

UNIVERSITY OF BELGRADE

SCHOOL OF ELECTRICAL ENGINEERING

OMRAN AL RASHEED

LOW COMPLEXITY DECODING ALGORITHMS

SUITABLE FOR APPLICATION IN ASYMMETRIC

CRYPTOSYSTEMS

Doctoral Dissertation

Belgrade, 2015

UNIVERZITET U BEOGRADU

ELEKTROTEHNIČKI FAKULTET

OMRAN AL RASHEED

ALGORITMI DEKODOVANJA MALE

KOMPLEKNOSTI POGODNI ZA PRIMENU U

ASIMETRIČNIM KRIPTOSISTEMIMA

doktorska disertacija

Beograd, 2015

Mentor disertacije

dr Predrag N. Ivaniš, vanredni profesor,
Univerzitet u Beogradu, Elektrotehnički fakultet

Članovi komisije

dr Zoran Čiča, docent,
Univerzitet u Beogradu, Elektrotehnički fakultet

dr Goran T. Đorđević, vanredni profesor,
Univerzitet u Nišu, Elektronski fakultet

dr Aleksandra Smiljanić, redovni profesor,
Univerzitet u Beogradu, Elektrotehnički fakultet

dr Marija Rašajski, vanredni profesor,
Univerzitet u Beogradu, Elektrotehnički fakultet

Datum odbrane

List of Contents

List of Figures………………………………………………….…………………. I
List of Tables.. IV
Abbreviations... V
Author’s publications.. VII
Abstract..

VIII

1. Introduction …………………………………………………………..……...... 1
1.1. Public key cryptosystems ……………………………………….......... 2
1.2. Post-quantum cryptography ………………………………………...... 5
1.3. Key size problem ………………………………………………........... 8
1.4. Contributions and Outline ……………………………………….……

12

2. McEliece Cryptosystem …………………………………………………….… 13
2.1. Goppa codes ………………………………………………………...... 14
2.2. Description of the McEliece cryptosystem ………………………...… 15
2.3. Modifications of McEliece cryptosystem based on LDPC codes …… 18

2.3.1. Permutation equivalent private and public codes …….… 21
2.3.2. Non-permutation equivalent private and public codes … 22

2.4. Moderate Density Parity Check (MDPC) codes …………………...… 24
2.4.1. Procedure of the MDPC/QC-MDPC code-based
McEliece …………………………………………………........

26

2.5. Implementations of McEliece cryptosystems ………………………...

27

3. LDPC Codes and Iterative Decoding Algorithms ………………………...… 29
3.1. Linear Block Codes ……………………………………………...…… 30
3.2. Preliminaries ……………………………………………………....….. 32
3.3. Encoding of LDPC codes …………………………………….…...….. 34

3.3.1. Progressive edge growth construction ………………...... 34
3.3.2. Quasi cyclic construction ………………………...…….. 37
3.3.3. Encoding process ……………………………………….. 38

3.3.3.1. Example of Greedy Permutation
Algorithm..

41

3.4. Decoding of LDPC codes …………………………………………….. 42
3.4.1. Belief Propagation Algorithm ………………………….. 45
3.4.2. Reduced Complexity Decoders ……………………........ 47
3.4.3. Gallager A\B decoder …………………………………...

48

4. Improvement of the Bit-Flipping Algorithm and Faulty Decoding ……..…. 51
4.1. Bit flipping algorithm ………………………………………………… 52
4.2. Weighted Bit Flipping algorithm and modified ……………………… 53
4.3. Gradient Descent Bit flipping algorithm …………………………...… 56
4.4.Optimize GDBF algorithm to the BSC ………………………….….... 58

4.4.1. Comparison between GDBF and other decoders……..... 61
4.4.1.1. Motivating Examples................................ 63

4.4.2. Probabilistic GDBF decoder for BSC …………….…..... 69

4.4.3.Find optimal ݌ value for PGDBF ………………….…… 76
4.4.4.The Multiple Decoding attempts and Random re--
Initializations (MUDRI) algorithm ……………………...….…

78

4.4.5. Analysis of the MUDRI algorithm…................................

82

4.5. Fault-Tolerant PGDBF and MUDRI Decoders for BSC …………….. 85
4.6. Hardware Realization and Complexity of PGDBF Algorithm………. 91

5. Performance and complexity of modified McEliece cryptosystem …………

95

5.1. The choice of the decoding algorithm …………………………..……. 96
5.1.1. Numerical results for LDPC codes …………………….. 98
5.1.2. Numerical results for MDPC codes ……………….…… 103

5.2. Computational complexity …………………………………...…..….. 106
5.3. Cryptanalysis of the McEliece cryptosystem …………………..…….. 114

5.3.1. Attacks on the Dual code …………………………….… 114
5.3.2. Information Set Decoding Attacks ………………….….. 115

6. Conclusion and Perspective …………………………………………………...

119

References …………………………………………………………………….…..

122

I

List of Figures

1.1 Symmetric (a) and asymmetric (b) cryptosystems …………………………… 1
1.2 Eavesdropper obtains the public key from public directory (a); Quantum

computer can break security by reverse computing private key faster than a
classical computer (b) ………………………….……………..…………...….

6

1.3 Post-quantum cryptography and broken cryptography by post quantum
computers …………………………….. 8

2.1 Original procedure of the McEliece cryptosystem with Goppa codes ……….. 17
3.1 The basic channel coding model ………………………………………...….... 31
3.2 The TG for the parity check matrix 33 .…..……………………………… (8,4)ࡴ
3.3 Bipartite graph before PEG procedure …………………………………..….... 35
3.4 The second stage from procedure PEG for 36 .…..…………………………… 6ݒ
3.5 Illustration of parity-check matrix of PEGReg (504, 252) LDPC code …....… 37
3.6 Illustration of parity-check matrix of Tanner (155, 64) LDPC code ……….... 38
3.7 Approximate lower triangular (ALT) form ……………………………..……. 40
3.8 Systematic approximate lower triangular (SALT) form …………………...… 40
3.9 Passed messages over TG for MP decoder at iteration ݈ ………………..…..... 45
3.10 FER performance on Tanner code (155,64) by passing decoding algorithms

over BSC ……………………………………………………………............... 50
3.11 FER performance on Tanner code (155,64) by passing decoding algorithms

over AWGN …………………………………………………………….…..... 50
4.1 Simple telecommunication model for AWGNC using GDBF decoder …....… 56
4.2 Convergence behavior and escape from local max ……………………….….. 57
4.3 Illustration of the variable node processing unit for (a) GDBF and (b) BF

algorithms over BSC …………………………………………………..…..…. 60
4.4 (a) Performance of GDBF in soft and hard ways for Tanner (155,64), 60 …..100=ܮ
4.4 (b) FER performance comparison for the (155,64) Tanner code, 60 ...……… 100=ܮ
4.5 Weight-three error configurations un-correctable by BF during 3 iterations… 64
4.6 Weight-three error configurations correctable by general GDBF during two

iterations …………………………………………………………………..….. 65
4.7 Weight-three error configurations correctable by Gallager A\B decoder and

uncorrectable by GDBF algorithm………………………………………..…... 66
4.8 Weight-three error configurations correctable by Gallager A\B decoder and

uncorrectable by GDBF algorithm. ……………………………………..…..... 66
4.9 Weight-four error configurations uncorrectable by GDBF algorithm where

 for each iteration …………………...……. 67 3ݒ ሻ gets stuck only on variable࢒ሺ࢈
4.10 Weight-five error configurations correctable by GDBF algorithm. …………. 67
4.11 Weight-six error configurations uncorrectable by GDBF algorithm where ࢈ሺ࢒ሻ

gets stuck on variables 6ݒ and 8ݒ after 9 iterations ……………………… 68
4.12 Illustration of the variable node processing unit for PGDBF (Algorithm 2) … 70
4.13 Behavior of GDBF and PGDBF algorithms for five-error pattern on the

Tanner code (155, 64) ……………………………………………………....... 73
4.14. Mechanism of GDBF and PGDBF to correct the error patterns on the Tanner

code (155, 64) …………………………………………………………….......
74-
75

4.15 Impact of the parameter p on PGDBF optimized for the BSC. The plot is for
the (155,64) Tanner code and QC(732.551), 10-2=ߙ ,10-3×4=ߙ and 77 100= ܮ

4.16 Performance of PGDBF algorithm for the (155,64) Tanner code with
different ݌ values …………………………………………………………......

77

II

4.17 MUDRI algorithm scheme …………………………………………….……... 79
4.18 Performance of GDBF and PGDBF with optimal choice for five-error pattern 80
4.19 Adaption method to solve the error pattern by decrease the threshold value... 80
4.20 Probability distribution of the successful decoding in the ݈-th iteration of

PGDBF, three-bit and five-bit error pattern, Tanner(155,64) code, 83 ...… 0.7=݌
4.21 Probability of unsuccessful decoding for the three-bit and five-bit error

pattern, MUDRI with ࡸ/ࡸہ૚ۂ attempts per 1ܮ iterations each, 84 ……...… 0.7=݌
4.22. FER as a function of number of iteration ݈, Tanner (155,64) code, 0.01=ߙ,

various decoding algorithms …………………..…………………………....... 84
4.23 Illustration of the variable node processing unit for PGDBF under faulty

hardware …………………………………………………………………..….. 86
4.24 FER performance as a function of ߙ under various decoding algorithms,

Tanner code (155,64), ܲ⨁=10-2, ܴܲ=10-3, 86 …..………………………… 100=ܮ
4.25 FER as function of parameter ݌, LDPC codes with 3=ߛ and 88 ..…0.004=ߙ ,4=ߛ
4.26 FER as a function of probability of error XOR gates, 0=ܴܲ ,0.004=ߙ, LDPC

codes with 3=ߛ and girth-8, with various code rates and codeword
lengths…... 89

4.27 FER as a function of probability of error in registers, 10-3=⨁ܲ ,0.008=ߙ,
LDPC codes with 4 = ߛ ,3 =ߛ and girth-8, various codeword lengths ……..… 90

4.28 FER as a function of crossover probability in BSC channel. The code is
LS(2388,1793)(C1), with ܲ⨁=10-3, ܴܲ=10-4, 0.7=݌ in the PGDBF and
MUDRI and other decoding algorithms ……………………………................ 91

4.29 Global architecture of PGDBF compared to the original GDBF…………..…. 92
4.30 FER performance comparison of the different decoders on the Tanner code

(155,64) …………………………………………………………………...…..

92
5.1 PGDBF decoders in the parallel form ……………………………………...… 97
5.2 Error correction performance as a function of the intentional errors for

Tanner code (155,64) under BF, PGDBF, MUDRI, MUDRI-P, SPA and
PGDBF-PR decoding algorithms ……………………………………….……. 98

5.3. Average number of iterations as a function of the intentional errors for
Tanner code (155,64) under BF, PGDBF, MUDRI, MUDRI-P, SPA and
PGDBF-PR decoding algorithms …………………………………………….. 99

5.4 Error correction performance as a function of the intentional errors for quasi-
cyclic 8 =ܿߩ ,4 =ݒߛ and ܰ=1296, under GDBF, PGDBF, MUDRI, PGDBF-
PR and SPA decoding algorithms ……………………………………………. 101

5.5 Error correction performance as a function of the intentional errors for QC-
LDPC PDFs code with ݊= 8168, 7/8=ܴ ,1021= ݌ and 5 =ݒߛ under SPA,
PGDBF, MUDRI-P and PGDBF-PR decoders ………………………. 102

5.6 Error correction performance as a function of the intentional errors for
QC-MDPC (9600,4800,90) under NBP, GDBF, 5-MUDR-P, and 10-
MUDRI-P algorithms ………………………………………............................ 104

5.7 Error correction performance as a function of the intentional errors for
QC-MDPC (12288,3072,220) under NBP, GDBF, and 5-MUDR-P
algorithms……………………………………………………………………..

