      if Λ௩
ሺ௟ሻሺܠො, ሻܡ ൌ ܾሺ௟ሻthen 

ො௩ݔ
ሺ௟ାଵሻ 	← ො௩ݔ	⊕1

ሺ௟ሻ                                                                                 flip bit 
else  

ො௩ݔ
ሺ௟ାଵሻ 	← ො௩ݔ

ሺ௟ሻ 
end if 

ݒ ← ݒ ൅ 1 
end while 

ሺ௟ାଵሻ࢙ 	← 	  syndrome check                                                                                 ்ܪሺ௟ାଵሻܠ
݈ ← ݈ ൅ 1 

end while 

Output: ܠොሺ௟ሻ 
 

4.4.1. Comparison between GDBF and other decoders 

Before analyzing the failure of the GDBF decoder over BSC to approach the same 

performance of GDBF over AWGNC, let us explain why GDBF has a superior performance 

compared to BF and PBF decoders over BSC for waterfall anderror-floor regions. We show 

that a number of error pattern corrected by the BF algorithm is correctable with GDBF. This 

is an absolutely evident becausethe gap between two algorithms is very large as shown in 

Figure 4.4 (b). Also GDBF decoder has good convergence behavior only for high crossover 

probability values of the BSC and is not for lower values when compared to Gallager A/B on 

the well-known Tanner code (155,64) with ݒߛ	ൌ3	and	ܿߩ	ൌ5 [105], [83]. We consider in our 

simulations this code for two reasons: the difference between its minimum distance ݀௠௜௡ ൌ

20 and its minimum pseudo-distance ݓ௣௠௜௡ ≃ 10 is large, that means the difference in the 

guaranteed error correction capability between customary iterative decoders is anticipated to 

be large. Second, the (155,64) Tanner code is adequately small and structured, so that a brute 
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force checking of whether all errors get up to the determined weight-ݐ are corrected by 

decoding variety set can be done by Monte-Carlo simulations with rational computation time.  

We briefly discuss some harmful constructions in the LDPC code which impede the 

GDBF algorithm to achieve the convergence. As we know that curves of linear codes in 

general show purposely tendency towards partition into two distinct regions. The gain is high 

at the beginning, we talk certainly about good codes, but this phenomenon appears within the 

first few decibels. With higher SNR the quality of the signal increases and a negative impact 

of the channel decreases and the number of errors reduces. It is expected that the performance 

of the code are meaningfully better and it is ability of LDPC codes to shove this gain to be 

adjacent to the theoretical limit [106]. At some point, this gain may stop abruptly and this 

event because of some harmful constructions inside of the LDPC codes which are called 

trapping sets.  

For GDBF algorithm the situation maybe be different, the tendency of the GDBF 

curve is relatively constant for all crossover probability values of BSC ߙ, this case is blamed 

on low-weight codewords, which imply poor ݀݉݅݊and on the other hand on the nature of this 

algorithm which concerns only on the maximum value of an inverse function to flip the bits 

such that prevent to correct another error pattern in the graph as we will see in the next. We 

begin with a short debate of trapping sets and related matters. For our work we use the same 

definitions of the trapping set for another decoders and expand the concept of the trapping set 

to the GDBF decoder, which can to be analyzed efficiently than other more complex MP 

decoders. We show trapping sets that GDBF can correct while Gallager A\B and BF 

algorithms cannot and contrarily.  

Definition 1. A variable node is regarded to be eventually correct if there exists a positive 

integer ݈௦ such that for all ݈ ൒ ݈௦,ݔො௜
ሺ௟ሻ ൌ 0. 

We assume that the all-zero codeword was transmitted and this legitimate assumption 

for Gallager A\B, the Bit Flipping, BP algorithms operating over BSC [87]. Under this 

assumption, a variable node is correct if it is 0 and corrupt if it is 1. Let ۴ሺ࢟ሻ is the set of 

variable nodes that are not eventually correct. 

Definition 2. In a Tanner graph TG and for an iterative decoding algorithm, a trapping set is 

a non-empty set of variable nodes that are not eventually correct. A set of variable nodes T is 

called an (a, b) trapping set if it contains a variable nodes and the subgraph induced by these 

variable nodes has b odd-degree check nodes [107]. 
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Definition 3. For transmission over the BSC, ࢟′ is a fixed point of the decoding algorithm if 

and only if there exists a positive integer ݈௦ such that ݌݌ݑݏሺ࢟′ሻ ൌ ݈ ෝሺ௟ሻ) for all࢞ሺ݌݌ݑݏ ൒ ݈௦.	

Ifࡲሺ࢟ሻ ് ∅and࢟′ is a fixed point, then ࡲሺ࢟ሻ ൌ  .ሻ is called a fixed set′࢟ሺ݌݌ݑݏ

For the BF and Gallager A\B algorithms the adequate and essential requirements are 

defined for a set of variable nodes to form a fixed set given by theorem [96].  

Theorem 1. Let ܥ be an LDPC code with ݀ݒ	–left regular graph TG. Let T be a subset of a 

variable nodes with induced subgraph ࣮. Let the checks in ࣮ be partitioned into two disjoint 

subsets; ࣩ consisting of checks with odd degree and ࣟ consisting of checks with even degree. 

Then ࣮ is a fixed set for the Gallager A/B algorithm iff: (I) Every variable node in ࣮ has at 

least ቒௗೡ
ଶ
ቓneighbors in ࣟ and (II) No ቔௗೡ

ଶ
ቕ of ࣩshare a neighbor outside ࣮.   

The previous Theorem is used to generate the trapping set ontology (TSO) which is a 

database of trapping sets that is organized as a hierarchy based on their topological relations 

such that is used to define relevant trapping sets independent of a given code [108].  

The main purpose is to obstructions that forbid Algorithm 1 to coincide with soft way. 

Analyzing this problem will redound to develop the algorithm with different versions as we 

will show in the next. 

4.4.1.1. Motivating Examples 

We will take some examples to show how the general GDBF can correct error pattern with 

small number of iterations and its failure for another error patterns. Let ○ denotes a correct 

variable node while ●a corrupt variable node at the end of the (݈‐1)th iteration, and ᇝ 

denotes a satisfied check node and █	an unsatisfied check node at beginning of ݈th iteration. 

Let ܥ be a regular LDPC code with column-weight 3=ߛ and ݃=8.   
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Figure 4.5. Weight-three error configurations uncorrectable by BF during 3 iterations 

 

Figure 4.5 presents an error pattern with weight-three error and 2ݒ ,1ݒ, and 3ݒ are 

initially corrupt variables and 4ݒ and 5ݒ are initially correct variables and the BF decoding is 

employed. At the beginning of the decoding ܿ1,	ܿ2,	ܿ3,	ܿ4,	ܿ5,	ܿ6,	ܿ7,	ܿ8 and ܿ9 are unsatisfied 

check nodes as shown in Figure 4.5 (a).  ߰୳ୱଵ ሺݒଵሻ ൌ ߰୳ୱଵ ሺݒଶሻ ൌ ߰୳ୱଵ ሺݒଷሻ ൌ 3 ൒ ∆௩, where ∆ݒ	

=	2, so these variable are flipped to become correct variable nodes. On the other hand, the 

variable 4ݒ and 5ݒ are flipped to become corrupt variable nodes because of ߰୳ୱଵ ሺݒସሻ ൌ

߰୳ୱଵ ሺݒହሻ ൌ 3 ൒ ∆௩ at the end of the first iteration, as illustrated in Figure 4.5 (a). In the 

second iteration as shown in Figure 4.5 (b),߰୳ୱଶ ሺݒଵሻ ൌ ߰୳ୱଶ ሺݒଶሻ ൌ ߰୳ୱଶ ሺݒଷሻ ൌ 2 ൒ ∆௩ and 

߰୳ୱଶ ሺݒସሻ ൌ ߰୳ୱଶ ሺݒହሻ ൌ 3 ൒ ∆௩, so the procedure is repeated and all variables are flipped to 

return to the initial state with the same error pattern as in shown in Figure 4.5 (c). The set of 

corrupt and correct variable nodes after decoding process alternate between {3ݒ ,2ݒ ,1ݒ} and 

 and finally the decoder cannot converge. The BF algorithm fails to correct this error {5ݒ ,4ݒ}

pattern because it uses only syndrome as a criterion to flip the bit or not.  

On the other hand, GDBF algorithm can correct above situation during two iterations, 

the decoder calculates also number of unsatisfied check nodes for each variable node and adds 

the sum of the received bit with the estimated bit, ݔො௩
ሺ௟ሻ ⊕ ௩, to get the Λ௩ݕ

ሺ௟ሻሺܠො,  ሻ. At theܡ

beginning of the first iteration, Λ௩భ
ሺଵሻሺܠො, ሻܡ ൌ Λ௩మ

ሺଵሻሺܠො, ሻܡ ൌ Λ௩య
ሺଵሻሺܠො, ሻܡ ൌ 3 and also Λ௩ర

ሺଵሻሺܠො, ሻܡ ൌ

Λ௩ఱ
ሺଵሻሺܠො, ሻܡ ൌ 3, so all variable nodes are flipped at end of the first iteration. For the second 

iteration, there are two corrupt variable nodes 4ݒ and 5ݒ and three correct variable nodes 1ݒ, 

so Λ௩భ ,3ݒ and ,2ݒ
ሺଵሻሺܠො, ሻܡ ൌ Λ௩మ

ሺଵሻሺܠො, ሻܡ ൌ Λ௩య
ሺଵሻሺܠො, ሻܡ ൌ 3 and Λ௩ర

ሺଶሻሺܠො, ሻܡ ൌ Λ௩ఱ
ሺଶሻሺܠො, ሻܡ ൌ 4 and 

decoder flips only 4ݒ and 5ݒwith maximum lambda. The GDBF succeeds to correct the above 

situation only in two iterations Figure 4.6.  
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Figure 4.6. Weight-three error configurations correctable by general GDBF during two iterations

 

Unfortunately, we cannot say that GDBF is capable of correcting any weight-three 

error pattern in a girth ݃=8. The proof of this note can be illustrated by the next example. Let 

use the same error pattern but we consider that 4ݒ ,1ݒ, and 5ݒ are initial corrupt variable nodes 

and 2ݒ and 3ݒare initial correct variable nodes as shown in Figure 4.7 (a). At the beginning of 

the first iteration we have Λ௩మ
ሺଵሻሺܠො, ሻܡ ൌ Λ௩య

ሺଵሻሺܠො, ሻܡ ൌ Λ௩ర
ሺଵሻሺܠො, ሻܡ ൌ Λ௩ఱ

ሺଵሻሺܠො, ሻܡ ൌ 2 and 

Λ௩భ
ሺଵሻሺܠො, ሻܡ ൌ 1, so the decoder will flip all variable nodes with maximum lambda=2. At the 

second iteration an inverse function for each variable nodes as: Λ௩మ
ሺଶሻሺܠො, ሻܡ ൌ Λ௩య

ሺଶሻሺܠො, ሻܡ ൌ

Λ௩ర
ሺଶሻሺܠො, ሻܡ ൌ Λ௩ఱ

ሺଶሻሺܠො, ሻܡ ൌ 4 and Λ௩భ
ሺଶሻሺܠො, ሻܡ ൌ 3, so decoder flips all variable nodes with 

maximum inverse function, Λ௩
ሺଶሻሺܠො, ሻܡ ൌ 4, Figure 4.7 (b). After flipping the variable nodes 

the situation returns to the initial case with the same corrupt and correct variable nodes, the 

same situation for error pattern in Figure 4.8. Finally, the GDBF decoder fails to correct these 

error patterns which can be corrected by Gallager A\B decoder which explains why Gallager 

A\B has superior performance than GDBF algorithm in the error-floor region. Although that 

GDBF algorithm cannot correct these patterns, we will see in the next how we can solve this 

problem and maybe introduce feature of this decoder for tolerant the fault caused by the noise. 

Some error patterns are presented in Figure 4.9 and Figure 4.10 to show how GDBF based on 

binary values can correct the errors or not.  
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Figure 4.7. Weight-three error configurations correctable by Gallager A\B decoder and uncorrectable by
GDBF algorithm. 
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Figure 4.8. Weight-three error configurations correctable by Gallager A\B decoder and uncorrectable 
by GDBF algorithm. 

 

In Figure 4.9, four bit error pattern is presented and cannot be corrected by GDBF 

algorithm. In the first iteration only ݒଷ has two unsatisfied check nodes and has to be flipped. 

In the next iteration there are three variable nodes with one unsatisfied check node but only ݒଷ 

has the value different from the value initially received from the channel. As a general 

conclude the maximum inverse function gets stuck only on the variable node ݒଷin two 

successive iterations and the same variable node ݒଷis flipped for every iteration and GDBF 

algorithm fails to correct the trapping set and it can be considered as a fixed set according to 

the Definition 3. 
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Figure 4.9. Weight-four error configurations uncorrectable by GDBF algorithm where ܾሺ௟ሻ gets stuck 
only on variable 3ݒfor each iteration.  
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Figure 4.10. Weight-five error configurations correctable by GDBF algorithm. 
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Figure 4.11 Weight-six error configurations uncorrectable by GDBF algorithm where ܾሺ௟ሻ gets stuck 
on variables 6ݒ	and	8ݒafter 9 iterations
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4.4.2. Probabilistic GDBF decoder for BSC 

We have seen that GDBF algorithm strategy over BSC creates periodic error patterns. This is 

not only the consequence of Algorithm 1 but also of presence of short cycles in the code 

graph. Because of the deterministic nature of Algorithm 1 and at some points of the 

decoding, the set of some variable nodes is repeated after a number of iterations and 

Algorithm 1 is trapped into an infinite periodic pattern, which cannot be resolved whatever 

number of iterations. To improve performance of this algorithm it is logically to overcome 

the drawbacks which make the GDBF algorithm fails to break some error patterns. The 

stagnancy of GDBF algorithm at some points of the decoding can be fractured by flipping 

some variable nodes which realize the condition∆௩
ሺ௟ሻሺ࣑ෝ, ሻࣁ ൌ ܾሺ௟ሻ. The proposed algorithm is 

called Probabilistic GDBF algorithm (PGDBF) where a particular bit ݒݔ, for 

which∆௩
ሺ௟ሻሺ࣑ෝ, ሻࣁ ൌ ܾሺ௟ሻ, will not be flipped automatically-instead it will be flipped with a 

predefined probability ݌൏1. In Algorithm 2 this is done by multiplying the flipping decision 

with Bernoulli (1, ݌) random variable ܽݒ.	In hardware, it can be realized by adding to each 

variable node processor one AND gate and a generator of Bernoulli random variables ܽݒ with 

Pr(ܽ1 = ݒ) = ݌, as shown in Figure 4.12. 

 

Algorithm 2 Probabilistic GDBF Algorithm over BSC 

.......⊳same as GDBF 

while ݒ	൑	ܸdo 

                      if Λ௩
ሺ௟ሻሺܠො, ሻܡ ൌ ܾሺ௟ሻthen 

ො௩ݔ
ሺ௟ାଵሻ 	← ܽ௩ ො௩ݔ	⊕

ሺ௟ሻ        flip bit 
else  

ො௩ݔ
ሺ௟ାଵሻ 	← ො௩ݔ

ሺ௟ሻ 
end if 

ݒ ← ݒ ൅ 1 
end while   

……          ⊳same as GDBF 

 

Our work is motivated by the Probabilistic BF algorithm proposed by Miladinovic 

and Fossorier [101]. In PBF, code bits with a number of unsatisfied check sums higher than a 

fixed threshold are flipped with some probability, which is adapted throughout the iterations. 
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Figure 4.12. Illustration of the variable node processing unit for PGDBF (Algorithm 2) 

 

In PGDBF algorithm, the probability ݌ which defines the flipping criterion, is an 

independent parameter and does not depend on the crossover probability of the BSC and it is 

a constant parameter for all iterations. Optimization of parameter ݌ depends on the ߛ, column 

weight, of the LDPC code. PGDBF algorithm selects a set of some variable nodes which need 

to be flipped. It is possible that these nodes are correct or incorrect, so the transaction with 

partition of the variable nodes will slow down the decoding process especially for error 

pattern which is corrected directly by GDBF algorithm. However, PGDBF uses stochastic 

method for solving the trapping sets, and this is an important affair to approach the 

convergence point for codes that have short cycles. On the other hand, PGDBF uses the 

probabilistic mechanism to change the error pattern to anther pattern that can be corrected. 

Due to its randomness, PGDBF has a big chance to correct an error pattern as the number of 

iteration increases. In general, PGDBF algorithm can correct all periodic error patterns with 

sufficient number of iteration under some conditions, except the situation in Figure 4.9 where 

only one variable node has the maximum value.   

The proposed probabilistic decoding algorithm achieves gain in both performance and 

decoding time in the waterfall and error-floor regions of the error performance curve 

compared to the Gallager A\B decoder, especially for 3=ߛ. The following two examples are 
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intended to give perception on the performance of the PGDBF algorithm and the performance 

gain that can be achieved over GDBF algorithm for BSC. 

Let us consider a three-bit error pattern shown in Figure 4.7, if GDBF is applied (for 

which 1=݌), the largest inverse function value ܾሺଵሻ ൌ 2 is associated with variable nodes 

,ଶݒ ,ଷݒ ହ in the first iteration, for the second iteration the ܾሺଶሻݒ ସ andݒ ൌ 4 is associated with 

the same variable nodes, as presented in Figure 4.5 (b). Note that these nodes have different 

value compared to the initial values. As it results in the fixed set Definition 3, this error 

pattern cannot be corrected by the GDBF algorithm. Now if the PGDBF is applied, the four 

bits with the largest MIF are not flipped automatically but are only the candidates for flipping. 

As a best solution to solve this pattern is by selection only the corrupt variable nodes ݒସ andݒହ 

which have ܾሺଵሻ ൌ 2, and successful decoding can be resulted only exactly after two 

iterations. Let denote ݒସ and ݒହ as a flipping sequence that results in a successful decoding 

after two iterations and let ݏ௟ the probability that a given error pattern is successfully decoded 

in the ݈-th iteration. In our example, probability of flipping sequence ݂ ൌ ሺ ଶ݂, ଵ݂ሻ ൌ

൫ሺ1ሻ, ሺ0,0,1,1ሻ൯ is ݏଶ ൌ ଷሺ1݌ െ  .ሻଶ݌

It is clear that ݏଵ ൌ 0, as this pattern cannot be corrected in the first iteration. Note that 

other flipping choices resulting in different flipping sequences might lead to the successful 

decoding but, possibly, in a larger number of iterations. We refer to such flipping sequences 

as suboptimal. In our case this number of iterations is ݈	>2. As there may be many suboptimal 

flipping sequences, the closed form expression for ݏ௟ is complicate to obtain. However, its 

numerical value can be easily estimated by using Monte Carlo simulation. The probability of 

unsuccessful decoding at the ܮ iteration is obtained as: 

ሻܮ௉ீ஽஻ிሺ݌ ൌ 1 െ෍ݏ௟

௅

௟ୀଵ

 (4.9) 

The second example is illustrated in the Figure 4.13 and Figure 4.14, we take error 

pattern on the Tanner code (155,64) where the corrupt error nodes are ݒଵ, ,ଷ଻ݒ ,ଽ଼ݒ  ଵସ଻ andݒ

 ଵହଶ. Algorithm 1 cannot correct this pattern and the same procedure of bit flipping isݒ

repeated for some number of iterations over and over but without any usefulness as shown in 

Figure 4.14 (a). If we use Algorithm 2 to correct this pattern there is a variety of choices how 

the Algorithm 2 selects the path (flipping sequence) in order to converge. If the selection of 

flipping candidates is optimal in the beginning of decoding, the decoder can correct the error 

pattern in small number of iterations as shown in Figure 4.14 (b), where the number of 
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iteration at the successful decoding is 5. Figure 4.13 (c) shown that PGDBF have succeded to 

correct this pattern after 28 iterations. In both scenarios, PGDBF have successed to converge 

on a correct message, however, in the last situation, there is some local degradation due to the 

unsuitable choice of flipped bits. This local degradation does not cause degradation in 

performance, but prolongs the decoding, as the it number of iterations necessary to find a 

solution increases. To obtain the better performance with small number of iterations, PGDBF 

parallel decoders are used in the same time to correct the same error codeword, i.e. all 

decoders fed with the same input and working in parallel. Maybe some decoders get the 

convergance in small number of iterations, but we cannot decide the output of that decoder is 

the correct codeword, i.e miscorrection. Hence, some decision rules are introduces to find a 

final decoded word [101] 

 

- If there is only one codeword among the candidate words, which is final decoded 

word. 

- If there is more than one codeword among candidate word, choose the one closet in 

Hamming distance to the received word. 

- If none of the candidate words obtained from decoders working in parallel is a 

codeword, the final decoded word is obtained using majority logic rule for each based 

on all the candidate words. 

These rules are presented for wholeness of the decoding instruction, but if it is shown 

that the probability that two decoders having the same sequence as input and working in 

parallel converge to different codewords at the same time, is relatively small. Moreover, 

when one decoder converges the decoding stops.  
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(a) Number of flipped bits vs Number of 
iteration for GDBF behavior, 
unsuccessful decoding. 

(b) Number of flipped bits vs Number of 
iteration for PGDBF behavior, 
successful decoding. 

 

 

(c) Number of flipped bits vs Number of 
iteration for PGDBF behavior, successful 
decoding. 

(d) Number of flipped bits vs 
Number of iteration for PGDBF 
behavior, unsuccessful decoding. 

 

Figure 4.13. Behavior of GDBF and PGDBF algorithms for five-error pattern on the Tanner code 
(155, 64) 
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(a) Procedure of bit flipping by Algorithm 1, unsuccessful decoding for 100 iterations 

 

(b) Scenario of bit flipping by Algorithm 2, successful decoding is obtained after 5 iterations 
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(c) Scenario of bit flipping by Algorithm 2, successful decoding is obtained after 28 iterations 

 

(d) Scenario of bit flipping by Algorithm 2, unsuccessful decoding for 100 iterations 

Figure 4.14. Mechanism of GDBF and PGDBF to correct the error patterns on the Tanner code (155, 
64) 

In Figure 4.14, the black points denote to initial corrupt variable nodes and have the 

largest MIF value and are in the flipping sequence, and blue points for initial corrupt nodes 

and have largest MIF value but are not in the flipping sequence.  The green and red points are 

the same situations but for initial correct variable nodes, respectively.  