104

5.8 Average number of iterations as a function of the intentional errors for
QC-MDPC (12288,3072,220) …………………………………………….….. 105

5.9 Comparison of the threshold during the decoding iterations for Tanner
(155,64) code, 108…….…………………………………………………3 =ݒߛ

5.10 Comparison of threshold during the decoding iterations for QC-LDPC
(8168,1021) code, 109 .……..……………………………………………… 5=ݒߛ

III

5.11 Comparison of the threshold during the decoding iterations for QC-
MDPC (9600,4800,90) code, 109 ...….…………………………………… 45=ݒߛ

5.12 Comparison of the threshold during the decoding iterations for QC-MDPC
(12288, 3072, 220) code, 110 ….….………………………………………55=ݒߛ

5.13 The computational complexity (per decoding process) comparison in the term
of binary operations for Tanner code (155,64) ……………………………….. 113

5.14 The computational complexity (per decoding process) comparison in the term
of binary operations for QC-MDPC (12288,3072,220) …………………….. 113

IV

List of Tables

1.1 Key size comparisons ECC, RSA and McEliece bit size requirements for
AES to achieve different bit-security level ……………………………….....

9

1.2 Parameters of the original and modified McEliece cryptosystem ………….. 10
2.1 Performance comparison of microcontroller implementations for different

public encryption schemes ……………………………………………...…...

28
2.2 Performance comparison of FPGA implementations for different public key

encryption schemes ……………………………………………………….....

28
4.1 Hardware and throughput estimation for PGDBF with different RG

implementation and for Min-Sum ……………………………………...……

93
5.1 LDPC decoders are used to represent Figure 5.2 …………………….……... 100
5.2 Average number of iterations and number of errors that can be corrected

with FER= 10-4...

100
5.3 Number of errors that can be corrected with FER= 2·10-6 for quasi-cyclic

 and 8 =ܿߩ ,4 =ݒߛ
ܰ=1296...

101

5.4 Polynomials used in the construction of rate-7/8 QC-LDPC code based on
PDFs …………………………………………………………………..……..

102

5.5 FER performance of different decoders for QC-LDPC, ݊=8168 at 103 30=ݐ
5.6 The total number of operations for some LDPC decoders during a

single iteration…………………………………………………………..…...

107
5.7 Average overall complexity per frame (Real: real comparison or addition;

Int.: integer comparison or addition; Bin.: binary operation) ……………..…

111
5.8 QC-MDPC (12288,3072,220); complexity × 107 …………………….…… 112
5.9 Work factor of ISD for Goppa code (1024, 524, 50) McEliece cryptosystem 117
5.10 Peter’s level security for QC-MDPC codes ……………………………...…. 118

V

Abbreviations

AES Advanced Encryption Standard
ALT Approximate Lower Triangular
ARQ Automatic Repeat Request
AWGNC Additive White Gaussian Noise Channels
BCH Bose-Chaudhuri-Hocquenghem
BEC Binary Erasure Channel
BER Bit Error Rate
BF Bit-Flipping
BP Belief-Propagation
BSC Binary Symmetric Channel
CCA Chosen Ciphertext Attacks
DES Data Encryption Standard
DLP Discrete Logarithm Problem
DVB Digital Video Broadcast
ECC Elliptic Curve Cryptography
ECDLP Elliptic Curve Discrete Logarithm Problem
FAID Finite Alphabet Iterative Decoders
FER Frame Error Rate
FPGA Field-Programmable Gate Arrays
GBA Generalized Birthday Algorithm
GDBF Gradient Descent Bit Flipping
GRS Generalized Reed-Solomon
IDES International Data Encryption Algorithm
IEEE Institute of Electrical and Electronic Engineers
IFP Integer Factorization Problem
IMWBF Improved Modified Weighted Bit-Flipping
IPEG Improved Progressive Edge Growth
ISD Information Set Decoding
IVRG Intrinsic-Value Random Generator
LDPC Low-Density Parity-Check
LFSR Linear Feedback Shift Register
LLR Log Likelihood Ratio
LS Latin Square
MAJ Majority
MAP Maximum-a-Posteriori
MDPC Moderate Density Parity-Check
M-GDBF Multi Gradient Descent Bit Flipping
MIF Modified Inverse Function
ML Maximum Likelihood
MP Message Passing
MS Min-Sum

VI

MUDRI Multiple Decoding attempts and Random re-Initializations
MWBF Modified Weighted Bit-Flipping
NBP Normalized Belief Propagation
NGDBF Noisy Gradient Descent Bit Flipping
OTM One-Time Pad
PBF Probabilistic Bit Flipping
PDFS Pseudo Difference Families
PEG Progressive Edge Growth
PGDBF Probabilistic Gradient Descent Bit Flipping
PGP Pretty Good Privacy
QC Quasi-Cyclic
RAM Random Access Memory
ROM Read Only Memory
RS Reed-Solomon
RSA Rivest, Shamir, Adleman public-key cryptography algorithm
S/MIME Secure/Multipurpose Internet Mail Extensions
SALT Systematic Approximate Lower Triangular
SNR Signal-to-Noise Ratio
SPA Sum-Product Algorithm
SSH Secure Shell
TBBF Two-Bit Bit Flipping
TG Tanner Graph
TMP Trusted Platform Module
TSO Trapping Set Ontology
WBF Weighted Bit-Flipping
WF Work Factor

VII

Author’s publications

Journals

[A1] O. Al Rasheed, P. Ivanis, and B. Vasic, “Fault-tolerant probabilistic gradient-descent
bit flipping decoder,” IEEE Communications Letters, vol. 18, no. 9, pp. 1487-1490,
September 2014. (IF=1.268)

[A2] S. Brkic, O. Al Rasheed, P. Ivanis and B. Vasic, “On Fault Tolerance of the Gallager
B Decoder Under Data-Dependent Gate Failures,” IEEE Communications Letters, vol.
19, no. 8, pp. 1299-1302, August 2015. (IF=1.268)

[A3] O. Al Rasheed, D. Radovic and P. Ivanis, “Performance analysis of iterative decoding
algorithms for PEG LDPC codes in Nakagami fading channels,” Telfor Journal, vol.
5, no. 2, 2013, pp. 97-102,November 2013.

[A4] O. Al Rasheed, S. Brkic, P. Ivanis and B. Vasic, “Performance Analysis of Faulty
Gallager-B Decoding of QC-LDPC Codes with Applications,” Telfor Journal, vol. 6,
no. 1, pp.7-11, November 2014.

Conferences

[B1] O. Al Rasheed, P. Ivanis, “Complexity and Performance of QC-MDPC code-based
McEliece Cryptosystems,” in Proceedings IEEE TELSIKS 2015, Nis, Serbia, October
14th-17th, 2015, pp. 209-216.

[B2] P. Ivanis, O. Al Rasheed and B. Vasic, “MUDRI: A fault-tolerant decoding
algorithm,” in Proceedings IEEE International Conference on Communications (ICC),
London, 8-12 June 2015, pp. 4291- 4296.

[B3] O. Al Rasheed, D. Drajic, P. Ivanis and G. Djordjevic, “Complexity of the McEliece
Cryptosystem based on GDBF Decoder for QC-LDPC Codes,” in Proceedings
International Scientic Conference on Information, Communication and Energy
Systems and Technologies (ICEST 2014), vol. 2, June 2014, Nis, Serbia, pp. 321-324.

[B4] O. Al Rasheed and P. Ivanis, “Analiza bit fliping dekodera LDPC kodova realizovanih
pomocu nepouzdanih komponenti,” INFOTEH-JAHORINA, vol. 13, March 2014, pp.
403-407.

[B5] O. Al Rasheed, S. Brkic, P. Ivanis and B. Vasic, “Performance analysis of faulty
Gallager B decoding of QC-LDPC Codes,” in Proceedings of 21st Telecommunication
Forum (TELFOR 2013), November 2013, Belgrade, Serbia, pp. 323-326.

[B6] O. Al Rasheed, D. Radovic, P. Ivanis, “Performances of Progressive Edge-Growth
LDPC codes in Nakagami fading channel,” in Proceedings of 20st Telecommunication
Forum (TELFOR 2012), November 2012, Belgrade, Serbia, pp. 560-563.

VIII

Abstract

Most of the public key cryptosystems depend on the hardness of either the

factorization or the discrete logarithm problems. However, computation both of them can be

done in polynomial time on a quantum computer. Therefore, there exists an urgent need for

alternative cryptosystems that resist attackers designed on quantum computers. Code-based

cryptography is one of the most promising alternatives for post-quantum cryptography where

its security depends on the problem of decoding unknown error-correcting codes, which is

known to be ࣨ࣪-hard. McEliece cryptosystem belongs to this class of crypto-schemes and is

based on the difficulty to decode an unknown linear code. Encoding and efficient decoding of

a certain code in the presence of a fixed number of random errors are the key idea of

McEliece cryptosystem. The main advantages of this system are fast encryption and

decryption procedures, while the main drawback is the large public key size when the Goppa

codes are originally used. For this reason, McEliece cryptosystem has not stood up to RSA

for practical applications, i.e., it was assumed to be impractical for many applications.

However, attempts to reduce the public key size by using alternative codes, while

maintaining the same security levels, lead to promising results.

This thesis focuses on the QC-LDPC/MDPC code-based McEliece cryptosystems.

QC-LDPC/MDPC codes are one of the most promising families of codes to replace the

Goppa codes that still preserve the desired security properties of the cryptosystem. The

drastic reductions in the public key size can be achieved by these codes. Security of the

McEliece cryptosystem is directly determined by inability to detect the properties of codes

from the intercepted sequences and the performance of an applied decoder. If the decoder has

the advantage of being able to correct more errors, then more errors can be inserted during

the encryption process, which have strong positive impact on the security. In addition,

achieving low decoding failure rates is critical in McEliece cryptosystem such that the

information bits can be extracted and sending the requesting retransmission can be avoided,

which can help an attacker to detect the information bits.

As long as that the decoding process is the most complex part in code-based

cryptography, the selection of an efficient decoding algorithm is crucial to the overall

performance. The complexity of the iterative decoding algorithms for LDPC codes only

grows linearly in the code length. There are several iterative decoding algorithms that can be

applied in the same LDPC codes with different performance and complexity. It is well-known

IX

that the Sum-Product Algorithm (SPA) has a superior performance but complexity of this

algorithm is very high and decoding speed is limited.

The decoders proposed in the thesis achieve the good performance, comparing with

the state-of-the art soft decoding algorithms, with lower implementation complexity. We

discuss the possible use of Probabilistic Gradient Descent Bit Flipping (PGDBF) and

Multiple Decoding attempts and Random re-Initializations (MUDRI) decoders which achieve

a significant advantage in terms of performance with limited complexity.

The proposed decoding algorithm for LDPC/MDPC codes, as we will see,

outperforms its competitors both in terms of computational complexity as well as decoding

failure rate. A great flexibility in designing LDPC/MDPC decoding algorithms provides a

possibility to improve the security level in McEliece cryptosystems.

X

Rezime

Većina algoritama sa javnim ključevima svoju sigurnost zasniva na težini

faktorizacije brojeva na proste činioce ili problemu izračunavanja diskretnog logaritma. Ipak,

oba pomenuta problema su rešiva u polinomijalnom vremenu korišćenjem kvantnih računara.

Iz ovog razloga, javila se potreba za razvojem alternativnih kriptosistema koji uspešno

odolevaju napadima izvedenim pomoću kvantnih računara. Dobro rešenje za post-kvantnu

kriptografiju predstavljaju kriptografski algoritmi zasnovani na teoriji zaštitnih kodova, pri

čemu se njihova sigurnost zasniva na problemu dekodovanja nepoznatih zaštitnih kodova, a

poznato je da je to NP-kompletan problem. Tipičan predstavnik ove klase kriptografskih

algoritama je McEliece kriptosistem. Kodovanje i efikasno dekodovanje određenog koda u

prisustvu fiksnog broja slučajnih grešaka predstavlja ključnu ideju McEliece kriptosistema.

Osnovne prednosti ovog sistema su velika brzina šifrovanja i dešifrovanja, dok osnovnu

manu predstavlja veličina javnog ključa, posebno u originalnoj varijanti algoritma sa Goppa

kodovima. Iz ovog razloga, McEliece kriptosistem nije smatran adekvatnom zamenom za

RSA, tj. smatran je nepraktičnim za razne primene. Ipak, pokušaji da se redukuje veličina

javnog ključa korišćenjem drugih klasa kodova, uz zadržavanje istog nivoa sigurnosti, doveli

su do znatno unapređenih rešenja.

Ova teza pre svega se bavi McEliece kriptosistemima baziranim na QC-LDPC/MDPC

kodovima. QC-LDPC/MDPC kodovi predstavljaju jednu od najpogodnijih familija kodova

kojima se mogu zameniti Goppa kodovi a da se zadrži isti nivo sigurnosti kriptosistema.

Primena ovih kodova dovodi do drastičnog smanjenja veličine javnog ključa. Sigurnost

McEliece kriptosistema direktno je određena nemogućnošću da se odrede osobine koda iz

presretnutih sekvenci, kao i performansama primenjenog dekodera. Ako dekoder ima

sposobnost ispravljanja većeg broja grešaka, tada se više grešaka može utisnuti tokom

procesa šifrovanja, što ima pozitivan uticaj na ostvareni nivo sigurnosti. Pored prethodno

navedenog, postizanje male verovatnoće neuspešnog dekodovanja je kritično za uspešno

funkcionisanje McEliece kriptosistema, da bi se izbegle retransmisije i tako otežalo napadaču

da detektuje informacione bite.

Pošto je dekodovanje najsloženiji korak u procesu dešifrovanja, izbor efikasnog

algoritma dekodovanja je ključan za performanse kompletnog kriptosistema. Kompleksnost

iterativnog algoritma dekodovanja LDPC kodova raste linearno sa dužinom kodne reči.

Postoji nekoliko iterativnih algoritama dekodovanja koji se mogu primeniti na isti LDPC kod,

XI

od kojih svaki obezbeđuje različite performanse i svakog odlikuje drugačiji nivo

kompleksnosti. Dobro je poznato da algoritam sumiranja i proizvoda (Sum-Product

Algorithm - SPA) ima superiorne performanse, ali kompleksnost ovog algoritma je velika i

brzina dekodovanja je ograničena.

Dekoderi predloženi u ovoj disertaciji postižu dobre performanse, uporedive sa

standardnim algoritmima sa mekim odlučivanjem, uz značajno nižu kompleksnost

implementacije. U disertaciji je razmotreno moguće korišćenje probabilističkog Gradient

Descent Bit Flipping algoritma (PGDBF) i algoritma sa višestrukim pokušajima dekodovanja

sa slučajnom reinicijalizacijom (Multiple Decoding attempts and Random re-Initializations -

MUDRI), čija primena rezultuje značajnim poboljšanjem performansi uz ograničenu

kompleksnost.

Predloženi algoritam dekodovanja za LDPC/MDPC kodove, kao što će biti pokazano,

prevazilazi performanse drugih predloženih rešenja kako u pogledu kompleksnosti dekodera

tako i u pogledu postignutog nivoa verovatnoće greške. Velika fleksibilnost u dizajniranju

algoritama za dekodovanje LDPC/MDPC kodova rezultuje mogućnošću da se unapredi

stepen sigurnosti McEliece kriptosistema.

Cha

Intro

Cryptogr

security

cryptogra

Cryptogr

advanced

cryptogra

fulfill thi

encrypted

ciphertex

designed

their eval

T

based) an

Figure 1.1

apter

oduct

raphy has be

issues such

aphy stands

raphy has be

d informati

aphy is to as

is purpose. A

d message, i

xt by proced

d for the enc

luation by ex

The cryptosy

nd (ii) symm

1. Symmetric

1

ion

een associate

as confiden

as a defense

ecome a sign

ion and c

ssure the con

A cryptosyst

i.e., the ciph

dure called th

cryption and

xhaustive se

ystems can b

metric (secret

(a)

(a) and asym

ed with desi

ntiality, authe

e line agains

nificant resea

communicati

nfidentiality

tem converts

hertext, and a

he decryptio

decryption

earch is impr

be widely div

t key-based)

mmetric (b) cry

1

ign of algori

enticity and

st any potent

arch area, wh

ion techno

of sensitive

s the informa

allows singu

on. A possib

algorithms.

ractical for a

vided in two

systems, as

yptosystems

ithms that as

integrity of

tial abuse in

hich is guide

logy. The

e data. Crypt

ation messag

ular recovery

ble cryptosys

They are ch

an attacker.

o classes: (i)

it is illustrat

spire to find

f sensitive d

n communica

ed by the req

primary

tosystems ar

ge, i.e., the p

y of the plain

stem employ

hosen in suc

) asymmetric

ted in Figure

(b)

d solutions fo

data. Actually

ation system

quirements o

objective o

re designed t

plaintext, int

ntext from th

ys large key

ch a way th

c (public key

e 1.1.

or

y,

ms.

of

of

to

to

he

ys,

at

y-

Chapter 1. Introduction

2

In the symmetric cryptosystem, the same key is used for the encryption and

decryption procedures. The private key must remain secret and cannot be disclosed to a

person or persons who are not intentional receivers of an encrypted message. In the case

when the private key becomes compromised, any message encrypted using that key might be

compromised. The private key cryptosystem is sometimes referred as the symmetric

keysystem, since the same key is used in both ends of the system. In this kind, two main

problems appear when the private key-based system is used: (i) key generation and (ii) key

distribution. The system requires that ൫ࣥଶ൯ secret keys need to be distributed over a secure

communication channels for ࣥ communications partners, i.e., each information flow needs

different secret key. Moreover, the secure communication channels can be difficult to

achieve. Common examples of symmetric key encryption schemes are One-Time Pad (OTP)

[1],[2], the Data Encryption Standard (DES) originally specified in [3], International Data

Encryption Algorithm (IDEA) [4] and the Advanced Encryption Standard (AES) [5]. DES

with 56-bit key was the most widely used symmetric-key encryption algorithm, and even

after thirty years of crypto-analysis, the most practical attack remains exhaustive key search.

Triple DES (or 3DES) uses the same algorithm, applied three times with different keys giving

it an effective key length of 128 bits [6]. The AES is intended to replace the DES and Triple-

DES. It primitive is (usually) based on it representing a keyed pseudo random permutation.

For near term AES-128 is advised for using and for long term it will be AES-256.Symmetric

key encryption algorithms have the fastest implementations in hardware and software. Thus,

they are very well suited to the encryption of large amount of data.

1.1. Public key cryptosystems

Whitfield Diffie and Martin Hellman [7] first introduced the notion of the public-key

cryptosystem in mid-seventies. In their cryptosystem, different keys are assigned to the sender

and receiver, which solve the problem of private keys distribution, which exists in the

symmetric cryptosystems. Mathematical one-way functions are used to generate many of the

pair keys. These functions need to be easy to implement in order to create the keys, but hard

to invert.

The public-key encryption schemes are basically slower than symmetric-key

encryption algorithms. Symmetric key operations are often based on low-level bit

Chapter 1. Introduction

3

manipulation primitives while public-key operations are often based on exponentiation of

large integers. In addition, public keys must have many more bits than symmetric keys that

achieve the same level of security. For this reason, public-key encryption is commonly used

in practice for encryption of small data items and/or for transport of keys, subsequently used

for data encryption by symmetric-key algorithms. Therefore, symmetric key and public key

cryptography complement each other to provide cryptosystems used in practice.

Authentication and digital signatures are very important applications of public key

cryptography. For instance, Pretty Good Privacy (PGP), first released in 1991, is a software

package that provides encryption and authentication for e-mail and file storage applications.

It uses Rivest, Shamir and Adleman (RSA) public key cryptosystems [8] for key transport

and IDEA for bulk encryption of messages. Similar schemes are used for the

Secure/Multipurpose Internet Mail Extensions (S/MIME) secure e-mail standard. Disk

encryption systems like Microsoft’s Bitlocker also uses a similar approach on systems

equipped with Trusted Platform Module (TMP) chips. The bulk encryption of the data on the

disk uses AES and then encrypted using RSA. The SSH (or Secure Shell) network protocol

widely used for remote connections to Unix-like operation systems can also use public key

cryptography for logging in operation.

In this context, RSA, Rabin, ElGamal and Elliptic Curve are the most famously used

public-key cryptosystems [8-12]. The security of the known cryptosystem depends on the

hardness of a number of theoretic problems such as integer factorization problem (IFP) and

the computations of discrete logarithm problem (DLP) in finite fields or in groups of points

on an elliptic curve.

RSA is a public key encryption system designed by Rivest, Shamir, and Adleman in

1978, as a signature and encryption scheme. It has received a lot of attentions and it is

commonly known how to choose its parameters that guarantee the security against the best

known attacks using current computer platforms. In this algorithm, both encryption and

decryption are executed using exponentiation. The security of RSA system comes from the

difficulty associated with factoring large prime numbers, which are incorporated into public

and private keys. Thus, the ability to decipher plaintext from the use of a public key and

ciphertext is the equivalent of factoring two large primes. The commonly used key size for

RSA is 1024-bits, due to the progress on the factorization problem, it is expected that

changing the key size is required. Therefore, the key sizes that are considered to be secure

today are even longer.

Chapter 1. Introduction

4

In 1985, Koblitz and Miller suggested the use of the elliptic curves to design public

key cryptography systems [11], [12].An elliptic curve cryptography (ECC) based on elliptic

curve theory that can be utilized to produce the faster, smaller and more efficient

cryptographic keys instead of the traditional method of creation, which are based on the

products of very large prime numbers. Equations based on elliptic curves have a

characteristic that is useful for cryptography purposes: they are relatively easy to accomplish,

and extremely hard to reverse. An ECC is used in the most advanced technologies as TLS,

PGP and SSH on which advanced web and new IT world are based. In addition, ECC is

based on the intractability of the Elliptic Curve Discrete Logarithm Problem (ECDLP) that is

much more difficult to defy compared to IFP, at the equivalent key lengths. For comparison

between RSA and ECC, it is extensively thought that the same level of security 128-bit, it can

be achieved using ECC with the key size is 256 bits while RSA needs 3072-bits [13].

Efficient ECC hardware implementations for curves can be found in [14-16] which all give

good performance at moderate resource requirements.

In 1998, Hoffstein, Pipher and Silverman introduced NTRU cryptosystem [17]. This

system depends on the algebraic structures of certain polynomial rings. The hard problem

which NTRU depends on it can be defined as a problem of finding a short vector in a given

lattice. A mixing system used in the encryption procedure relies on polynomial algebra and

reduction modulo two numbers. The decryption procedure uses un-mixing system whose

validity depends on elementary probability theory. For comparison between NTRU, RSA and

ECC, the procedure NTRU cryptosystem is significantly faster than the RSA and it is two

orders of magnitude faster than ECC, but the keys of NTRU are longer than ECC keys [18].

Another important class of the public key cryptography is code-based cryptography.

Typically, error-correcting codes are used for increasing the reliability of communication

transmission, which is in all its forms subjected to the channel noise. Starting from

observation that the Goppa codes allow fast and efficient error correction, Robert J. McEliece

in 1978 proposed a public key cryptosystem based on the coding theory [19]. In fact, the

cryptography system proposed by McEliece is not only the first encryption scheme based on

the coding theory but over the years remain resistant to the attacks attempting to recover the

secret key [20]. Soon after the McEliece’s publication, a number of researchers adapted his

idea and started to refine and improve the original concept. The Niederreiter cryptosystem is

known as a coupled version of McEliece cryptosystem where Generalized Reed-Solomon

(GRS) codes are used [21] and the new update version can be found in [22] where the Goppa

codes are used. It uses the smaller public key sizes and equivalent security. They notice some

Chapter 1. Introduction

5

drawbacks of McEliece’s scheme, among of them, the necessity for a large key, for 128-bit

security the best known attacks force a key size is around 192192 bytes which prevent its

widespread adaption. In the McEliece cryptosystem, the message is represented as a binary

vector and mapped to a unique transmitted message by the redundancy bits. The proportion

of useful data (non-redundant) transmitted in each codeword is called the transmission code

rate. The transmission code rate used in the classical McEliece cryptosystem is 0.5 which is

considered low compared with the full code rate in RSA. Worth mentioning that the

McEliece cryptosystem is free to use counter to another public-key cryptosystems such as

NTUR cryptosystem where is patented by the company NTUR Cryptosystems [23].

1.2. Post-quantum cryptography

Wineland [24] said: “Perhaps the quantum computer will be built in this century. If so, it will

change our lives in the same radical way as the classical computer transformed life in the

last century”. Physicists are prophesying that large–scale quantum computers may be

available in the next 15 to 20 years due to the technological progress. The quantum

computers are a new class of computers which essentially differ from the classical computers.