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

Position of bits

N
um

be
r 

of
 it

er
at

io
ns

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

100

Position of bits

N
um

be
r 

of
 it

er
at

io
ns



Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder 

 

76 
 

4.4.3. Find optimal ࢖value for PGDBF 

Because of the probabilistic nature of the PGDBF algorithm, there are several possible 

scenarios to solve the trapping sets. In principle, the main idea is to escape from the constant 

situation of the trapping set by aid Bernoulli (1, ݌) random variable. In general, to obtain the 

best performance it is important to select the optimal value ݌. There exists no general way to 

optimize the parameter ݌ but can be optimized through Monte-Carlo simulation. In the 

proposed algorithm, the optimal value of parameter ݌	is constant for all iterations during the 

decoding process, in contrast to ProbabilisticBF algorithm where the parameter ݌ has initial 

value 0.1 and is increased by step is 0.1 if an estimated codeword equal to the previous 

estimated codeword. Figure 4.15 shows the FER for the two codes (155,64) Tanner code and 

QC(732,551) and fixed ߙ, for various values of the parameter ݌. Numerical results are 

presented for non-faulty case, it can be observed that the PGDBF decoder has the best 

performance for ݌ൎ	0.7for two codes with different lengths, where	ߛൌ3and it can be noticed 

that PGDBF significantly reduces the FER compared to the GDBF (where 1=݌). On the other 

hand, parameter ݌ for PGDBF algorithm does not depend significantly on the BSC crossover 

probability, in contrast to NGDBF where the variance of the noise inserted to the variable 

nodes has to be approximately equal to the variance of the noise in the channel [103]. 

In order to estimate the convergence speed of the PGDBF decoder, the average 

number of iterations is used as an appropriate measure. Figure 4.16 shows the relation 

between an estimated iterations number for the successful decoding with BSC crossover 

probability. A PGDBF algorithm is presented with different values of parameter ݌. It can be 

observed that for 0.7= ݌, the PGDBF has faster convergence speed compared to other values 

with better performance. For 1= ݌, it can be noticed that GDBF decoder has faster 

convergence for a few iterations number and it can be explicated because of the deterministic 

nature of GBDF decoder in a way hard-decision. 
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Figure 4.15. Impact of the parameter ݌ on PGDBF optimized for the BSC. The plot is for the (155,64) 
Tanner code and QC (732,551), 2‐10=ߙ ,3‐10×4=ߙ and 100= ܮ 

 

 

Figure 4.16. Performance of PGDBF algorithm for the (155,64) Tanner code with different ݌ values
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4.4.4.The Multiple Decoding attempts and Random re-Initializations (MUDRI) 

algorithm 

We have seen from above that some bad choices of the bits which have the largest value of 

MID lead to unsuccessful decoding. Wrong choices in the beginning of the decoding process 

will prolong the decoding and/or reduce the probability that will be finish with success. In 

general, the decoding process will have a good chance to correct codeword errors as the 

number of iterations increases. By using equation (4.9) we are able to estimate ݌௉ீ஽஻ிሺܮሻ for 

any error pattern. However, there are some error patterns which have high values of 

 and one such error pattern is shown in Figure 4.18 with ,ܮ ሻ even for high values ofܮ௉ீ஽஻ிሺ݌

the same situation in Figure 4.7 and 4.8. In the first iteration, ܾሺଵሻ ൌ 3 is associated with the 

variable nodes ݒଶ,  ହ. The PGDBF update rule allows an independent flipping of allݒ ସ andݒ

these variables (23 possible choices), but only some of them are actually flipped. If only ݒହ is 

flipped (with the probability ݌ሺ1 െ  ሻଶ), the error pattern at the beginning of the second݌

iteration looks like the one shown in Figure 4.18 (b). In this case, ܾሺଶሻ ൌ 2 and six bits are 

considered for flipping, with 26 possibilities for the flipping choices in this step. If only the 

bits that are incorrectly received are chosen for flipping (ݒଵ, ,	ଷݒ  ଻), with theݒ ଺ andݒ

probability ݌ସሺ1 െ  ሻଶ, the decoding process is successfully completed. As only one flipping݌

sequence results in decoding after two iterations, the corresponding probability is obtained by 

multiplying the probabilities in two successive steps as ݏଶ ൌ ହሺ1݌ െ  .ሻସ݌

However, if a wrong choices are made in a few iterations at the beginning of 

decoding, it does not have to be completed successfully even for large value of ܮ. Therefore, 

we propose the modification of the PGDBF algorithm. If the syndrome has non-zero value 

after ܮଵ iterations, the decoding is stopped and repeated ܮ/ܮہଵۂ times starting from the 

received word for the other flipping random choices Figure 4. 17.  

       If the random sequences are independent, the probability that decoding fails is  

 

,ܮெ௎஽ோூሺ݌ ଵሻܮ ൌ ቌ1 െ෍ݏ௟

௅భ

௟ୀଵ

ቍ

ቔ ಽ
ಽభ
ቕ

. (4.10)
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Figure 4.17. MUDRI algorithm scheme

 

In the special case when ܮଵ ൌ  iterations, and the ܮ we have a single attempt with ,ܮ

above expression reduces to Equation (4.9). The probability of unsuccessful decoding can be 

minimized with the proper choice of this parameter ܮଵ. 

To return to the Figure 4.9 with the situation that MIF gets stuck on one variable node 

in every iteration, and used many attempts does not lead to any improvement. In such a 

situation we propose decrementing the threshold in variable nodes until it reaches the second 

largest value, i.e. 

 

ܾ௠௢ௗ
ሺ௟ሻ ൌ maxଶ

௩
ሺΛ௩

ሺ௟ሻሺܠො, ሻሻܡ . (4.11)

In our example ܾ௠௢ௗ
ሺଶሻ ൌ 1, the nodes with Λ௩

ሺ௟ሻሺܠො, ሻܡ ൒ 1are flipped and the decoding is 

successful after the second iteration (Figure 4.19 (c)).  

The above modifications are combined with the PGDBF algorithm to obtain the 

Multiple Decoding attempts and Random re-Initializations (MUDRI) decoding algorithm, 

formally given in Algorithm 3. The modification is applied under the condition that ݅݊ሺ௟ሻ ൌ

݅݊ሺ௟ିଵሻ ൌ 1 and that in two successive iterations the maximal MIF value corresponding to the 

same bit in the codeword (denoted by ݒ௙
ሺ௟ሻ). 
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(a) A five-bit error pattern uncorrectable by using 
GDBF. 

(b) The second iteration of PGDBF, after the 
first iteration with the optimal choice. 

Figure 4.18. Performance of GDBF and PGDBF with optimal choice for five-error pattern 
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a) A four-bit pattern critical in 
PGDBF. 

b) The second iteration if 

ܾሺ௟ሻ ൌ max௩ሺΛ௩
ሺ௟ሻሺݔ,  .ሻሻݕ

c) The second iteration if 

ܾሺ௟ሻ ൌ max௩ሺΛ௩
ሺ௟ሻሺݔ, ሻሻݕ െ 1. 

 

Figure 4.19. Adaption  method to solve the error pattern by decrease the threshold value 
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Algorithm 3 MUDRI decoder 

Input:ܡ  received word 

ො௩ݔ : ܸ∋ݒ∀
ሺ଴ሻ 	⟵  ௩ݕ

ሺ଴ሻ࢙ 	← 	 	ܿ∀ቀ்ܪሺ଴ሻܠ ∈ ܥ ∶ 	 ௖ݏ
ሺ଴ሻ 	←	⊕௨∈೎ ො௨ݔ

ሺ଴ሻቁcalculate the syndrome	

݊ൌ0,	݈=0, 

while ࢙ሺ଴ሻ ് ૙and ݊ ൑   doۂଵܮ/ܮہ

݈=0, ݅݊ሺ଴ሻ ൌ ௙ݒ ,0
ሺ଴ሻ ൌ ො௩ݔ :ܸ∋ݒ∀ ,0

ሺ଴ሻ 	←  ௩ݕ

ሺ଴ሻ࢙ 	← 	 	ܿ∀ቀ்ܪሺ଴ሻܠ ∈ ܥ ∶ 	 ௖ݏ
ሺ଴ሻ 	←	⊕௨∈೎ ො௨ݔ

ሺ଴ሻቁ 

while ࢙ሺ௟ሻ ് ૙and ݈ ൑  ଵdoܮ

Compute Λ௩ :ܸ∋ݒ∀
ሺ௟ሻሺܠො,  ሻܡ

ܾሺ௟ሻ, ݅݊ሺ௟ሻ, ௙ݒ
ሺ௟ሻ 	← ቀΛ௩ܷܰܨ		

ሺ௟ሻሺܠො, ,ሻܡ ݅݊ሺ௟ିଵሻ, ௙ݒ
ሺ௟ିଵሻቁ 

for ∀ݒ	൑	ܰ	do 

                      if Λ௩
ሺ௟ሻሺܠො, ሻܡ ൒ ܾሺ௟ሻthen 

ො௩ݔ
ሺ௟ାଵሻ 	← ܽ௩ ො௩ݔ	⊕

ሺ௟ሻ   flip bit 
else  

ො௩ݔ
ሺ௟ାଵሻ 	← ො௩ݔ

ሺ௟ሻ 
end if 
end for  

ሺ௟ାଵሻ࢙ 	← 	  syndrome check்ܪሺ௟ାଵሻܠ
݈ ← ݈ ൅ 1 

          end while 
݊	 ← 	݊ ൅ 1 
end while 

Output: ܠොሺ௟ሻ 
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Algorithm 4 FUN: Adaption of threshold in MAJ gates 

Input:Λ௩
ሺ௟ሻሺܠො, ,ሻܡ ݅݊ሺ௟ିଵሻ, ௙ݒ

ሺ௟ିଵሻ 

ܾሺ௟ሻ ← max
		௩

ቀΛ௩
ሺ௟ሻሺܠො, ሻቁܡ

for ∀ݒ∈ܸ	do	

ifΛ௩
ሺ௟ሻሺܠො, ሻܡ ൌ ܾሺ௟ሻthen 

݅݊ሺ௟ሻ ൌ ݅݊ሺ௟ሻ ൅ 1 

௙ݒ
ሺ௟ሻ ←  ݒ

   end if  
end for 

if ݈	>1 and ݅݊ሺ௟ሻ ൌ ݅݊ሺ௟ିଵሻ ൌ 1 and ݒ௙
ሺ௟ሻ ൌ ௙ݒ

ሺ௟ିଵሻthen 

ܾሺ௟ሻ ← maxଶ
௩

ሺΛ௩
ሺ௟ሻሺܠො,  ሻሻܡ

end if 
 

4.4.5. Analysis of the MUDRI algorithm 

To evaluate the algorithm performance, we first consider the decoding of the error patterns 

presented in the mentioned examples, illustrated in Figures 4.7 (a) and Figure 4.18 (a), for the 

case these patterns appear in the Tanner (155, 64) code. The probability of successful 

decoding at exactly ݈ iterations is estimated by using Monte Carlo simulation, and the 

corresponding probability distributions are presented in Figure 4.20.  