In quantum computing, the fundamental unit can hold both 0 and 1 value at the same time;

this is known as a superposition of two states. These quantum bits are known as qubit. The

quantum information theory is considered as a suitable framework to describe their

computational features rather than classical information theory.

The quantum algorithms can be simply defined as the sequence of the basic of

manipulations of qubits, and these algorithms specifically required for the quantum

computers to operate intelligible upon information processing, which cannot be run on

classical computers. Regardless that the large quantum computers exist today or not, the

mathematicians try to improve the algorithms that convenient to carry out the functions on

this modern computer architecture during the period of time preceding. It has been shown

that some issues can be solved in remarkably less running time by quantum algorithms in

contrast to the traditional algorithms running on the classical electronics circuit hardware, as

shown in Figure 1.2.

Chapter 1. Introduction

6

(a) (b)

Figure 1.2. Eavesdropper obtains the public key from public directory (a); Quantum computer can
break security by reverse computing private key faster than a classical computer (b)

The first algorithm for quantum computing introduced by Peter Shor in 1994 with

great importance for effective implementations, and in 1996 he again considerably improved

the original algorithm [25], [26]. Shor showed how to do so in a futuristic scenario. Actually,

Shor’s algorithm is considered as a probabilistic algorithm that divided into two parts, a

classical part and a quantum algorithmic part. The original Shor’s algorithm aims to

decompose a non-negative composite integer N in its prime factors on a quantum computer.

In 2001, Shor’s algorithm was implemented on a 7-qubit quantum computer to factorize the

number 15 by Chuang et al [27]. After ten years and using adiabatic quantum algorithms, the

Chinese researches succeeded to factorize the number 143 [28]. The special feature of this

algorithm is that its running time can be considered the smallest compared with any known

algorithm and can be applied to solve the related DLP. However, in the past time there is a

significant progress to solve the integer factorization and discrete logarithm problem using

the classical computers [29-31].

 “Is cryptography dead?”—Bernsteinet al. asked in the beginning of the book [32]. In

fact, the quantum computers will not end the secure of telecommunication system, but other

public key cryptosystems require taking place of the famous cryptosystem as RSA and ECC.

It can be believed that the quantum computers have ability to solve problems in

polynomial time and these problems are designed to be adamant for the classical computer.

So, novel security model have to be improved to resist the quantum adversaries.

The post-quantum cryptography relates to cryptographic systems that are secure

against attacks by conventional computers and withstand against attacks by all known

Chapter 1. Introduction

7

quantum algorithms which are applicable in future. Most of current symmetric cryptography

algorithms like AES are considered to be relatively secure from attacks by quantum

computers, by increase the key sizes of the symmetric cryptosystems. We say that AES-128

is a difficult for a classical computer to break while AES-256 would be difficult for a

quantum computer. Therefore, the post-quantum symmetric cryptography will be similar to

the current symmetric cryptography.

In the context of the quantum computers, fortunately, some classes of asymmetric

cryptosystem can be considered as a post-quantum cryptography as shown in Figure 1.3.

There are at least four classes of public key cryptosystem that survive according to [32]:

hash-based as “Merkle’s hash-tree signature system”, code-based as “McEliece encryption”,

lattice-based as “NTRU encryption” and multivariate-quadratic-equations as “HFE signature

scheme” cryptosystems — to the best of our knowledge.

Today, two known quantum algorithms, Grover’s and Shor’s [25, 26, 33] are used to

break the current state-of-the-art cryptosystems. In fact, there are no applicable with the same

impact on the code-based schemes.

Bernstein used Gover’s quantum algorithms were applied on the McEliece

cryptosystem in order to break it [36]. Fortunately, it was not able to break McEliece’s

system or other code-based cryptosystems. Some adjustable parameters are suggested in the

case of sturdy quantum computers like force the McEliece key size to quadruple. In [37] the

authors argued that quantum computers have only a small impact on the McEliece public-key

system, reducing the attacker’s decoding cost from 2140 to 2133 for a code with length 4096

and dimension 3556.

In short: McEliece cryptosystem, together with cryptographic schemes based on

lattices, multivariate polynomials, or on hash functions, is one of the oldest public key

cryptosystems and the oldest that is conjectured to be post-quantum secure.

Figure 1.
means2ܾ;
	
	

1.3. Key

An appro

chosen a

for the s

difficulty

cryptosys

designed

values —

general-p

anticipate

However

developm

slow dow

which als

O

lengths to

Brok
qua
comp

Tripl

R

E

D

ECD

ElG

3. Post-quan
mean (1)݋+1

y size prob

opriate key s

ccording to

system. The

y of a brute-

stem must

d and when c

— as the auth

purpose fact

e that the ke

r, these choi

ment of techn

wn of the en

so must be ta

On the other

o preserve th

ken by
antum
puters

e DES,

RSA,

CC,

DSA,

DSA,

Gamal

ntum cryptogr
ns something c

blem

size of any

the all know

 size of key

-force attack

increase wi

computers ar

hors recomm

oring algorit

ys for these

ices conside

nology. At a

ncryption an

aken into ac

hand, the d

he security.

Cr

raphy and br
converges to

cryptosystem

wn attacks, w

y is measur

k exponentia

th the time

re getting fa

mended, but

thm was 20

1024 and 20

ered as temp

all events, in

nd decryption

count.

different sort

Generally, t

ryptograph

8

roken crypto
1 as ܾ →	∞

m is proport

which could

red in bits a

ally. For inst

e when mor

aster. In 197

in 2005, the

0-digits (663

048 bits long

porary soluti

ncrease the k

n procedure

ts of cryptos

the systemat

hers

ography by p

tional to the

be believed

and increase

tance, an ave

re efficient

8, the key o

e largest (kno

3 bits) [38].

g may be bre

ions to conf

key size of t

es. In additio

systems dem

ic cryptosys

Pos
cry

AE

McE

code

Merk
(1979
^ሺ1൅

H

with
p

NT

with ܾ

Chapter

post quantum

security. Th

that it can c

e the key si

erage size o

factoring al

of RSAwas 2

own) numbe

 At this tim

eakable in th

front the new

the cryptosy

on, the mem

mand widely

stems require

st‐quantum
yptography

S; for ܾ൑128

Eliece (1978)

length ܾ^ሺ1൅
ሺ1ሻሻ

kle signature
9); with strong
൅݋ሺ1ሻሻ‐bit hash

FEv(1996);

h ܾ^ሺ1൅݋ሺ1ሻሻ
polynomials

TRU (1996);

^ሺ1൅݋ሺ1ሻሻ bit

1. Introductio

m computers;

he key size

constitute ris

ize raises th

f key in RS

lgorithms ar

200-digit lon

er forced by

me, the exper

he near futur

w attacks an

ystem leads t

mory increase

different ke

e shorter key

);

݋

es
g ܾ
h

tts

on

ܾ

is

sk

he

A

re

ng

a

rts

re.

nd

to

es

ey

ys

Chapter 1. Introduction

9

compared with the asymmetric cryptosystem as RSA which need longer key. Worth

mentioning that ECC has the ability to keep its security with the key lengths similar to those

of symmetric systems. For example, to provide security equivalent to AES, then RSA would

have to range approximately between 3072 and 15000 bits long, which is so large that

standard embedded hardware would be unable to provide reasonable levels of performance or

throughput, while ECC key of 256 bits would provide at less than 1/2 the size as shown in

Table 1.1 [13].

Table 1.1. Key size comparisons ECC, RSA and McEliece bit
size requirements for AES to achieve different bit-security
level

 AES-128
small

AES-192
medium

AES-256
large

Bit-security level 128 192 256

ECC 256 384 512

RSA 3072 7680 15360

McEliece 460 647 - 7 667 885

In this thesis we focus on code-based cryptosystem, especially on the McEliece

cryptosystem. It is based on the problem of decoding a general linear code. Its security based

on the hardness of correcting errors in linear codes and the hardness of distinguishing the

public code description from random. It is considered immune to quantum computer attacks

[20]. Therefore, there is a clear perspective to be a candidate for post-quantum encryption

scheme.

In McEliece cryptosystem, the most of operations in the encryption and decryption

procedures are based on the binary linear codes which can be implemented efficiently in

dedicated hardware. Moreover, factoring problem (FP) and DLP based cryptosystem require

computationally expensive multi-precision integer arithmetic while the operations on binary

codes do not need it, so it is beneficial for small computing platforms. McEliece

cryptosystem performs great in comparative criterion and has a time complexity of ܱሺ݊ଶሻ,

while RSA has a time complexity ofܱሺ݊ଷሻ. Therefore, the longer key sizes in the McEliece

cryptosystem lead to higher complexity but, in fact, it is very low compared with RSA, even

when Goppa codes are used. Table 1.2 shows that the McEliece system and its Niederreiter

[22] dual version (homologue) display lower encryption and decryption complexity than the

Chapter 1. Introduction

10

asymmetric schemes as RSA with respect to the same security level. Additionally, in some

applications the profits of very fast encryption and decryption are surpassed by the costs of

communicating and storing these keys. In the case of the post-quantum cryptography

algorithms, larger key sizes are required than in commonly used "pre-quantum" public key

algorithms. In [40] introduces the parameters that satisfy a minimum security level of the

McEliece cryptosystem.

Table 1.2. Parameters of the original and modified McEliece cryptosystem

 Key Size a Rate ࢑ ࢑/ࢉ࢔ࢋ࡯ ࢈ Ref ࢊ		࢑/ࢉࢋࢊ࡯ ࢉ

McEliece
(1024,524)

67072 0.51 524 514 5140 [51]

Niederreiter
(1024,524)

32750 0.57 284 50 7863 [51]

RSA,1024-bit
mod. Public exp.17

256 1 1024 2402 738112 [51]

QC-LDPC 6144 0.75 12288 658 4678 [50]
a Expressed in bytes
bInformation block length (bits)
c Number of binary operations per information bit for encryption
d Number of binary operation per information bit for decryption

Several attempts have been made to propose alternatives to the classical Goppa codes.

The main motivation is to additionally reduce the size of the public and private keys. The

recent solutions seek to use cyclic or quasi-cyclic codes (QC) in code-based public key

cryptosystems. The main idea of this method consists in considering quasi-cyclic generator

matrices of a code, so that rather than giving the whole generator matrix, it is only sufficient

to give a few rows from which the whole matrix can be derived, i.e., only some rows of the

generator matrix are stored in the memory (Block RAM), and the other rows can be obtained

by simply rotating the store values. In [41] they used a very large set of subcodes of a given

BCH code as a large set of Goppa codes with key of size 12 Kbits for length 2047 and 20

Kbits for length 4095, and for the modern cryptosystem to assure a good security the 500

Kbits needed for length 2047. The drawbacks of presented versions are that (i) the public

code comes from a primitive BCH code i.e., an adversary is able to enumerate all of BCH

codes for the suggested parameters and (ii) the permutation (used to hide the secret code) is

too restrictive [42].

One such alternative is based on random Low Density Parity Check (LDPC) codes

which is considered as a first implementation with McEliece cryptosystem [43].

Chapter 1. Introduction

11

Unfortunately, random-based LDPC codes do not allow to decrease the key size and the

system will be unsecure. In [44] again exploited the QC-LDPC codes to overcome those

limitations and the authors propose a public key size that is about 48 Kbits to achieve a

security equivalent of 2048 bit RSA. This is a reduction of key size by a magnitude of ten

from the original McEliece cryptosystem while maintaining the advantage of fast encoding

and decoding as shown in Table 1.2.Some weaknesses of this method are summarized in

[42], [45]. However, the authors responded in [46] when QC-LDPC codes are used in

McEliece cryptosystem and recommended to change values of some parameters to avoid the

known attacks. Recently, a variant of McEliece encryption scheme from Moderate Density

Parity-Check (MDPC) codes and another from quasi-cyclic MDPC codes are introduced in

[47]. Public key size in bits to achieve 128 bits of security is 9856 and private key is 19714

bits. The McEliece cryptosystem based on LDPC\MDPC codes use the suitable decoding

algorithms for trying to correct all intentional errors added to the transmitted messages. The

Sum-Product Algorithm (SPA) [48] and the Bit-Flipping (BF) [49] are the decoding

algorithms usually used in the modified McEliece cryptosystem. The SPA based on the soft

decision and requires high complexity to obtain the best performance while BF based on the

hard decision and requires very low complexity with poor performance.