As expected, the probability that a three-bit error pattern is not successfully decoded 

steadily decreases with the increase of the parameter ܮ, and we obtain ݌௉ீ஽஻ிሺ100ሻ ൌ 3 ൈ

10ିହ for the standard PGDBF algorithm. On the contrary, the simulation results show that the 

five-bit error pattern Figure 4.18 (a) is either corrected in 14 or less iterations, or it cannot be 

corrected at all (ݏ௟ ൎ ݈	ݎ݋݂	0 ൐ 14). In this case, the probability of decoding failure is 

estimated as ݌௉ீ஽஻ிሺ14ሻ ൌ 0.8768. The increase of ܮ cannot help by itself, but combined 

with the proposed modification with multiple attempts, it results in lowering probability of 

unsuccessful decoding. Further optimization of the parameter ܮଵ also results in 

lowering݌ெ௎஽ோூ, as presented in Figure 4.21. It can be noticed that the best results are 

obtained for approximately ܮଵ ൌ 6 decoding iterations per attempt. In Figure 4.22, the frame 

error rate (FER) as a function of number of iterations is presented for ߙ ൌ 0.01. Although it is 

not convenient to adapt parameter ܮଵ for every error pattern, the simulations indicated that the 

minimal value of FER (i.e. ݌ெ௎஽ோூሺܮ,  ଵሻ average over all received error pattern) is achievedܮ

for ܮଵ ൎ 25 for Tanner (155,64) code and this parameter is somewhat larger for longer codes. 
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It is interesting to notice that while the PBF, GDBF and Gallager-B decoders need not 

more than 30 iterations to converge, after which their FER performance has reached the 

lowest possible value, the PGDBF continues to improve its FER performance up to 100 

iterations and results in significant gain compared to the GDBF. The MUDRI, with ten 

attempts per each of 25= 1ܮiterations, results in an order of magnitude lower FER when 

compared to the PGDBF. The algorithm performance further improves with the increase of 

parameter ܮ, to approximately FER= 6 ൈ 10ି଻ when 2000=ܮ. 

Figure 4.20. Probability distribution of the successful decoding in the ݈-th iteration of PGDBF, three-
bit and five-bit error pattern, Tanner(155,64) code, 0.7=݌ 
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Figure 4.21. Probability of unsuccessful decoding for the three-bit and five-bit error pattern, MUDRI 
with ܮ/ܮہଵۂ attempts per 1ܮ iterations each, 0.7=݌ 
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Figure 4.22. FER as a function of number of iteration ݈, Tanner (155,64) code, 0.01=ߙ, various 
decoding algorithms 
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4.5.Fault-Tolerant PGDBF and MUDRI Decoders for BSC 

In general, the error correction coding techniques used with the customary systems of 

communication are exploited with supposition that the operation of an error correction 

encoder and decoder are deterministic and noise exists only in the transmission or storage 

channel. While appropriate in systems where the reliability of registers and logic gates used 

in the decoder is many orders of magnitude higher than the reliability of the channel, this 

assumption is invalid if digital logic in the decoder is built of faulty components. Because of 

the high integration factor of integrated circuits together, low power consumption 

requirements and variations in the technological process makes MOS and emerging 

semiconductor devices inherently unreliable [109]. Two main reasons lead to unreliable 

computing, the first one is declining of the consumption energy such that the level of the 

signal will be close to the noise level and noise immunity is decreased. The second reason is 

created when the decoder is built from faulty components, then the errors happening at the 

gate level affect the operations carried out by the decoder. However, traditional von 

Neumann-type triple modular redundancy architectures that ensure fault tolerance are 

inefficient in handling such increased unreliability thus requiring solutions based on error 

control coding. Recently there was a surge in research in fault-tolerant decoders. Vasic and 

Chilappagari [110] established and information theoretical framework for analysis and design 

of faulty decoders for low-density parity-check (LDPC) codes. They have also analyzed bit-

flipping decoding [110] or one-step majority logic (MAJ) decoding [111], [112]. Methods for 

performance analysis of more complex decoders built from unreliable hardware based on the 

sum-product algorithm (SPA) [113] and its suboptimal (min-sum algorithm) version [114] 

have been also developed for transient failure model. In the similar context, finite-alphabet 

decoders (FAID) were analyzed by Huang and Dolecek in [115]. Density evolution analysis 

of the simplest massage-passing algorithm (Gallager-B) implemented in noisy hardware is 

given in [116] and [117]. 

With an aim of demonstrating the robustness of the algorithm to the hardware failures, 

we consider the canonical transient von-Neumann logic gate failure mechanism in which the 

failures in different gates and in different time instants are independent and identically 

distributed. The failures manifest themselves as random bit flips at the gate outputs. All XOR 

gates have probability of failure ܲ⊕, and failures in the register where ܠොሺ௟ሻ is stored occur with 

probability ܴܲ. We also assume that MAJ gates are reliable, i.e. ܲ0 ≈ܬܣܯ, Figure 4.23. 
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Although optimistic, this can be readily realized by using, for example, larger transistors in 

MAJ gates.  
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Figure 4.23. Illustration of the variable node processing unit for PGDBF under faulty hardware 

 

Figure 4.24. FER performance as a function of ߙ under various decoding algorithms, Tanner code 
 100=ܮ ,10-3=ܴܲ ,10-2=⨁ܲ ,(155,64)
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Now we present the numerical results of Monte Carlo simulations, in Figure 4.24, the 

FER performance of the (155,64) Tanner code is presented for the maximum number of 

decoding iterations 100 = ܮ. The results are presented for the BF, PBF and GDBF algorithms. 

In the case of non-faulty hardware in the decoder, GDBF algorithm results in lower FER 

values compared to the BF and PBF algorithms. As expected, the performances of faulty BF 

and PBF decoders are significantly degraded. For the case when ܲ⨁=10-2, ܴܲ=10-3, the 

performance of the two are approximately the same. On the other hand, for the same failure 

rates, performance of the GDBF is improved compared to the non-faulty decoder case! This 

surprising effect is related to the finite set of possible values ofΛ௩
ሺ௟ሻሺܠො,  .ሻܡ

For longer codes, we present the FER performance of two codes with similar 

codeword lengths but different column weight. The performance of (2388, 1793) code (code 

C1) with girth-8 and ߛ	3 = based on Latin Squares [134] and (2212, 1880) code (code C2) with 

girth-6 and 4 = ߛ are determined as a function of parameter ݌ for 100 = ܮ and 50 = 1ܮand 

presented in Figure 4.25. When 1 = ݌, the algorithm realized in faulty hardware has lower 

FER than the algorithm implemented in perfect hardware, and the performance can be further 

improved by reducing the parameter ݌ for both codes. For C1 the best performance is obtained 

for 0.7 ≈ ݌ in the non-faulty case, while the lowest FER is obtained for 0.8 ≈ ݌ when ܲ⊕ = 10-

3, and ܴܲ = 10-4. This corresponds to the previously results for short quasi-cyclic codes with 

girth-8 and 3 = ߛ. For C2 (with 4 = ߛ), the best performance are obtained if 0.9 ≈ ݌for the non-

faulty case, while for the faulty implementation the optimum value of ݌ is slightly larger.  

The FER performance of QC and LS codes with various code rates are presented in 

Figure 4.26, as a function of the parameter ܲ⊕. If 1 = ݌, the best performance is achieved for 

the non-zero value of ܲ⊕. On the other hand, if 0.7 = ݌ the FER is significantly reduced for 

small values of ܲ⊕, when compared to the 1 = ݌ case. More importantly, when 0.7 = ݌ the 

FER is almost insensitive to ܲ⊕ in a wide range of ܲ⊕ values, up to a certain threshold, and is 

dominantly determined by the codeword length. The threshold can be estimated as ܲ⊕,th = 

5/ܰ for the codes with 3 =ߛ and girth-8.  

In Figure 4.27, we present the FER performance for five LDPC codes with various 

code constructions (QC, PEG, LS), column weights and codeword lengths (available in 

[118]), and for the case when α = 0.008, ܲ⊕ = 10-3 and 0.7 = ݌. It is clear that the MUDRI 

decoder has approximately same performance, up to a certain threshold of ܴܲ. The value of 

ܴܲ where FER doubles with respect to the non-faulty case is dominantly determined by the 

codeword length. For the codes with 3 = ߛ and girth-8, this threshold is estimated to be ܴܲ,th = 
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1/(2ܰ). Although the codes with 4 = ߛ and girth-6 have lower error correction capability, 

they are somewhat less sensitive to the logic gate failures.  

The FER performance of C1 for various decoders is presented in Figure 4.28. It can be 

noticed that the Gallager-B outperforms the GDBF for lower values of crossover probability 

in BSC channel and the GDBF is more effective in the water fall region. In the presence of 

gate failures, the performance is degraded for the Gallager-B decoder, but is improved for the 

GDBF (1 = ݌). The performance of MUDRI with 0.7 = ݌ outperforms all hard decision 

algorithms for the analyzed crossover probability, and the increase of the parameter ܮ results 

in additional performance improvement. In addition, the MUDRI is less sensitive to hardware 

failures when compared to the Gallager-B and PGDBF. 

 

 

Figure 4.25. FER as function of parameter ݌, LDPC codes with 3=ߛ and 0.004=ߙ ,4=ߛ 
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Figure 4.26. FER as a function of probability of error XOR gates, 0=ܴܲ ,0.004=ߙ, LDPC codes with 
 and girth-8, with various code rates and codeword lengths 3=ߛ
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Figure 4.27. FER as a function of probability of error in registers, 0.008=ߙ, ܲ⨁ൌ10‐3, LDPC codes 
with ߛ ,3 =ߛ	4 = and girth-8, various codeword lengths 
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Figure 4.28. FER as a function of crossover probability in BSC channel. The code is 
LS(2388,1793)(C1), the empty markers corresponds to perfect hardware and full markers to faulty 
hardware with ܲ⨁=10‐3, ܴܲ=10‐4, 0.7=݌ in the PGDBF and MUDRI and other decoding algorithms 
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As we have seen from the above discussions and the obtained results that improvement of 

performance for PGDBF can be realized by using the random generator to solve the trapping 

sets in the Tanner graph. Therefore improvement of the PGDBF decoder needs extra 

hardware resources where the hardware-exhausted random generators blocks have to be 
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Actually there is no problem to implement GDBF decoder designed for BSC in the 

hardware, but the main problem is how to design random generator that produces the binary 

sequences with the optimal value of ݌ for the different characteristics of LDPC codes.  

In [119], the authors presented several implementations of our proposed algorithm 
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generator and the second design is called Intrinsic-Value Random Generator (IVRG) such 

that uses binary sequences produced by the LDPC decoder. They showed that both 

implementation of the PGDBF improve greatly the error correction performance, while 

maintaining the large throughput. In the case of LFSR-PGDBF, the performance gain 

requires large hardware components while in the case of IVRG-PGDBF only the extended 

expense is only 10%.  

The idea of IVRG design is to use the values of the check nodes and interprets these 

values as a random source of bits. The used values are already created by the existing 

hardware block of the GDBF decoder. In this way, IVRG design economizes the hardware 

component compared with the LFSR design. 

Figure 4.29 shows the global architecture of PGDBF compared and GDBF, and it can 

be noted in the context of hardware the GDPF and PGDBF have the same structure for the 

check nodes and for the finder of the maximum value of the inverse function for all variable 

nodes.        

In [119], the authors implemented the GDBF and PGDBF decoders for the case of 

Tanner code (155,64) with ݒߛ=  3 and ܿߩ=  5.The results shown that the probability of the 

IVRG output is unstable during the iterations can be estimated around range 0.88<݌opt<0.92. 

  

Figure 4.29. Global architecture of PGDBF 
compared to the original GDBF 

Figure 4.30. FER performance comparison of the 
different decoders on the Tanner code (155,64) 
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Figure 4.30 shows performance of the Tanner code (155,64) with respect to the  BSC 

crossover probability for the two designs of the random generator. Performance of GDBF is 

improved for two solutions and significant gain is obtained. Impact of the imprecise of the 

random generator implemented with IVRG appears in the error-floor region where the 

performance of PGDBF backs down compared in the case of LFSR-PGDBF. However, 

decline in the performance for this code begins when FER<10ିସ in the case of IVRG-

PGDBF while the matched performance in the water region for the both solutions.  