The main goal of this thesis is design low complexity decoder suitable for LDPC and

MDPC codes that will result in additional reduction of complexity for the same security level.

Dramatic increase in the dimension of the LDPC\MDPC codes employed in the McEliece

cryptosystem is needed to guarantee the high level security in the quantum-computing. It is

known that the size of the public keys increases linearly with the code dimension (length).

Therefore, designing novel low complexity decoders employed in the McEliece cryptosystem

is significant, since can reduce the complexity of a hall system. The decoders proposed in the

thesis give high flexibility to approach the low complexity decoders with the relatively good

performance. In this moment we discuss the possible use of Probabilistic Gradient Descent

Bit Flipping (PGDBF) and Multiple Decoding attempts and Random re-Initializations

(MUDRI) decoders which give a significant advantage in terms of complexity and

performance.

The complexity of these decoding algorithms will be analyzed in details and the

corresponding McEliece cryptosystem. From the point of view the security, impact of

applications of these decoding algorithms on the security will be also given and practical

implementations will be considered.

Chapter 1. Introduction

12

1.4. Contributions and Outline

The rest of the thesis is organized as follows:

Chapter 2 provides the background on McEliece cryptosystem based on error-

correcting codes. It describes the original McEliece cryptosystem, depiction of its advantages

and the main drawbacks. Some previous attempts of reducing the key size of this system are

introduced. We focus on the QC-LDPC and QC-MDPC codes which are functional to reduce

the key size of the McEliece cryptosystem with respect to the level security.

Chapter 3 provides the background on class of linear block codes, LDPC codes and

iterative decoding algorithms. In this chapter, the definitions, notations and bipartite graph

representation for LDPC codes are introduced. Also, we give short explanation for some

constructions of LDPC codes and encoding process. It is then followed by short survey of the

message-passing decoding algorithms. Furthermore, their advantages and disadvantages will

be full presented through comparison.

In Chapter 4 some LDPC decoding algorithms designed for AWGNC are presented.

After the introduction and comparisons of these decoding algorithms, the motivations of our

work can be seen more obviously. We propose a new decoding approach based on Gradient

Descent Bit Flipping (GDBF) algorithm. The GDBF algorithm will be adapted to work over

BSC. This chapter discusses in detail analysis performance of the novel algorithm PGDBF

over BSC. Also we provide the MUDRI decoder to approach to the better performance.

Furthermore, performance of these decoders under faulty hardware components and their

robustness are discussed. The rest of this chapter we introduce implementation of PGDBF

decoder on hardware.

Chapter 5 introduces the most dangerous attacks against the McEliece cryptosystem

reported in the literature. Performances of some LDPC\MDPC codes used in McEliece

cryptosystem are evaluated. Security and complexity of the McEliece cryptosystem based on

QC-MDPC and our proposed decoders are evaluated.

In chapter 6, we will present the conclusions on the proposed decoding algorithms and

some notions for possible future works.

13

Chapter 2

McEliece Cryptosystem

Code based cryptography is one of the most promising applications for post quantum

cryptography. To date, the McEliece cryptosystem is considered as a post-quantum

cryptographic scheme, i.e., it is believed that to be renitent to quantum computers [32]. The

McEliece cryptosystem is classified as asymmetric cryptographic system, and relies on the

hardness of decoding a linear block code without any visible structure for the key. Two keys

are used in this system, private key and public key, and they are related to the generator

matrix of a binary linear block code. The important advantage of the McEliece system is its

fast encryption and decryption procedures, which require significantly lower number of

operations compared with other system.

The McEliece cryptosystem depends on employment a huge family of codes, i.e., a

collection of codes with the same length and dimension, where choice of a code (from the

set) can be unpredictable. Efficiency of the McEliece system depends on hardness to find the

solution of the decoding problem for the third part (intruder).

In McEliece system cryptography, two keys are used: the first (private) key is a

generator matrix of the code and the second (public) key is a matrix transmitted and assigned

as a public code, i.e., the code which generated by the public generator matrix. The low cost

of the encryption and decryption procedures in the McEliece system gives code based system

a special significance. Furthermore, it can be observed that the speed of these procedures is

high when compared to other state-of-the-art public key algorithms, like RSA or ECC

cryptography system. Decoding of a long linear block code, with no information about

structure of a code, leads to difficult decoding and is known to be an ࣨ࣪ complete problem

[52], where the classical decoding problem is assumed to be hard on average, i.e., it is

Chapter 2. McEliece Cryptosystem

14

difficult to find a codeword of an arbitrary linear code with minimum distance to a given

vector. Therefore, potential use of error correcting codes have cryptography comes natural.

Although the McEliece cryptosystem is less complex then other public key systems, there are

some communications systems where a less complexity is strongly desirable. Thus, simpler

methods used in practice where were believed to be secure adequate in the sense that no

possible attacks were investigated.

2.1. Goppa codes

McEliece cryptosystem is the first code-based cryptosystem, originally proposed using

Goppa codes. For appropriate system parameters, McEliece system with Goppa codes still

remains resistant to the all known cryptanalysis techniques but leads to very large public

keys. Two main reasons are to use Goppa codes: (i) diversity in choosing the desired code

gives a large number of potential public keys, and (ii) efficient decoding algorithm capable to

correct up to a certain number of errors.

A number of algebraic codes are considered as subfield subcodes of generalized

Reed-Solomon (GRS). These codes are defined as alternant codes, and include Goppa codes

and Bose-Chaudhuri-Hocquenghem (BCH) codes. In [53], [54] Goppa introduced a family of

linear block codes defined as Goppa codes. The Goppa code Γሺܮ, ݃ሺݔሻሻ is defined by Goppa

polynomial	݃ሺݔሻ, which is a polynomial of degree ݐ	over the extension field	ܨܩሺ݌௠ሻ for	݌	a

prime, and an accessory subset	ܮ	ofܨܩሺ݌௠ሻ	

݃ሺݔሻ ൌ ݃଴ ൅ ݃ଵݔ ൅ ⋯൅ ݃௧ݔ௧ ൌ෍ ௜݃ݔ௜
௧

௜ୀ଴

, (2.1)

ܮ ൌ ሼߙ଴, ଵߙ … , ௡ିଵሽߙ ⊆ ௠ሻ݌ሺܨܩ , (2.2)

which are not zeros of ݃(ݔ). A Goppa codes that are able to correct ݐ errors is defined as a set

of vectors ܿ ൌ ሺܿ଴, ܿଵ, … , ܿ௡ିଵሻ over ܨܩሺ݌ሻ, such that

෍
ܿ௜

ݔ െ ௜ߙ
≡ 0 mod ݃ሺݔሻ.

௡ିଵ

௜ୀ଴

 (2.3)

The set ܮ is called the support of the code. The polynomial ݃ሺݔሻ with degree ൒ 1 is

said to be irreducible over the field ܨܩሺ2௠ሻ if it cannot be represented as a product of two

polynomials (with coefficients of	ܨܩሺ2௠)) of nonzero degree. The code is called as

irreducible Goppa code if the polynomial ݃ሺݔሻ is irreducible, and the code can have

Chapter 2. McEliece Cryptosystem

15

maximum length ݊ ൌ .௠ሻ݌ሺܨܩ ௠ when the support of the code contains all the elements of݌

The parameters of a code are the size ݊, dimension ݇ and minimum distance ݀	where the

dimension of the code satisfies ݇	൒݊-݉ݐ and the minimum distance of the code satisfies ݀	൒	

 irreducible polynomial generates a various irreducible code, we can ݐ-൅1. Since any degreeݐ

say the number of various irreducible Goppa codes with the same parameters and correction

capability is very high. For each irreducible polynomial of ݐ degree over ܨܩሺ2௠ሻ there is a

binary irreducible Goppa code with maximum length ݊=2݉. The matrix of the Goppa codes

has no intrinsic structure and the parity-check matrix of a Goppa codes has the following

form

ࡴ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

ଵ

௚ሺఈబሻ

ଵ

௚ሺఈభሻ
ఈబ

௚ሺఈబሻ

ఈభ
௚ሺఈభሻ

… ଵ

௚ሺఈ೙షభሻ

… ఈ೙షభ
௚ሺఈ೙షభሻ

⋮ ⋮
ఈబ
೟షభ

௚൫ఈబ
೟షభ൯

ఈభ
೟షభ

௚ሺఈభሻ

⋱ ⋮

…
ఈ೙షభ
೟షభ

௚ሺఈ೙షభሻے
ۑ
ۑ
ۑ
ۑ
ې

 . (2.4)

The parity-check matrix of Goppa codes has no essential structure, and thus there is

no way to expedite its storage. Consequently, a whole parity-check matrix with ݎ	 ∙	 ݊	bits

needs to be stored. Goppa codes employ a fast polynomial time decoding algorithm [55] and

are easy to generate but hard to find. Any irreducible polynomial over a finite field ॲ2݉	of	

݊ൌ2݉elements can be used to create a Goppa code, but the generator matrices of Goppa

codes are nearly random [56]. For any fixed length ݊, there are many different Goppa codes.

Though the exact number of Goppa codes, given ݊ and ݐ, is not known, Ryan and Fitzpatrick

[56] found a way to calculate upper bounds, which are exact for some small parameters. For

example, the upper bound for the number of Goppa codes of length 128 which are able to

correct at least 10 errors is approximately 1.04 × 1015, while the upper bound for Goppa

codes of the same length able to correct at least 15 errors is approximately 2.38 × 1025. In

fact, the number of Goppa codes increases exponentially with the length of the code and the

degree of the generating polynomial [56].

2.2. Description of the McEliece cryptosystem

In the McEliece version of the proposed system, Bob chooses a polynomial of degree ݐ at

random and verifies that it is irreducible. The probability that a randomly chosen polynomial

is irreducible is about 1/ݐ. After that, Bob computes his secret key as the ݇	× ݊	systematic

generator matrix ࡳ of the linear block code over	 ॲ݌.	 In addition, another two randomly

Chapter 2. McEliece Cryptosystem

16

matrices are used as parts of the private key of Bob: a dense ݇	× ݇	non-singular “scrambling”

matrix ࡿ such that the codewords of the public code should appear random to an

attacker, i.e., sends the chosen generator matrix to another one, and an ݊	× ݊ permutation

matrix ࡼ to reorder the coordinates.

The public key is saved in the public directory and any one can get it. Finally the

public key is given by this form

ᇱࡳ ൌ ࡿ ∙ ࡳ ∙ (2.5) .ࡼ

So, the matrices ࡼ and ࡿ seek to hide the structure of ࡳ, in the other words, try to

disguise a decodable linear code in a way that the construction of the code can no longer be

deduced. The produced public key ࡳ′is used to carry out an encryption procedure on the

message planned for the receiver Bob and is the generator matrix of a linear code with the

same rate and minimum distance as that generated by ࡳ. Alice uses the public key from the

public directory to encrypt the message. The data transmission is assumed to be error-free

and errors are purposefully injected into a codeword as a part of the encryption process. The

original message is divided into ݇-bit blocks and the encrypted message ܠ is given by

ܠ ൌ ܝ ∙ ᇱࡳ ൅ ࢋ ൌ ࢉ ൅ (2.6) ,ࢋ

where ܝ is one of the information blocks and an ࢋ is a local vector added at the transmitter

and it can be controlled to the weight ݐ and length ݊. If an encrypted message is transmitted

over the noisy channel and additional error influences on the message, so it is important to

take into account this influence that decoding algorithm can correct all the errors in order to

allow the reconstruction of the original message.