 

Table 4.1. Hardware and throughput estimation for PGDBF with different RG implementation 
and for Min-Sum 

 1-bit Register Slice LUTs Fmax(MHz) Throughput (Mbps) 

GDBF 946 2151 132.721 4114.3 

PGDBF (IVRG) 1038 2412 132.721 4114.3 

PGDBF (LFSR) 9161 3545 134.56 4202.36 

Offset min-sum 13694 15359 237.185 197.5 

 

Table 4.1 represents the hardware component required to implement GDBF, PGDBF 

for two designs and 6-Min-Sum algorithms. The hardware results obtained by using FPGA 

Xilinx virtex 6 of 40nm technology and the results are the maximum frequency and 

throughput. The throughput calculated by ݂max∗ܰ/(ܫaver∗ܵ), where ݂max, ܫaver, ܵ are the 

maximum frequency, the average iteration number and the number of clock cycles needed for 

one iteration, respectively. The results are ܵ = 1 for the PGDBF algorithms and ܵ = 10 for the 

offset Min-Sum. 

From Table 4.1 it can be noted that IVRG-PGDBF design needs an additional 92 1-

bit-registers compared with the GDBF decoder. On the other hand, LFSR-PGDBF design 

needs additional 82515 1-bit registers compared with the GDBF decoder. Therefore, IVRG-

PGDBF decoder improves the performance of GDBF decoder with low complexity rather 

than LFSR-PGDBF decoder. 

For the Slice LUTs required, it can be noticeable that IVRG-PGDBF needs 261 more 

slices than the GDBF (12.1%) and this number for LFSR-PGDBF is 1394 (64.8%). Although 

the PGDBF decoder for two designs needs more hardware components to achieve the better 

performance than GDBF, the throughput of PGDBF decoder approximately remains the same 
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as for GDBF (less than 2% mismatch). In terms of decoding speed, it can be note that Min-

Sum decoder is far more complex than BF type decoders. 
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Chapter 5 

Performance and Complexity of Modified 
McEliece Cryptosystem 

Under a specific LDPC (or MDPC) decoding algorithm over BSC, an LDPC code is 

considered to have a ݐ-threshold error correction capability if it can correct all error patterns 

of weight ݐ or less. The determined threshold of an LDPC code has critical part in some 

applications, such as flash memories, data-storage devices, optical communication and code-

based cryptography. In the other words, many systems require extremely low error rates, 

solving the error-floor problem has been a critical issue. 

For some classes of codes, like Reed-Solomon (RS) and Bose-Chaudhuri-

Hocquenghem (BCH) codes, this threshold can be exactly determined. In general, most of the 

decoding algorithms for LDPC codes do not exactly guarantee that all error sequences with 

 errors can be corrected. An essential reason for this problem comes from the fact (or less)ݐ

that in spite of the error floor analysis which includes the identification of code’s trapping 

sets, there are still doubts in declaring whether a certain iterative decoder succeeds in 

correcting all ݐ-error patterns. In theory, the threshold is computed by assuming the code-

length to be infinite and when there are no cycles of the length less or equal to double number 

of iteration in the Tanner graph associated to the parity-check matrix. This means that the 

probability of error does not depend on particular error positions [120].  

Replacement of Goppa codes by QC-LDPC (or MDPC) codes in the McEliece 

system, on one hand, decreases the key sizes with relatively good code rate, and on the other 

hand may lead to inability to decide what is the intended message because of the failure 

possibility of the decoding process. The correction of a large number of errors is not 

interested for cryptography system but only a number which ensures an adequate security 



Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem 

 

96 
 

level, so it is important to find a solution which employs the secure code with high correction 

probability. 

Generally, the attacks on McEliece code-based cryptosystem can be divided on two 

types of attacks. Without the knowledge of the private key, the first type of attacks tries to 

recover the plaintext from the ciphertext. This attack attempts to obtain an error vector ࢋused 

for encrypting a ciphertext, and it can be found as the lowest weigh codeword in the extended 

code [121]. The second type of attacks aims to retrieve the private key from the available 

public one which is called structural attack. When an intentional error vector has low weight, 

the decoding attacks against the McEliece cryptosystem are considered more dangerous than 

structural attacks and provide the smallest work factor (WF).Therefore, increasing the 

number of errors during the encryption step will make this type of attacks more difficult. In 

fact, McEliece cryptosystem suffers from chosen ciphertext attacks, where a given plaintext 

can be encrypted to give different ciphertexts. Therefore, an attacker can compare these 

different ciphertexts to obtain the original plaintext. Many methods were proposed to protect 

the system from chosen ciphertext attacks [59] [123], i.e., CCA2-secue variants. 

The LDPC decoders can correct more errors with the larger code block, for the same 

code rate. But for the some class of LDPC codes the situation looks different. Fossorier in 

[124] proved that girth of cyclic and QC codes whose parity-check matrix has no zero blocks 

is at most 12. That means, the known relationship	݃ ∝ logሺఊିଵሻሺఘିଵሻ ܰ, [49] will not be valid 

for the girth ݃ of such codes. Therefore, the cyclic and QC codes have poor performance at 

very long code block lengths, where the small girths discourage their usage in a number of 

applications. However, in practical performance of LDPC (or MDPC) codes can be evaluated 

by simulation under a certain decoding algorithm. Therefore, we concentrate on the decoding 

algorithms that can achieve the better performance, i.e., lower FER, such that can increase 

security of the system. 

 

5.1 The choice of the decoding algorithm  

One of the solutions for this problem is using more sophisticated decoding algorithms with 

better error correction capability [48]. Surely, this comes at price of a significantly increased 

decoding complexity as in the BP decoding algorithm. 

In Chapter 4, we proposed novel algorithms to obtain a good performance of LDPC 

codes with faster decoder and low complexity. We have seen that PGDBF decoder over BSC 

is twenty orders of magnitude faster than offset min-sum decoder for Tanner code (155,64). 
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Also we have noted that performance of PGDBF decoder is improved for higher number of 

iterations, which means that this algorithm has superior response to the number of iterations. 

The main purpose of our research is to reduce the complexity of the LDPC decoder for any 

application and especially for McEliece cryptosystem based on LDPC/MDPC codes. In this 

chapter, we introduce an optimization solution for reducing the computational complexity of 

LDPC (or MDPC) decoders in the McEliece cryptosystem with some tradeoffs between 

complexity, security and performance.  

 

A significant improvement would be obtained by using multiple PGDBF decoders. 

Hence, we suggest using three schemes: 

 

(i) MUDRI decoder, i.e., one decoder with multiple attempts in serial form, as 

mentioned in Chapter 4.  

(ii) MUDRI-P decoders, i.e., multiple decoders that work in the parallel form. 

(iii) PGDBF-PR decoders, i.e., multiple PGDBF decoders in the parallel form with 

periodical Resets, where the threshold of the bit-flip decision holds two values: 

the first and second largest values of the MIF after some number of iterations. The 

main idea of this decrement (decrease the threshold to the second largest value of 

MIF) is to help the decoder to correct some error patterns that cannot be corrected 

according to the used threshold.  

 

1
PGDBF

2
PGDBF

n
PGDBF



1n
PGDBF -

 

Figure 5.1. PGDBF decoders in the parallel form
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For the parallel form, as shown in Figure 5.1, multiple decoders are used and this 

increases the complexity but helps to decrease the demanded number of iterations required to 

converge to the correct codeword. In this case, probability that decoding converges to a 

codeword with a small number of iteration increases, since the decoding stops when the 

codeword is reached for the first time. On the other hand, this realization also increases the 

probability that the decoder chooses the codeword that is different than actually transmitted 

one. Probability of such event depends on the distance profile of the selected code and can be 

minimize using rules described in [101]. 

 

5.5.1 Numerical results for LDPC codes 

We begin with Tanner LDPC (155,64) code to illustrate the optimization between the 

performance and complexity cost. Figure 5.2 shows error correction performance as a 

function of the intentional errors under difference decoding algorithms represented in Table 

5.1. 

 

Figure 5.2. Error correction performance as a function of the intentional errors for Tanner code 
(155,64) under BF, PGDBF, MUDRI, MUDRI-P, SPA and PGDBF-PR decoding algorithms 
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Figure 5.3. Average number of iterations as a function of the intentional errors for Tanner code 
(155,64) under BF, PGDBF, MUDRI, MUDRI-P, SPA and PGDBF-PR decoding algorithms 

 

The maximum number of iterations for each decoder or attempt is 100=ܮ. Figure 5.2 

shows the MUDRI and MUDRI-P decoders have the same performance as the SPA decoder. 

The better performance can be achieved by using LDPC decoding algorithms based on hard 

decision. The same procedure of the PGDBF decoder but after number of iterations Reset, the 

threshold holds two values: the first and second largest values of the inverse functions MIF, 

i.e., maxଵ௩ሺΛ௩
ሺோ௘௦௘௧ሻሺܠො, ሻሻandmaxଶ௩ሺΛ௩ܡ

ሺோ௘௦௘௧ሻሺܠො,  ሻሻ. In our simulations, we use thisܡ

procedure with the parallel decoders. The effectiveness of this procedure can be is higher for 

the larger number of decoders.  

On the other hand, the average numbers of iterations as a function of ݐ errors for 

various decoders for Tanner code (155,64) are presented in Figure 5.3. It can be shown that 

MUDRI-P and MUDRI decoders require more iteration for the larger ݐ. Also we can note that 

for 5=ݐ, the required average number of iterations is approximately the same for SPA and 

MUDRI-P while is large for MUDRI decoder.  

In short, increasing the maximum number of iterations ܮ for MUDRI or increasing the 

number of decoders for MUDRI-P schemes will guarantee superior performance. This 
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improvement depends on the number of errors which can be corrected and the time to carry 

out the decoding process. 

 

Table 5.1. LDPC decoders are used to represent Figure 5.2 

Method Number of 
decoders\attempts* 

Total number of 
iterations 

BF 1 100 
PGDBF 1 100 
MUDRI 10* 1000 

SPA 1 100 
MUDRI-P 10 1000 

PGDBF-PR 10 1000, Reset =10 
PGDBF-PR,  50 50000, Reset =10 

 

Table 5.2 shows the number of errors ݐ that can be corrected at performance FER =10-

4 for Tanner code (155,64). It can be noted that periodical decrement of the threshold during 

the decoding process significantly improves the performance, especially with the increase in 

the number of decoders. 

Table 5.2. Average number of iterations and number of errors 
that can be corrected with FER= 10-4 

Decoder ݐ Itavr 

PGDBF 4 1.8 

MUDRI 6 4.42 

MUDRI-P 6 2.43 

SPA 6 2 

10-PGDBF-PR 8 3.89 

50-PGDBF-PR 10 4.93 

 

The performance of the same decoders for a longer quasi-cyclic LDPC code, with 

parameters ܿߩ ,4 =ݒߛ	8 = and ܰ=1296are shown in Figure 5.4 and Table 5.3. One can observe 

that the PGDBF remarkably outperforms the GDBF. The MUDRI decoder significantly 

outperforms PGDBF decoder in the waterfall while the decrease in the error probabilities 

slows down in the error floor region. It can be seen that the PGDBF-PR surpasses the 

MUDRI at the error floor region and the difference between them at FER performance 2·10-6 

is about 14 errors. 
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Figure 5.4. Error correction performance as a function of the intentional errors for quasi-cyclic 4 =ݒߛ, 
 and ܰ=1296, under GDBF, PGDBF, MUDRI, PGDBF-PR and SPA decoding algorithms 8 =	ܿߩ
 

Table 5.3. Number of errors that can be corrected with 
FER= 2·10-6 for quasi-cyclic 8 =ܿߩ ,4 =ݒߛ and ܰ=1296

Decoder Number of 
decoders/attempts*

 ࢚

GDBF 1 14 

PGDBF 1 31 

MUDRI 10* 40 

PGDBF-PR 10 54 

SPA 1 65 

 

For the larger code block, we consider the QC-LDPC codes based Pseudo Difference 

Families (PDFs) in our simulations [126]. The code’s parameters are݌	ݒߛ ,1021 =	5 =, ܴ	= 

7/8, while eight base blocks of PDF can be selected such that an element appears only once 

among their differences. The Table 5.4 shows the polynomials obtained by choosing eight 

base blocks with distinct differences [125]. Using all polynomials in the Table 5.4 results in a 

regular code with minimum distance ≤ 10 and the associated Tanner graph has 40840 edges.   
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Table 5.4 Polynomials used in the construction of rate-7/8 QC-
LDPC code based on PDFs
Polynomial  Value

ܽଵሺݔሻ ݔଶ଻଻ ൅ ସ଴ଽݔ ൅ ହଽ଻ݔ ൅ ଵସ଼ݔ ൅  ଽ଺଺ݔ

ܽଶሺݔሻ ଼ݔଷ ൅ ଶ଴ଵݔ ൅ ଽ଴଴ݔ ൅ ଽ଴ହݔ ൅  ଽ଻ସݔ

ܽଷሺݔሻ ݔଵ଺଻ ൅ ଵ଼ଷݔ ൅ ଷସ଻ݔ ൅ ହ଼ଶݔ ൅  ଻଺ଷݔ

ܽସሺݔሻ ݔଶ଻ ൅ ଶଵଷݔ ൅ ଷଵଽݔ ൅ ହ଼଼ݔ ൅  ଽହ଼ݔ

ܽହሺݔሻ ݔଵଽଽ ൅ ଷଶଶݔ ൅ ଻଻ଷݔ ൅ ଵ଻଼ݔ ൅  ଽହଶݔ

ܽ଺ሺݔሻ ݔଵ଼଴ ൅ ଵ଼ଵݔ ൅ ଷଽଽݔ ൅ ସଶହݔ ൅  ହ଻଼ݔ

ܽ଻ሺݔሻ ݔସସହ ൅ ହ଺ଵݔ ൅ ଺ସ଺ݔ ൅ ଺଼ଶݔ ൅  ଻ଶଽݔ

଼ܽሺݔሻ ݔଵ଻ଽ ൅ ଶ଺଼ݔ ൅ ସହଵݔ ൅ ହଶ଺ݔ ൅  ଺ଵ଼ݔ

 

 

Figure 5.5. Error correction performance as a function of the intentional errors for QC-LDPC PDFs 
code with ݊= 8168, ݌	7/8=ܴ ,1021= and ݒߛ	5 = under SPA, PGDBF, MUDRI-P and PGDBF-PR 
decoders 
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Table 5.5. FER performance of different decoders for QC-LDPC, ݊=8168 at 
 30=ݐ

Decoder Number of decoders FER 
PGDBF 1 3×10-5 

MUDRI-P 5 2×10-5 
SPA 1 10-5

PGDBF-PR, reset=10 5 1.3×10-5 
 

Figure 5.5 shows error correction performance as a function of the intentional errors 

for QC-LDPC PDFs code with ݊	= 8168, ݌	ܴ ,1021 =	7/8 = and ݒߛ	5 = under SPA, PGDBF, 

MUDRI-P and PGDBF-PR decoding algorithms, where the ܮ	100 = for every decoder. It can 

be noticed that SPA has superior performance than the other decoders for all values of the 

errors. For the error ݐ	 ≤ 30, and reset=10, the PGDBF-PR decoder can achieve the same 

performance as the SPA decoder, as shown in Table 5.5. 

 

5.1.2. Numerical results for MDPC codes 

The normalized belief propagation (NBP) algorithm [133] represents a popular modification 

of belief-propagation (BP) algorithm in which the reliability of messages computed in the 

each decoding iterations is reduced, by some criterions. This modification is particularly 

effective for short low-density parity-check codes, where the existence of cycles makes the 

original BP algorithm perform suboptimal. QC-MDPC codes have short cycles because of the 

large row or column weights which degrade the performance of the BP algorithm. Therefore, 

it is preferred to use NBP as a decoding algorithm rather than original BP to correct the 

channel errors for QC-MDPC codes. 

In the following, two examples are given to illustrate the decoding performance for 

QC-MDPC codes, we consider GDBF, 5-MUDRI-P, 10-MUDRI-P, MUDRI and NBP 

decoders. In Figure 5.6, the performances of the QC-MDPC code with (9600, 4800, 90) 

parameters and code rate = 0.5 are presented for the maximum number of the decoding 

iterations 100=ܮ. The situation of the MDPC codes is different than LDPC codes, where 

GDBF and PGDBF have the same performance for MDPC codes in terms of FER and use of 

a random generator does not help itself to correct more codewords, in addition, the decoder 

becomes slower. 
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Figure 5.6. Error correction performance as a function of the intentional errors for QC-MDPC 
(9600,4800,90) under NBP, GDBF, 5-MUDR-P, and 10-MUDRI-P algorithms 

 

 

Figure 5.7. Error correction performance as a function of the intentional errors for QC-MDPC 
(12288,3072,220) under NBP, GDBF, and 5-MUDR-P algorithms 
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Figure 5.8. Average number of iterations as a function of the intentional errors for QC-MDPC 
(12288,3072,220) 
 

It can be noted that NBP decoder has better performance only in the waterfall region 

(when the number of intentional errors ݐ	100 <) than the GDBF, but this performance with 

low error correction probability (FER=0.01). Because of the high column degree of these 

codes, the short-cycles in their Tanner graphs prevent the NBP decoder to keep its 

performance in correcting the codewords with small errors. On the other hand, the GDBF 

decoder has better performance than the NBP for the number of intentional errors < 92 and 

this performance can be improved by using multiple decoders in the parallel form. For this 

code we can determine the GDBF threshold (confirmed through simulation) ݐ	 = 91 with 

FER=10-5, ݐ	93 = with FER=10-5 for 5-MUDRI-P and 94 =ݐ with FER =10-5 for 10-MUDRI-

P. In fact, interpretation of this phenomenon returns to the probabilistic nature of the PGDBF 

decoder in correction the error patterns. Improvement of the performance for these codes 

guarantees that most of transmitted messages can be corrected with the high probability that 

avoids using another technique like Automatic Repeat Request (ARQ) for retransmission the 

same message with the other intentional error vector, which can be attacked. Berson proved 

that the McEliece public key cryptosystem is unable to keep safe for any message which is 

sent more than once to a receiver using different random intentional error vectors [127]. In 

this case, a suitable CCA2-secure conversion is used. 
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The second QC-MDPC code is presented in Figure 5.7, with (12316,3079,220) 

parameters and code rate = 3/4. We can see that performance of GDBF decoder with higher 

code rate is better than performance of the NBP when ݐ	52 <. The GDBF error correction 

capability is ݐ	45 = where FER = 10-5 and 47 = ݐ for 5-MUDRI-P decoders at the same FER 

performance. 

In Figure 5.8 we illustrate average number of iterations as a function of the inserted 

errors for QC-MDPC-based scheme (12288,3072,220) under NBP, GDBF, 5-MUDRI-P and 

MUDRI decoders. It can be noticed that the average number of iterations for parallel 

decoders is smaller than average iterations for MUDRI decoder. An  average number of 

iterations of NBP for ݐ	45 > is very small compared to the average number of iterations of 

PGDBF decoders, that means increase the complexity of procedure to correct the codewords 

in spite of the PGDBF decoders have better performance than NPB. Regardless of this 

situation, the complexity of PGDBF decoder is smaller than NBP and sometimes it is 

preferred to use a faster decoder although it needs larger number of iterations. 

5.2. Computational Complexity 

The syndrome computing is the same for all decoding algorithms; therefore, the complexity 

comparisons are realized without the syndrome complexity. The computational complexity of 

PGDBF algorithm consists mainly of three parts: (i) calculating inverse functions, (ii) finding 

the threshold, and (iii) flipping the bits.  

- Calculating inverse functions 

Check node calculates XORs from the received messages and sends the result to all 

neighbour variable nodes, so at the check node, there is (1 - ܿߩ) binary sums and the 

total number of operations at the check nodes is	(1 - ܿߩ)ܯ. For every variable node, 

there is one XOR logic gate between an estimated bit at ݈-th iteration and original 

received bit. Therefore, hence, ܯ	  binary operations are needed. Also ܰ + (1 - ܿߩ)

 integer additions are needed to calculate the inverse functions for all variable nodesݒߛܰ

per iteration.  

- Finding the threshold (maximum value of the inverse functions) 

Usually, maximum-finder is used to find the maximum value, but in PGDBF decoder 

we can exploit that the values of an inverse function are integer values and restricted in 

the range [0, 1+ߛ]. Therefore, no need to use maximum-finder such that the threshold 

may be initialized to the maximum value (1+ߛ), and the threshold is decreased by step 
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1 when all MAJ logic outputs are zeros, for instance by using N-input OR gate. The 

number of decrements of the inverse function value to obtain the maximum value 

differs in the case of LDPC and MDPC codes. Figures 5.9 and 5.10 represent values of 

the threshold during decoding iterations for Tanner code (155,64) with ݒߛ	ൌ	3 and QC-

LDPC (8168,1021) code with ݒߛ	ൌ5, respectively. However, for some values of ݐ the 

threshold may take one value with the high average value. For instance, for the Tanner 

code (155,64) and 3=ݐ, the threshold =3 with average is 89%. Therefore, the threshold 

can be initialized with value 3 for 3=ݐ rather than 4 value, i.e., (1+ߛ), and in this way 

the number of decrements is decreased. In general, ൑ (1+ݒߛ) integer comparisons are 

needed for every variable node per iteration.  

- Flipping the bits 

After finding the threshold, the bit is flipped with probability ݌. This can be realized by 

adding to each variable node processor one AND gate. Therefore, it needs ܰ AND 

logic gate and ܰ XOR logic gate to flip the bit.  

 

Table 5.4 presents the summarizing the computational complexity which includes 

binary/integer/real additions and comparison for BF, PGDBF and SPA decoders. Note that 

the random generator for the PGDBF decoder did not take into account in computational 

complexity. In [119] emphasized that IVRG scheme has advantage over LFSR in term of 

implementation and there is a simple difference between GDBF and PGDBF as shown in 

Table 4.1. Any way, it is still an open problem how to realize the precise random generator 

with low complexity. In addition, it can be realized by the specified matrix where its rows or 

columns are used instead of random generator.  

 

Table 5.6. The total number of operations for some LDPC decoders during a single 
iteration 

Operation BF PGDBF SPA 

Binary Operations ܰ	൅	ܯሺ3ܰ (1-ߩ൅(1-ߩ)ܯ - 

Integer additions ܰ	ሺ1-ߛሻ ܰ  - ߛ

Integer Comparisons ܰ ൑	ܰ *(1+ߛ) - 

Real Multiplications - - 2ܰ(ߛ2+4ߛ) 

Real additions - - 2ܰ(21+ߛ) 

* It is a maximum number of comparisons and an average number can be relatively determined 
according to the number of error ݐ as in Figures 5.8-5.11 for LDPC and MDPC codes. 
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Figures 5.9 - 5.12 present the rate of the threshold value of the bit-flipping decision in 

the form of a histogram for Tanner (155,64), QC-LDPC (8168,1021), QC-MDPC 

(9600,4800,90) and QC-MDPC (12288, 3072, 220) codes, respectively.  