When Bob receives the encrypted message from the channel, he uses an iterative

inverse procedure to obtain the plaintext. He computes ܠ′	 ൌ 	ܠ	 ∙ ଵ is theିࡼ ଵ whereିࡼ	

inverse of the permutation matrix ࡼ (that coincides with its transpose)

ᇱܠ ൌ ܠ ∙ ଵିࡼ ൌ ሺܝ	 ∙ 	ࡿ ∙ ࡳ ∙ ࡼ ൅ ଵିࡼሻࢋ ൌ ܝ ∙ ࡿ ∙ ࡳ ൅ ࢋ ∙ ଵ. (2.7)ିࡼ

Therefore, x′ is a codeword of the secret Goppa code chosen by Bob affected by the

error vector ࢋ	 ∙ ଵ of the positions of theିࡼ Remarkably, the permutation by .ݐ ଵ of weightିࡼ	

errors in the intentional error vector does not lead to change weight of the vector ݐ, in the

other words, it does not impact on the decoding process to correct the errors. Using

Patterson’s algorithm, Bob can hence correct the errors and recoverܝᇱ ൌ ܝ ∙ is ܝ and ,܁

obtained from an easily computed through multiplication byିࡿଵ.

Chapter 2. McEliece Cryptosystem

17

The cryptography system is secure against adaptive chosen ciphertext attacks CCA2

[57] (as a strongest security notion) if an attacker has no benefit in deciphering a given

ciphertext. In addition, it is considered to be indistinguishable in the CCA2-model if an

attacker has no profit in conclusion for a given ciphertext and two plaintexts which of them

were encrypted. For example, encryption of the same message twice creates two various

ciphertexts which can be distinguished to extract the original message as long as it is an

improbable that the same added positions of error can be repeated for the two messages

twice. According to an above decryption, the McEliece cryptosystem is not immune for the

effect of chosen-ciphertext attacks [58]. That means it is unable to achieve the "IND-CCA2

security". However, [59] and [37] suggested making the system CCA2-secure by using the

idea of scrambling the message inputs. In the other words, to ruin any relations of two

dependent messages that can be exploited by an adversary. There are several versions of the

McEliece cryptosystem which achieve CCA2 security and the ߛ-conversion of Kobara and

Imai considered as the best candidate for quantum-immune encryption scheme with the best

information rate [59], [57].

'G S G P  

Alice Bob

1S e'G

Unsecure
channel

Goppa

encoder

Goppa

decoder

u ux

publicdirectory

G

1P

x

Figure 2.1 Original procedure of the McEliece cryptosystem with Goppa codes

The McEliece cryptosystem has some advantages as it is remarkably faster than RSA

two or three orders of magnitude and it is resistant against attack, where there is no efficient

algorithm to extract the parameters of the Goppa codes from a generator matrix of a

permutation equivalent code and no chance for brute force attack on the McEliece

cryptosystem because of the large possibilities for ࡿ ,ࡳ and ࡼ:

Chapter 2. McEliece Cryptosystem

18

- Number of irreducible polynomials of degree ݐ	50 = is about 10ଵସଽ for ݊ = 1024.

- Possible random ݇ × ݇ scrambling matrices ࡿ are 2ହଶସ
మ
for ݇ = 524.

- Possible ݊ × ݊ permutation matrices ࡼ are 1024!

For all that, there are main limitations for this system as the large size of the public

key. Without a doubt, any standard PC can contain millions of such keys and CPUs can

smoothly treat the McEliece cryptosystem. It is not the case for small devices. The original

version of the McEliece cryptosystem used Goppa codes with ݊ = 1024, ݇ = 524 and the

small rate ܴ = 0.5. For comparison, the McEliece uses the public key with 67072 bytes long

while RSA with equivalent security uses public key with 256 bytes long. Some suggestions

were made to change McEliece original method [41], [61-63], most of them alternate the

Goppa codes with other family codes. However, most of them have been subsequently

broken or inefficient compared to McEliece original system.

2.3. Modifications of McEliece cryptosystem based on LDPC codes

The classical McEliece cryptosystem based on the Goppa codes remains secure to this date

but leads to very large public keys. There are a number of ways to overcome the drawbacks

of the McEliece cryptosystem. They are based on reducing the representation of a linear code

besides the matrices of the linear transformations. However, this usually leads to serious

security flaws, since security of a system partially depends on error correction capability of

Goppa codes. The chosen code families must achieve some conditions to ensure the security:

(i) the codes family must to be large enough to keep away from any enumeration, (ii) a

generator matrix of a permutation equivalent code must be obscure that no permit recover the

secret code from the public code, i.e., does not give any information about the structure of the

secret code, and (iii) the code has efficient algorithm to correct the codewords, i.e., the

receiver is able to read the transmitted ciphertext over the unsecure channel.

We provide a brief overview of state-of-the-art modified McEliece-based

cryptosystems. One of the modifications for the McEliece cryptography interested on raise an

immunity of the system by choosing the parameters that would maximize resistance against

some of known attacks [51], [64], [65]. On the other hand, Niederreiter introduced a

randomized variant of the McEliece system [21] and proposed using Generalized Reed-

Solomon (GRS) codes instead of Goppa codes, which it was proved in [66] that this choice

was insecure. In 1994, Sidelnikov proposed employing Reed-Muller codes [63]. His scheme

was afterwards broken in [34]. In 1996, Janwa and Moreno studied the use of algebraic

Chapter 2. McEliece Cryptosystem

19

geometric codes [67], which was broken in [68]. Gaborit proposed using BCH codes in [41]

and [69] where it was proved that this variant of McEliece cryptosystem can be broken.

McEliece was modified in [70], [71] by considering quasi-cyclic or quasi-dyadic versions of

Goppa codes where the key size can be reduced with a factor ݐ ൌ ෨ܱሺ݊ሻ smaller than generic

Goppa codes. However, the added structure permits a drastic reduction of the number of

unknowns in algebraic attacks. The kind of these attacks can be prevented by picking smaller

cyclic or dyadic blocks for these schemes such that number of unknowns of the algebraic

system will be increased.

Because of the sparse of the parity check matrix of the LDPC codes, many attempts

have been studied to exploit this property to overcome those limitations of the first version of

the McEliece cryptosystem, where their storage sizes increase linearly in the code length.

The first implementation for random-based LDPC codes with McEliece is proposed in

[43], where the receiver, Bob, receives the encrypted message from the transmitter, Alice.

Bob chooses a parity check matrix ࡴ in the set Γ with high cardinality. The matrix ࡴ is a

sparse matrix with no structural properties, i.e. it is randomly constructed. To disguise the

construction of the matrix ࡴ, Bob chooses an ݎ	 non-singular random transformation ݎ ×

matrix, ࢀ, and the public key is given by ࡴ′	 ൌ ࢀ	 ∙ keeps the sparse of the ࢀ The matrix .ࡴ

parity check matrix ࡴ, so ࡴ and ࡴ′ describe codes have the same distance properties. The

impact of the matrix ࢀ on the public key is appearance of many short length cycles in graph

representations of ࡴ′, which makes it high density matrix, and the attacker Eve is unable to

exploit the public key to decrypt the secure code. In [43], the authors described that when ࢀ is

a sparse matrix, then there is a high chance to attack the secure code and recover the private

key form the public key. Therefore, we need to have a dense ࢀ and dense ࡴ′ to avoid this

kind of attacks. Actually, these codes do not allow to reduce the key size and the system will

be unsecure (ࢀ is a sparse), where the dual attack of the secret code is able to entirely break it

with restricted complexity, unless when some its parameters are guardedly chosen. Because

of these reasons, the random-based LDPC codes system is no longer vindicated. The main

problem can be resolved with structured LDPC codes to obtain the sparse public keys.

The parity check matrix of the QC-LDPC codes as we will see in the Chapter 3, in

general, can be entirely depicted by a single row of them (as the first row). On the other hand,

the families of these codes can be modeled with a diversity of rates, even meaningfully larger

than 0.5. For these purposes, exploit the QC-LDPC to overcome some drawbacks of the first

attempt must be ensured that neither the public code nor its dual code allow any too sparse

Chapter 2. McEliece Cryptosystem

20

representation. In the context of the code-based McEliece cryptosystem and with QC-LDPC

codes, an interesting and a simple case of the “circulant block” form which is defined as a

circulant matrices class. A circulant block is completely described by its first row (or

column). A special class of quasi-cycles codes having the parity-check matrix in the form of a

single row of circulant blocks. The private key is formed by the sparse parity check matrix ࡴ,

randomly chosen, having the following form

ࡴ ൌ …|ଵࡴ|଴ࡴൣ หࡴ௡బିଵ൧ , (2.8)

where each matrix ࡴ௜, ݅ = 0 … ݊0 ‐1, is a ݌	݌ × circulant matrix given by

௜ࡴ ൌ

ۏ
ێ
ێ
ێ
ۍ
݉଴ ݉ଵ

݉ሺ௣ିଵሻ ݉଴
݉ሺ௣ିଶሻ ݉ሺ௣ିଵሻ

݉ଶ
… ݉ሺ௣ିଵሻ

݉ଵ
… ݉ሺ௣ିଶሻ

݉଴
… ݉ሺ௣ିଷሻ

⋮ ⋮
݉ଵ ݉ଶ

⋮ ⋱ ⋮
݉ଷ … ݉଴ ے

ۑ
ۑ
ۑ
ې

. (2.9)

The first row of the matrix ࡴ௜, ݅ = 0 … ݊0 ‐1, can be denoted as ݄݅, ݅ = 0 … ݊0 ‐1,

which contains the positions of symbols 1, where݄௜ ൌ ሺ݉଴,݉ଵ,… ,݉௣ିଵሻ and it can be

written as݄௜ሺݔሻ ൌ ሺ݉଴ ൅݉ଵݔ ൅⋯൅݉௣ିଵݔ௣ିଵሻ. The matrix ࡴ is quasi-cyclic low density

parity check code if each ࡴ௜ is sparse. It can be noted that, if all the ݄݅ vectors have disjoint

sets of differences modulo ݌, the cycles with length-4 in matrix ࡴdisappear in its associated

Tanner graph. The secret code can be easily constructed by randomly selecting ݊0 vectors ݄݅

with such property. This permits us to obtain large families of codes with identical

parameters [72].

The matrix ࡴ has a length ݊	= ݊0·݌, dimension ݇	= ݇0·݌ and redundancy ݌ = ݎ	are

adopted, where ݊0 is a small integer (e.g., ݊0 = 3, 4), ݇0 =	݊0 -1, and ݌ is a large integer (on

the order of some thousands), then the code rate is ܴ	=	ሺ݊0 -1ሻ/݊0. When the row and column

weight of ࡴ௜ is equal to a constant, then the code is regular, otherwise is irregular code.

Without loss of generality, we can consider that ࡴ௡బିଵ is non-singular (has full rank), so a

systematic generator matrix (in reduced echelon form) for the code isࡳ ൌ ሾࡼ|ࡵሿ, where ࡵ

represents the ݇	× ݇	identity matrix and

Chapter 2. McEliece Cryptosystem

21

ࡼ ൌ

ۏ
ێ
ێ
ێ
ۍ ൫ࡴ௡బషభ

ିଵ ∙ ଴൯ࡴ
்

൫ࡴ௡బିଵ
ିଵ ∙ ଵ൯ࡴ

்

⋮
൫ࡴ௡బିଵ

ିଵ ∙ ௡బିଶ൯ࡴ
்
ے
ۑ
ۑ
ۑ
ې

	, (2.10)

where superscript ܶdenoted transposition. It is important to select an efficient algorithm to

calculate the inverse of a circulants matrix ࡴ௡బିଵ
ିଵ and it can be found in [72].

Two methods can achieve the desired purposes during QC-LDPC codes:

- Like in the original McEliece cryptosystem, by using permutation equivalent private

and public codes, and choosing a private code such that it does not admit any too

sparse representation.

- By using non-permutation equivalent private and public codes, such that the sparse

nature of the private code is lost in the public code.

2.3.1. Permutation equivalent private and public codes

In this system, Bob chooses the private key as a parity-check matrix ࡴ of a QC-LDPC code

to accomplish the decoding process and correct the secure word with high efficiency. The

QC-LDPC codes have good error correction capability and it is necessary to correct all the

intentional errors in the secure codeword. Bob again selects two matrices: ݇	× ݇ non-singular

random scrambling matrix ࡿ and a random permutation matrix ࡼ, that also considered as his

secret key, and the public key is given as the first original version except for the fact that they

used the inverse of ࡿandࡼ, and these procedures do not affect the properties of matrix,

density and randomness. We have

ᇱࡳ ൌ ଵିࡿ ∙ ࡳ ∙ ଵିࡼ ൌ ଵିࡿ ∙ ࡳ ∙ (2.11) ,்ࡼ

where ࡳis a the corresponding generator matrix in systematic form, such that ࡴ	 ∙ ࢀࡳ	 ൌ 	૙.