 

 

Figure 5.9. Comparison of the threshold during the decoding iterations for Tanner (155,64) 
code, ݒߛ	3= 
 

From Figure 5.9, it can be seen that for 3=ݐ, there are about 89% of all threshold 

values at which threshold equals to 3. In this case, the initial threshold can be started by value 

3 instead of value 4 and by this way the number of decrements is reduced. Also this idea is 

applied when ݐ	 ∈ [4,5,6], where the rate of 3 value is very high. By this way, the 

computational complexity during the iterations is significantly reduced.  

Figure 5.10 interprets how the threshold during the most of iterations holds in the high 

rates of values 4 and 5, which ensures that the comparison for every variable node is done 

mostly two times. 
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Figure 5.10. Comparison of threshold during the decoding iterations for QC-LDPC (8168,1021) code, 
 5=	ݒߛ

 

 

Figure 5.11. Comparison of the threshold during the decoding iterations for QC-MDPC 
(9600,4800,90) code, ݒߛ	45= 
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Figure 5.12. Comparison of the threshold during the decoding iterations for QC-MDPC 

(12288, 3072, 220) code, 55=ݒߛ 
 

From Figures 5.11 and 5.12, it can be observed that for QC-MDPC codes, the higher 

rate of the threshold value during the decoding process is small than 50% for some ݐ errors, 

and in this case the initial threshold value starts with value which has the higher rate, for 

instance, initial threshold value in Figure 5.11 can be started with value 30 for 80 = ݐ, and the 

initial threshold is increased with step1 until obtain the maximum value of MIF. 
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Table 5.7. Average overall complexity per frame (Real: real comparison or addition; Int.: integer 
comparison or addition; Bin.: binary operation) 

Tanner code (155,64); complexity × 103 
QC-LDPC (8168,1021) code; complexity × 

105 

  40 35 30 7 6 5 ݐ

BF	

Itavr 67 84 94    

 
Bin. 35.3 44.2 49.5    

Int. 31.1 39 43.7    

FER 0.6 0.8 0.9    

PGDBF 

Itavr 3.2 4.3 5.8 8.3 9.7 11.55 

PGDBF 
Bin. 2.6 3.5 4.8 5.3 6.2 7.4 

Int. 2.728 3.6 4.9 28.4 33.2 39.6 

FER 2·10-4 9·10-4 3·10-3 3.6·10-5 7·10-5 10-4 

MUDRI 

Itavr 3.2 4.4 6.3    

 
Bin. 2.6 3.6 5.2    

Int. 2.728 3.75 5.37    

FER 6·10-6 5.3·10-5 2·10-4    

10-

MUDRI-

P 

Itavr 1.9 2.4 3 6.6 7.9 9.3 

5-MUDRI-P 
Bin. 15.9 20 25.9 21.2 25.4 29.9 

Int. 16.1 20.46 25.57 113.20 135.5 159.52 

FER 6·10-6 5.3·10-5 2·10-4 2·10-5 5·10-5 8·10-5 

10-

MUDRI-

PR, 

reset=10 

Itavr 1.9 2.4 3.1 6.7 7.9 9.2 
5-MUDRI-

PR, 

reset=10 

Bin. 15.9 20 25.9 21.5 25.4 29.58 

Int. 17.670 22.320 28.830 114.9 135.5 157.8 

FER 3.2·10-7 2·10-6 2·10-5 1.3·10-5 3·10-5 7·10-5 

50-

MUDRI-

PR, 

reset=10 

Itavr - 2 2.4    

 
Bin. - 83.7 100.4    

Int. - 93 111.6    

FER - 7·10-8 8.3·10-7    

SPA 

Itavr 1.7 2 2.4 2.34 2.68 3 

SPA Real 14.7 17.3 20.8 21.4 24.5 27.44 

FER 6·10-6 6.2·10-5 3·10-4 10-5 3·10-5 5·10-5 

 

Table 5.7 shows the simulated average complexity of various BF, PGDBF and the 

SPA algorithms for decoding a frame at different ݐ errors. As an integer (or real) comparison 

requires the same computational complexity as that of an integer (or real) addition (hardware 

implementation of comparison can even be simpler than addition). Both are, thus, counted 

equally.  
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Tables 5.7 and 5.8 provide useful information for studying tradeoffs between 

performance and complexity. For the PGDBF decoder, the majority logic gate is used for 

every variable node to calculate the MIF with threshold comparison. Therefore, in the term of 

binary operation, the maximum number of binary operations that is needed for one frame for 

PGDFB is 

 .[(1+ߛ)ܰ +3ܰ + (1-ܿߩ)	ܯ]	ൌ	PGDBFܥ

According to the implementation in [122], the decoding complexity in binary 

operations of the LLR-SPA is given by [50] 

 ,[(ߛ	൅	11ሻ-	ܴ	12+	ߛሺ8ݍ]	ܰ	݁ݒܽܫ	ൌ	SPAܥ

where ݁ݒܽܫ	 is an average number of iterations, ܴ is the code rate and ݍ is the quantization 

number of bits used for the decoder, where ݍ	6 = has been considered in our computations. 

 

Table 5.8. QC-MDPC (12288,3072,220); complexity × 107 

 47 46 45 ݐ

PGDBF	

Itavr 27.8 28.5 30 

Bin. 1.97 2.02 2.12 

Int. 2 2.06 2.17 

FER 10-5 2·10-5 5·10-5 

MUDRI 

Itavr 33.3 34.1 35.9 

Bin. 2.3 2.4 2.5 

Int. 2.41 2.47 2.6 

FER 3·10-6 6·10-6 10-5 

5-MUDRI-P 

Itavr 30 32 32.6 

Bin. 10.64 11.35 11.56 

Int. 10.87 11.59 11.81 

FER 3·10-6 6·10-6 10-5 

NBP 

Itavr 3 4 5 

Real 24.74 32.99 41.23 

FER 1.3·10-2 1.7·10-2 2·10-2
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Table 5.13. The computational complexity (per decoding process) comparison in the term of binary 
operations for Tanner code (155,64) 

 

Table 5.14. The computational complexity (per decoding process) comparison in the term of binary 
operations for QC-MDPC (12288,3072,220) 
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Figures 5.13 and 5.14 represent the computational complexity in term of binary 

operations for the Tanner code (155, 64) and QC-MDPC (12288,3072,220), respectively. The 

better choice is MUDRI decoder which has two advantages, low complexity and good 

performance. The required average number of iterations approximately is the same for 

MUDRI and parallel schemes in the case of small ݐ. It is preferred to use the parallel form 

when the difference between minimum distance of the code is small ≤ 10, i.e., the probability 

of miss-correction is relatively high where the decoder only decides according to the 

syndrome sum if equals to zero. In this case, MUDRI cannot improve the performance 

whatever number of attempts or iterations. 

 

5.3. Cryptanalysis of the McEliece cryptosystem 

The best ways to select the secure parameters that avoid all attacks are comprehension and 

evaluation of the complexity of the decoding technique. An attack can be usually measured 

by the work factor, which defined as the average number of binary operations needed to have 

a successful work. We can say that work factors as high as 280 or larger are important enough 

to guarantee that the system is protect at the certain technology. 

The most dangerous attacks against public key cryptography based on LDPC (or 

MDPC) codes are attack on the Dual Code and Information Set Decoding (ISD) and the 

security level of the system could be decided as the smallest work factor of these attacks. 

5.3.1. Attacks on the Dual Code 

LDPC codes in McEliece cryptosystem risk its security. The main problem of using LDPC 

codes in the McEliece system is easy to observe the low weight parity check rows in the dual 

of the public code as codewords with low weights. There exists an easy method to find dual 

low weight codewords of an LDPC code and employ them to reconstruct a sparse parity 

check matrix, that is a straightforward attack against LDPC based McEliece cryptosystem.  

When the dual of the secret code contains very low weight codewords for the 

McEliece cryptosystem based on LDPC codes, then the vulnerability for this system may 

increase and an attacker can directly recover the parity check matrix ࡴ and becoming able to 

perform LDPC decoding without waste. In [128] it is said that when a sufficiently large set of 

redundant check sums of small enough weight can be found, then an attacker can perform bit 

flipping decoding based on such parity check equations. Therefore, the dual attack do not 
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exist only when LDPC code is used for McEliece cryptosystem, but also can be subject to 

attacks based on low weight codewords in the dual of the public code. 

Return to the form (2.8), let code rateܴ, column weightݒߛ, row weightܿߩ, code 

length݊and dimension ݎ, be parameters of the dual of the secret codes and can be generated 

by matrix ࡴ′. For weight ݓ	൑݉ܿߩ	the dual code has at least ܣ௪ ൒  .ݓ codewords of weight ݎ

The number of codewords ܣ௪with weightݓshould be in some way known. Then the 

work factor of the attack can be precisely evaluated, but on the other hand estimation of the 

number of codewords ܣ௪ is a difficult problem. Since for this case ߩ௖ ≪ ݊ and that sparse 

vectors are most likely sumsof vectors of higher weight then it is assumed that ܣ௪ ൌ  .ݎ

Stern’s algorithm can be used to search for minimum weight codewords in the dual of 

the secret code [121]. In this case, the probability of finding, in one iteration, a codeword 

with weight ݓ	is ൑ ௪ܣ ௪ܲ, where ܣ௪ represents the number of ݓ-weight codewords and ௪ܲ is 

expressed by [129] 

 

௪ܲ ൌ
ቀ
௪
௚ቁቀ

௡ି௪
௞ ଶ⁄ ି௚ቁ

ቀ
௡
௞ ଶ⁄ ቁ

∙
ቀ
௪ି௚
௚ ቁ൬

௡ି௞ ଶ⁄ ି௪ା௚
௞ ଶ⁄ ି௚

൰

൬
௡ି௞ ଶ⁄
௞ ଶ⁄

൰
∙
ቀ௡ି௞ି௪ାଶ௚

௟
ቁ

ቀ௡ି௞
௟
ቁ

, (5.1) 

the values of parameters ݃ and ݈ must be optimized as a function of the total number of 

binary operations. 

The average number of iterations needed in order to find a ݓ-weight codeword is 

hence ൒ ܿ ൌ ሺܣ௪ ௪ܲሻିଵ and it can be considered that each iteration of the algorithm requires 

a number of binary operations expressed by 

 

ܤ ൌ ሺ௡ି௞ሻయ

ଶ
൅ ݇ሺ݊ െ ݇ሻଶ ൅ 2݈݃ ቀ௞/ଶ௚ ቁ ൅

ଶ௚ሺ௡ି௞ሻቀೖ/మ೒ ቁ
మ

ଶ೗
, (5.2) 

with݇ and ݎ interchanged, so the total work factor is൒ ܹ ൌ  .ܤܿ

5.3.2. Information Set Decoding Attacks 

Information set decoding (ISD) is considered as the best known attack algorithm especially 

when the code structure is not known [39]. In spite that the general decoding problem is ࣨ࣪ 

hard, a precise choice of system parameters (݊,݇,) is demanded to guarantee that the security 

level of McEliece cryptosystem is high enough. The ISD is the best known technique when 

the weight of errors ݐ	is smaller than the Gilbert-Varshamov distance, which is defined as the 

smaller integer ݀0	such that 
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൬
݊
݀଴
൰ ൒ 2௥. 