In the last relation, the private and the public codes are permutation equivalent. In the other

word, their codewords coincide, except for a permutation of their bits. Of course, the

permutation equivalent between the private key and the public key admits an Eve to search

low weight codewords in the dual of the secret code, thus aiming at recoveringࡴ, which can

be achieved by Information Set Decoding (ISD) algorithms [39], as we will see in Chapter 5.

The encryption procedure is repeated, i.e., Alice divides the message into blocks with

length ݇ bits, gets the public key from the public directory, encrypts the message with public

Chapter 2. McEliece Cryptosystem

22

key and adds the intentional errors with weight ݐ. The decrypted procedure of this system is

the same decrypted procedure of the original version. It is noticeable that to keep the QC

nature in the public matrix, the matrices ࡿ and ࡼmust be designed by ݇0 × ݇0 and ݊0 × ݊0

blocks of ݌ × ݌ circulants, respectively. Generally, the eavesdropper Eve is unable to

conclude the matrix ࡴ from familiarity of the public key, and will not be able to correct the

secure codeword by the efficient LDPC decoding algorithm. Therefore, Eve resorts to use

some generic decoding algorithm, like ISD to correct the intentional errors.

2.3.2. Non-permutation equivalent private and public codes

The permutation equivalent permits the attacker to conclude the parity-check matrix ࡴ, by

searching for low weight codewords in its dual code that makes the matrix ࡴ is insecure. To

solve this problem, in [72] introduced the solution through hiding the sparse structure of the

secret code in a public code whose dual does not contain codewords with too low weight. As

in the previous system, Bob chooses the private parity check matrix ࡴ and computes the

corresponding generator matrix ࡳ in the systematic form. The remaining parts of the private

key are the scrambling matrix ࡿ with a ݇ × ݇ dimensions and another matrix ࡽ is a sparse

random non-singular transformation matrix with ݊ × ݊ dimensions that the public code

prevents sparse characteristic matrices. The matrix ࡽ has average row and column weight

equal to ݉. The matrix ࡿ instead is dense, with average row and column density around 0.5.

If the matrix ࡿ is sparse, then the average of row and column weight is ݏ≪	݇.

On the other hand, in the case of QC-LDPC codes, the matrices ࡿ and ࡽ will have

circulants structure where ࡿ with ݇0 × ݇0 and ࡽ with ݊0 × ݊0 block of ݌ × ݌ circulants, so the

public matrix preserves the QC nature. The public key is given by

ᇱࡳ ൌ ଵିࡿ ∙ ࡳ ∙ ଵ. (2.12)ିࡽ

In the case when a suitable CCA2-secure conversion of the system used, then the

public key ࡳᇱ can be used in the systematic form and the scrambling matrix and permutation

matrix are eliminate and ࡳᇱ ൌ .ࡳ

Alice encrypts an intended message ܝ to ܠ ൌ 	ܝ	 ∙ 	′ࡳ	 ൅ 	ࢋ	 ൌ 	ࢉ	 ൅ is an ࢋ where,ࢋ	

intentional errors vector with length ݊ and weight ݐ. In this system, the private key must be

able to correct a number of errors ݐ<′ݐ. Bob runs the inverse procedure to get the corrected

codeword as

	′ܠ ൌ 	ܠ	 ∙ ࡽ	 ൌ ܝ ∙ ଵିࡿ ∙ ࡳ ൅ ࢋ ∙ (2.13) .ࡽ

Chapter 2. McEliece Cryptosystem

23

It is noticeable, that the codeword is affected by an error vector ࢋ	 ∙ which hasࡽ	

average weightݐ′ൌ	 	ݐ ∙	 ݉.	By an efficient LDPC decoding algorithm, Bob can recover the

original message after the decoding process and then through multiplication by ࡿ.	

In [73] introduced an efficient class of transformation matrices that have a limited

propagation effect on the intentional error vectors such that permit to obtain the better

disguise for the private key into the public one with a controlled error propagation effect.

The main purpose is avoiding the dual of the public code from containing very low

weight codewords even when the private code is an LDPC code with very low weight

codewords in its dual. Let assume that the secret LDPC matrix is ࡴ, which defines a dual

code with low weight codewords corresponding to its row, so this matrix results the

codewords with weight row is ܿߩ, whereܿߩ is the row weight of the matrixࡴ, so

ࡴ ∙ ࢀࡽ ∙ ᇱࡳ	
ࢀ
ൌ ࡴ ∙ ࢀࡽ ∙ ሺିࡿଵ ∙ ࡳ ∙ ଵሻ்ିࡽ

ൌ ࡴ ∙ ࢀࡽ ∙ ሺିࡽଵሻ் ∙ ்ࡳ ∙ 	 ሺିࡿଵሻ்

ൌ ࡴ ∙ ்ࡳ ∙ ሺିࡿଵሻ் ൌ ૙.

(2.14)

Therefore, the matrix ࡴᇱ ൌ ࡴ ∙ is a valid parity-check matrix for the public codeࢀࡽ

and this matrix has a more density compared with a matrix ࡴ. The weight of the rows of

ᇱࡴ ൌ ࡴ ∙ 	ܿߩ ,is about the product of their row and column weights, that isࢀࡽ ∙	݉. In fact,

when two sparse binary vectors are summed together, it is very likely that the weight of the

resulting vector is about the sum of their weights. Therefore, if the value of ݉ is properly

chosen, the minimum weight of the codewords in the dual of the public code can be made

sufficiently high to make dual code attacks unfeasible. Therefore, Bob must be able to correct

a number of errors that is about ݉ times larger than the weight ݐ of the intentional errors

vectors added by Alice.

Therefore, it is proposed to adapt ࡽ matrices with block diagonal form, in which the

circulant blocks along the main diagonal have row/column weight ݉	

ࡽ ൌ ൦

଴ࡽ ૙
૙ ଵࡽ

૙ ૙
૙ ૙

૙			 ૙
૙ ૙

⋱ 								૙
૙ ௡బିଵࡽ

൪. (2.15)

Due to its low density, matrix ࡽ is among the weakest components of the new system.

In fact, an attack could be tempted on each of the first ݊଴ െ 1	blocks along the main diagonal,

Chapter 2. McEliece Cryptosystem

24

noted by ࡽ௜, ݅ ∈ ሾ0, ݊଴ െ 2ሿ, if ࡽ௜ is known, the attacker could multiply the block in the ݅-th

column of ࡳ′ by ࡽ௜, thus obtaining the ݅-th column of ିࡿଵ (due to the reduced echelon from

of [69] (ࡳ. However, such approach would require, at least, ቀ
݌
݉ቁ ∙ ݌ ∙ ݉ binary operations,

where ݌ ∙ ݉ binary operations have been considered for multiplication byࡽ௜.

Using LDPC codes instead Goppa codes in the McEliece cryptosystem creates some

differences that should be taken into account. Error correction capability of Goppa codes

associated with the Goppa polynomial of degree ݐ	 (can correct the full design number of

errors), while for LDPC codes is generally unknown. In addition, transformation matrix ࡽ

has effect on the error correction performance, so design QC-LDPC codes with high error

correction capability is required. On the other hand, the decoder at the receiver has an

important role to extract the secure code with high probability. Despite all these procedures to

guarantee correction the codeword, there is a small probability that Bob fails to recover the

secret message. There are different methods can be executed to impede that occurrence.

Because of the huge number of codes that can be achieved by the random-based approaches,

as random difference families [44], Bob can carefully select QC-LDPC codes which have the

relatively good properties, rather than the randomly selects the codes. The request

retransmission can be used when Bob cannot correct the secure word, by sending the request

to resend the same secure word but with different error positions or with lower weight of the

intentional error vector ࢋ. An Automatic Repeat Request (ARQ) protocol can allow Alice to

know whether Bob is able to correct all the errors she has randomly introduced or not. In

principle, this exposes the system to message-resend attacks, but simple modifications of the

cryptosystem are known which prevent these attacks without significant drawbacks [59],

[74].

2.4. Moderate Density Parity Check (MDPC) codes

Some kinds of attacks can risk the McEliece cryptosystem either by message attacks based on

standard decoding algorithms or key recover attacks by finding low weight codewords in the

dual of the public code, as we will see in Chapter 5. In addition, inappropriate choices of the

parameters in the case of QC-LDPC maybe lead to non-secure system. Of course, using

sparse matrices ࡿ and ࡽ allows reducing the encryption and decryption complexity but

according to the OTD attack which can recover the secret key [69] and Baldi advised to use

density matrix ࡿ instead sparse matrix to avoid this attack.

Chapter 2. McEliece Cryptosystem

25

In [47] it is introduced new method that can protect the system from those attacks.

Moderate Density Parity Check (MDPC) codes used instead LDPC codes where these codes.

They have higher weight of rows and columns of the parity check matrix. Transformation

matrix ࡽ that is used in the case of LDPC codes can be replaced with the permutation

matrixࡼ, similarly as in the original McEliece with Goppa codes. Increase the density of the

parity check matrix in the most situations leads to a greatly degraded error correction

performance when compared to the standard LDPC codes performance. However, MDPC

codes are still adequately valid to keep from the impressiveness of the standard decoding

algorithms. The authors in [47] suggested employ Bit Flipping (BF) decoding algorithm to

correct the intentional error vectors. However, the high weight of the rows ܿߩ in the parity

check matrix and the highly existence of short-cycles in the Tanner graph maybe lead to an

increase number of iterations. To decrease the number of iterations, some modifications are

inserted to the BF decoding algorithm [47].

There is only one variance between LDPC and MDPC codes where the LDPC codes

have small constant weight of rows (typically less than 10) while for MDPC codes the weight

of rows in the scale of	ܱሺඥ݊ log ݊ሻ. In the form of single row of the circulant blocks and for

regular codes, these codes can be formed as LDPC codes, i.e., QC-MDPC codes and for

given parameters 0݊ ,݌ andߛ௩ , the number of various random matrices in the form (2.8) is

ܰெ஽௉஼ ൌ
ଵ

௣
ቀ
݌
௩ߛ
ቁ
௡బ

. (2.16)

To keep away from some kinds of attacks in the case of LDPC-code base

cryptography, it is necessary to avoid presence low weight codewords in the dual code of the

public code. Eve is able to recover the secret key or a key equivalent to the secret one by

using ISD techniques (as we will see in Chapter 5). An attacker can find a set of low weight

codewords in the dual of the public code, and through any decoding algorithm like BP or

perform syndrome decoding to evaluate the intentional error vector. The row weight value ܿߩ

should be chosen such that the message recovery and key recovery attacks are of the same

order of complexity [47]. The ܿߩis selected according to

௖ߩ ൌ ൫1 ൅ ሺ1ሻ൯ඩ݋
݊ ln ݊ lnቀ1 െ ݇ ݊ൗ ቁ

lnቀ݇ ݊ൗ ቁ
. (2.17)

Chapter 2. McEliece Cryptosystem

26

 The number of errors which can be corrected by the Bit Flipping algorithm is of order

ݐ ൌ ൫1 ൅ ሺ1ሻ൯݋
݊
௖ߩ4

ln ൬ߩ௖ቀ1 െ ݇ ݊ൗ ቁ൰. (2.18)

Since the parity check matrix of these codes is already quite dense, then there is no

need for a transformation matrixࡽ, so a standard permutation matrix can be used, as in the

original McEliece cryptosystem. In addition, using MDPC code in McEliece cryptosystem

instead LDPC code considered as a good solution to avoid some kinds of attacks and solve

the problem how to select parameters ݉ and ݐ to guarantee the security and successful

decoding process. On the other hand, if the public code is MDPC, it contains moderate

weight codeword in the dual space of the public code, and if Eve is able to find those

codewords, than she is also able to decrypt the ciphertext, but the already cited ISD

techniques (that are always NP), are not able to find moderate weight codewords in

reasonable time.