In some cases it is preferred to use the Generalized Birthday Algorithm (GBA) [130] 

when ݐ is larger than ݀଴ where GBA is more efficient than ISD. 

An ISD algorithm tries to find a set of free error positions of the deformed ciphertext 

when it is transmitted. In most situations the random generator of the intentional error vector 

generates this vector in the random way, so eavesdropper could take, arbitrarily, with some 

possibilities a piece of the ciphertext which is not changed by any intentional error. Also as 

an addition condition to guarantee the continuous of this attack is code's generator matrix to 

these positions is invertible as will be interpreted in the following. In the other words, ISD 

tries to find an intentional error vector ࢋwhich has effect on the ciphertext (ࢋ is a correctable 

error vector, i.e., has weight ൑	ݐ) and this mission can be completed by employing algorithms 

which search for the minimum weight codewords in a linear block code [121].  

The original message then can be computed by multiplying the encrypted vector by 

the inverse of the sub-matrix constructed by the selected columns of the generator matrix. Let 

݇ information bits and information vector is ܝthen only ݇ elements selected from ܠ and ࢋ 

vectors for ISD algorithm. At the fixed positions ݇ of the ܠand ࢋ and corresponding to the 

columns of the generator matrix ࡳ′. Using subscript ݇ to denote the vectors and matrix 

reduced in size and according to the condition,ࡳ௞
ᇱ  is invertible matrix (non-singular matrix, 

even if this is always true only for maximum distance separable (MDS) codes), and we have 

௞ܠ ൌ ܝ ∙ ௞ࡳ
ᇱ ൅  ௞. (5.3)ࢋ

In the case when all values of ݇ selected positions of the error vector ࢋ are zeros, 

i.e.,ࢋ௞ ൌ ૙then it can be writtenܠ௞ ൌ ܝ ∙ ௞ࡳ
ᇱ . As long as the sub-matrix ࡳ௞

ᇱ  is known, an 

eavesdropper can obtain the plaintext byൌ ௞ܠ ∙ ௞ࡳ
ᇱିଵ . The probability that the vector ࢋhas݇ 

zeros symbols in fixed positions is given by 

 

ܲሼ݁௞ ൌ 0ሽ ൌ
൫௡ି௞௞ ൯

൫௡௞൯
ൌෑ ሺ1 െ

ݐ
݊ െ ݅

ሻ
௞ିଵ

௜ୀ଴
, (5.4) 

and work factor for this attack can be evaluated with considering the cost of each matrix 

inversion as 

ூௌ஽~݇ଷܨܹ
1

ܲሼ݁௞ ൌ 0ሽ
. (5.5) 
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The ISD algorithm is very simple and for binary linear codes, while the improvement 

of ISD algorithm are introduced later by Lee–Brickell [65], Leon [131], Stern [121], Peters 

[20], and Becker et al. [132]. It is worth mentioning that the Lee–Brickell algorithm is a 

decoding algorithm whereas Stern’s algorithm originally was designated for finding the low-

weight codewords in a binary linear code. 

In the case whenࢋ௞ ് 0, then  

ᇱܝ ൌ ௞ܠ ∙ ௞ࡳ
ᇱିଵ ൅ ௞ࢋ ∙ ௞ࡳ

ᇱିଵ , (5.6)

where ࢋ௞ is an error vector chosen randomly with weight ൑	ݐ. In principle, all possible ܝᇱ 

should be considered and examined through a deterministic procedure [65]. One can noticed 

that considering a subset of all possible ࢋ௞ vectors, namely those with weight less than or 

equal to a given integer ݆, can be convenient for the eavesdropper.  

The work factor of Lee and Brickell’s algorithm can be evaluated as follows 

௝ܹ ൌ ௝ܶ൫݇ߙଷ ൅ ௝ܰ݇ߚ൯	, 

where ௝ܶ ൌ 1/∑ ൫௧௜൯൫
௡ି௧
௞ି௜൯/൫

௡
௞൯

௝
௜ୀ଴ , ௝ܰ ൌ ∑ ൫௞௜൯

௝
௜ୀ଴  and ߙ and ߚ are integers ൒ 1. 

 

The complexity of decoding general linear codes depends on all three code parameters 

 Table 5.9 summarizes the work factor of different ISD algorithms for the Goppa .(ݐ ,݇ ,݊)

code (1024, 524, 50). 

 

Table 5.9. Work factor of ISD for (1024, 524, 50) McEliece cryptosystem 

Algorithm Log. Of binary work factor Year 
 

Adams-Mejier 80.7 1986 
Lee-Brickell 70.89 1988 

Stern 66.21 1989 
Canteaut-Chabanne 65.5 1994 
Canteaut-Chabaud 64.1 1998 

Bernstein-Lange-Peters 60.4 2008 
Finiasz-Sendrier 59.9 2009 

 

Indeed, increase the Hamming weight of intentional error vector increases the security 

of the message where the ISD attack (in ݈݃݋ଶ) increases linearly in the number of intentional 

errors. Security of QC-MDPC is determined by the work factorܹܨௗ௘௖
ொ஼ ሺ݊, ,ݎ  ሻ and here weݐ
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investigate the decoding attack where the security of the message is related to the hardness of 

decoding ݐerrors [47], 

ௗ௘௖ܨܹ
ொ஼ ሺ݊, ,ݎ ሻݐ ൌ

,௜௦ௗሺ݊ܨܹ ,ݎ ሻݐ

ݎ√
, (5.7) 

where ܹܨ௜௦ௗis cost for decoding ݐ errors by ISD algorithm [39]. 

Table 5.10 shows work factor of the Peter’s attack [20] where the level security of the 

system linearly increases with weight of error vectors. 

 

 

 

 

 

 

 

 

  

Table 5.10 Peter’s level security for QC-MDPC codes  

݊  GDPF 5-PGDBF 10-PGDBF NBP 

9600	
 88 94 93 91 ݐ

WF 99.8456 101.7256 102.6656 97.035 

12288	
 42 - 47 45 ݐ

WF 40.9475 41.4066 - 40.2975 
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Chapter 6 

Conclusions and Perspectives  

McEliece cryptosystem was rediscovered after long time of research as an interesting 

alternative cryptosystem to existing systems as RSA and ECC. The quantum algorithms are 

considered to be the major challenge for the public cryptosystem. Despite that the original 

McEliece cryptosystem was not reported broken by quantum computers, it has been rarely 

considered in practical applications due to the large keys and low transmission rate when 

Goppa codes are used. The low complexities of the encryption and decryptions procedures 

used in the McEliece cryptosystem compared to other systems make this system more 

attractive in a number of applications. It can be implemented on small devices like PDAs, 

USB Tokens and mobile phones if the public key size is reduced. Most researches used 

highly structured codes which can be stored more efficiently. In this thesis, the McEliece 

cryptosystem based on QC-LDPC and MDPC codes is analyzed, that are widely accepted as 

a possible modification of the original version while maintaining robustness to known 

security threats. 

The larger part of this thesis was dedicated to develop a new class of decoders for 

LDPC/MDPC codes. First, we have optimized GDBF decoding algorithm to work over the 

binary symmetric channel. In fact, the original GDBF decoder is designed to work with soft-

decisions and change it to be pure hard decision decoding technique leads to performance 

degradation. The deterministic nature and simplicity of the GDBF decoder allow simple and 

comprehensive analysis. The hard decision bit-flipping in the GDBF decoder is related to the 

maximum value of the modified inverse function (MIF). As we illustrated that failure of that 

algorithm is related to its deterministic nature, we have developed a novel algorithm that 

combine the idea of GDBF and probabilistic approach (PGDBF) [A1]. The value of MIF 

suggests that a variable node should be flipped, but in the PGDBF decoder it is flipped with a 



 

120 
 

predefined probability ݌	1 > rather than being flipped automatically. It has been shown that 

the optimal value of parameter ݌ depends on the column weight of the code. The 

corresponding flipping probability is fixed during iterations, the tuning of parameters is 

simpler compared to previously proposed algorithms, and results in a minor increase of the 

decoding latency. It has been shown that FER performance of the PGDBF is significantly 

better than GDBF for various classes of LDPC codes and various code rates.  

By using the analysis of trapping sets, we have developed an improved version of the 

algorithm (the MUDRI algorithm) [B1]. The proposed algorithm significantly increases the 

probability of correcting error patterns un-correctable by the existing variants of bit-flipping 

algorithm, especially in the case when large maximum number of iterations is permitted. In 

MUDRI decoder, multiple decoding attempts with random re-initializations are used. 

Moreover, the presented decoding algorithms are robust to the logic gate failures. We have 

shown that the critical probability of failure in XOR logic gates and registers is rather 

insensitive to the code construction method and rate, and it is mostly determined by the 

codeword length. Furthermore, we have shown that the proposed decoder not only has large 

immunity to gate failures but, surprisingly, can utilize the hardware failures to improve the 

decoding performance.  

A relevant issue concerns on that the work factor of the information set decoding 

attacks (in݈݃݋ଶ) increases linearly with number of inserted errors to the transmitted messages 

during encryption. Therefore, starting from observation that the security of the message in 

McEliece cryptosystem is related to the hardness of decoding ݐ-error patterns and improving 

of decoding abilities has impact on the security of the system, we introduced optimal solution 

for improvement performance of the decoder with relatively low complexity. As long as the 

decoding process in the code-based cryptosystem is mostly expensive procedure, we 

proposed some decoding algorithms that can reduce the complexity. It has been observed that 

the multiple PGDBF decoders can be exploited with independent parallel decoding or with 

successive decoding. They are presented in the QC-LDPC/MDPC code-based McEliece 

cryptosystems. The improvement performance provided by these schemes is large, which 

allows correcting more errors and helps to protect the messages. 

As the decoder is the most complex part of the code based cryptosystem, the main 

challenge is to identify the solution with increased flexibility in the term of trade-off between 

security and complexity. It has been shown that the PGDBF decoder requires only binary 

logical operations and integer additions which can be implemented with simple 
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combinational logic gates, compared to the SPA algorithm which exploits the real valued 

messages. It has shown in [119] that the PGDBF decoder can be sufficiently implemented 

with high throughput and hardware resources required for the random generators can be 

reduced using IVRG method. The computational complexity is expressed in terms of the 

binary operations needed for each frame. The complexity of decoder is evaluated without 

taking into account the storage and transport complexity, although it is also important for 

efficient implementation. Taking these aspects in evaluating the overall complexity is not an 

easy task, and it is usually ignored the in existing literature. However, it is worth to notice 

that efficient FPGA implementation of PGDBF algorithm (that includes computing, storage 

and transport of the massages through the edges of the graph) results in significantly 

increased throughput when compared with state-of-the-art algorithms [119]. Also, it has been 

shown that the multiple PGDBF decoders offer superior trade-off between security, latency 

and decoding complexity. In this way the system designers can choose a fast procedure with 

moderate the complexity and high security.  

Our future research focuses on identifying the flipping sequences resulting in a 

minimum number of iterations requires for successful decoding of critical error patterns. On 

the other hand, if we allow restriction of the positions where the errors are inserted in the 

codeword during the encryption, this would result to the intentional creation of the trapping 

sets and further increase of the cryptosystem security. Also, it would be interesting to develop 

the deterministic algorithm based on GDBF that outperforms PGDBF without using a random 

generator with fast convergence, that would further reduce the cryptosystem complexity.  
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