2.4.1. Procedure of the MDPC/QC-MDPC code-based McEliece

Here, a (݊, ܿߩ,ݎ)-QC-MDPC codes are considered, such that the parity-check matrix has the

form of (2.8), where ݊=݊0 ݌ is the code length, ܿߩ is a row weight of the parity check matrix

 .݌ =	ݎ and ࡴ

Procedure of the McEliece cryptosystem based on the MDPC/QC-MDPC can be

described as follows:

Step 1: a parity check matrix ࡴ is constructed, where ࡴ ∈ ॲଶ
௥ൈ௡ of a ݐ-error

correction (݊, ܿߩ,ݎ)-QC-MDPC code. The matrix ࡴ considered as a private key in this

system. The generator matrix ࡳ can be constructed as ࡳ ൌ ሾࡼ|ࡵሿ where ࡳ ∈ ॲଶ
ሺ௡ି௥ሻൈ௡ in row

reduced echelon form and ࡼ has form of (2.10). The generator matrix ࡳ considered as a

public key of the McEliece cryptosystem and saved in the public directory. Using QC form of

MDPC leads to significantly decrease of storage requirements, by storing the first rows of the

circulant blocks.

Step 2: Alice uses the public key ࡳ to encrypt the message ݉ ∈ ॲଶ
ሺ௡ି௥ሻ and obtains

the ciphertext	ݔ ∈ ॲଶ
ሺ௡ሻ, an intentional error vector ݁ ∈ ॲଶ

௡ of wtሺ݁ሻ ൑ which is generated ݐ

randomly and added to the ciphertext.

Chapter 2. McEliece Cryptosystem

27

Step 3: by LDPC/MDPC decoding algorithm ψࡴ which specified to the sparse parity-

check matrix ࡴ to refine the ciphertext form the error according to		݉ࡳ ← ψࡴሺ݉ࡳ ൅ ݁ሻ and

the plaintext ݉ can be obtianed from the first (݊	− ݎ) positions of ݉ࡳ.

The description of this system does not use the permutation matrix ࡼ and scrambling

matrixࡿwhich are considered in the original McEliece cryptosystem. The public key matrix ࡳ

in the systematic form can be used without loss of security according to the CCA2-secure

conversion [57]. The QC-MDPC variant has a public-key of size (݊ − ݎ) and the MDPC

variant of size (݊ − ݎ).

2.5. Implementations of McEliece cryptosystems

The McEliece system rarely used in real world applications because of its large public key

size. We here provide some examples of McEliece cryptosystem on embedded hardware and

software platforms, which illustrate its applicability.

The McEliece cryptosystem was considered impracticable on such small and

embedded systems because of the large size of the private and public keys. Almost, all

devices could only supply a few hundred bytes of RAM and ROM which was a strict

restriction for application designers. One of the solutions that can be used in the case when

the public key is too large is retransmission of the public key for each encryption [75].

However, this solution has a passive effect on the transmission rate and the speed of the

encryption procedure.

The first implementations of the McEliece cryptosystem introduced by [76] on a

popular 8-bit AVR microcontroller and the Xilinx Spartan-3AN 1400 FPGA. They used the

code-length 2048 for an estimated 80-bit security where an external memory is used for the

public key structures, and the private key (parity check matrix) stored in 192 kB Flash

memory. Another implementation introduced for the same code-length (2048) where spent

84% of slices and 50% of BRAMs (2700Kb) [77].

One of the important implementation of the McEliece cryptosystem was introduced in

[78]. The low cost implementations that use QC-MDPC codes instead of Goppa codes are

also presented in this chapter. The implementation is on 8-bit AVR along with the Xilinx

Virtex-6 XC6VLX240T FPGA. For FPGA implementation, the public and secret key do not

have to be stored in external memory as it was necessary in previous FPGA implementations

of McEliece using Goppa codes. Only 4800 and 9600 bits are used for the public and secret

Chapter 2. McEliece Cryptosystem

28

key at 80-bits security where in the beginning of the procedure the first row of the key is

given and by rotating by one bit position of the row yields the next row and so forth. The QC-

MDPC McEliece requires 0.59 k Byte which is only a fraction of the 100.5 k Byte public key

of [77]. The results of this implementations show that QC-MDPC McEliece is better than

other currently used public key systems with the same security levels, for more details show

Table 2.1. and Table 2.2.

Table. 2.1 Performance comparison of microcontroller implementations for different public
encryption schemes

Scheme Platform Time ms/op Ref

Goppa code,
 ,40 = ݐ ,1024 =	݊

62-bit sec.

Infineon SLE76CF5120P, 16-bit CPU
Enc@33MHz,
Dec@33MHz

970 ms,
690 ms

[79]

Goppa code,
 ,50 = ݐ ,2028 =	݊

102-bit sec.

Infineon SLE76CF5120P, 16-bit CPU
Enc@33 MHz,
Dec@33 MHz

1390 ms,
1069 ms

[79]

Goppa code
 ,27 = ݐ ,2048 = ݊

 80-bit sec.

AVR ATxMega 192, 8-bit CPU
Enc@32MHz,
Dec@32MHz

450 ms,
618 ms

[76]

QC-MDPC
 ,84 = ݐ ,9600 =	݊

 80-bit sec.

AVR ATxmega256A3, 8-bit CPU
Enc@ 32MHz,
Dec@ 32MHz

800 ms,
2700 ms

[78]

ECC-P160 (SECG) ATMegal128 @8MHz
203 ms

(at 32MHz)
[76]

RSA-1024 ATMega128 @8MHz
20748 ms

 (at 32MHz)
[76]

Table. 2.2 Performance comparison of FPGA implementations for different public key
encryption schemes

Scheme Platform/ f Time/Op Ref
Goppa code,
 =	ݐ ,2048 =	݊	
27, 80-bit sec

Spartan-3AN 1400 FPGA,

 Enc@150MHz,
Dec@85MHz

1.07 ms,
10.82 ms

[76]

Goppa code,
 =	ݐ ,2048 =	݊

50, 102-bit sec

Xilinx Virtex-5,
Enc@163MHz,
Dec@163MHz

0.5 ms,
1.4 ms

[77]

QC-MDPC,
 =	ݐ ,9600 =	݊
84, 80-bit sec

Xilinx Virtex-6,

Enc@351.3MHz,
Dec@190.6MHz

0.14 ms,
0.86 ms

[78]

ECC-P160
(SECG)

 Spartan-3 1000-4
5.1ms

(at 32MHz)
[76]

RSA-1024 Spartan-3E 1500-5 51ms [76]

29

Chapter 3

LDPC Codes and Iterative Decoding
Algorithms

Error control coding is one of the most used concepts for increasing the reliability of

communication transmission and to utilize capacity as much as possible. Shannon in his

paper mentioned that only the long codes have capability possible to operate near capacity,

but they are impractical, i.e. it cannot be practically encoded and decoded. In the 1960s, R.

Gallager invented low-density parity-check (LDPC) codes, which are nowadays known as

Gallager’s codes [49]. Iterative algorithms also proposed in the Gallager’s original paper

achieve the capacity approaching performance but these algorithms need complicated

calculations which make them unusable at that time. In the 1995s MacKay and others

rediscover these codes [80]. Near-capacity performance of LDPC codes can be achieved in

practice by decoding algorithms whose complexity is linear in the code length. These codes

are used in many techniques of communication as encryption and compression. LDPC codes

have proved their superiority over many other classes of linear block codes. They are used in

many applications since their ability to correct errors of the received message and low

decoding complexity is highly desirable in modern communication systems. Some wireless

and wire-line communications standards that specify LDPC codes are, digital video broadcast

(DVB-S2), WiMAX wireless (IEEE 802.16e) and 10 gigabit Ethernet (IEEE 802.3an).

LDPC codes are linear block codes, constructed by sparse parity check matrixࡴ.

There are many methods to construct matrix ࡴ in order to obtain the best performance and

simple way to implement encoding and decoding procedures. Structural LDPC codes with

intermediate block lengths are popular in recent research, noticeably the algebraic

constructions which are shown to perform within a fraction a dB away from the Shannon

limit. Several of these LDPC code constructions include the Reed-Solomon based codes [81],

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

30

array-based codes [82], as well as Quasi-Cyclic (QC) LDPC codes [83]. These codes share

the same property that their parity check matrices can be written as a two-dimensional array

of component matrices of equal size, each of which is a permutation matrix. The main

advantage of these constructions principle compared to randomly constructed codes is that

their encoding procedure is easier to implement.

The decoding algorithms of the LDPC codes fall into highly intensive research arena.

The decoding algorithms of the LDPC codes are iterative and depend on graph which consists

of check and variable nodes [84]. Under an iterative algorithm and when the noise level is

below some fixed point, the bit error probability for LDPC codes (when length tends to

infinity) is arbitrary small [49].

Generally, decoding algorithms are divided into two types: (i) soft decision as a Sum

Product algorithm (SPA) which requires high complexity to obtain the best performance [60],

[48] and (ii) a hard decision as Bit Flipping (BF) algorithm with very low complexity but it

has poor performance [49]. All researches are seeking to reduce its computations complexity

for platform implementations.

3.1. Linear Block Codes

We assume that transmitted message is presented in a binary format and before transmission

the data bits are organized in order to be able to correct errors. A block coding is one of

mechanisms for adding redundancy. Basically with the linear block codes, there are two types

of streams (sequences) when sending messages over noisy channel by error correcting codes.

A sequence of ܭ data bits is mapped into ܰ code bits where ܰ>ܭ. The sequence bits ܭ is

called a data word while the corresponding sequence of ܰ bits is called a codeword. An

encoder at transmitter can add (ܰ−ܭ) bits to the original message as redundant bits by

different ways. The systematic codes are especially interesting, where the block comprising ܭ

information bits is not changed in the codeword, and ܰ-ܭ control bits are added, forming a

codeword of length ܰ. This code is denoted as (ܰ,	ܭ) code and code rate is ܴ=ܭ/ܰ. The

receiver recovers the message information by inverse operation. This procedure is called a

decoding process and after the error correction, an information message is recovered.

Block code has capability for correcting a noisy codeword, this ability has been

attributed to minimum distance ݀݉݅݊. This parameter denotes the minimum number of

components that are changed by the noisy channel in such a way that converts the original

codeword into another codeword of the same code.

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

31

Figure 3.1. The basic channel coding model

In the other words, the error detection capability of the block code is determined by

the minimum distance. If the number of errors is less than (݀݉݅݊−1) codeword cannot be

converted into another codeword caused by the noisy channel. Linear code block can correct

any noisy codeword with error pattern of weight	ݐ ൌ ሺ݀௠௜௡ہ െ 1ሻ 2⁄ .ۂ

A linear code may be described in terms of a generator matrixࡳor in term of a parity

check matrixࡴ. LDPC codes are a class of linear block codes whose parity-check matrix has

1% or fewer 1 entries. If only binary codes are considered code can be described as a ܭ-

dimensional subspace C of vector space ॲଶ
ே of binary ܰ-tuple over the finite field ॲଶ. Given a

 C is obtained by∋ܠ a codeword ,ࡳgenerator matrixܰ×ܭ

ܠ ൌ ݉ ∙ ࡳ , (3.1)

where ݉ is a binary row vector containing ܭ bits. Accordingly, an (ܰ-ܭ)×ܰ parity check

matrixࡴ forms the null space C┴ so that ࡴ ∙ ்ࡳ ൌ ૙, where (T) denotes transposition and the

dimension of matrix 0 (all element equal zero) are (ܰ-ܭ)×ܰ. It is obvious, because the

subspaces are orthogonal each other. Therefore, instead of using generator matrix, at the

receiving end, from the parity-check matrix ࡴshould be found and verify to the received

vector is in the subspace orthogonal to the subspace generated byࡴ. Solution of the above

equation is very simple if matrix ࡳ corresponds to a systematic code. In most designs, we

need to transform ࡴ into ࡳ by using a transition matrix ࡼ such ࡴ ൌ ሾࡼ|ࡵሿand ࡳ ൌ ሾࡵ|்ࡼሿ,

where ࡵis a unity matrix with dimensions (ܰ-ܭ)(ܰ-ܭ).

Let a vector (ܰݔ ,...,2ݔ ,1ݔ) = ܠ denote a codeword of C if and only if ܠ ∙ ࢀࡴ ൌ ૙which

means that every codeword ܠ is orthogonal to the rows of ࡴ, where ்ࡴ is the transpose of ࡴ.

In addition, a parity check matrix ࡴ is used to verify if any ܰ binary vector is a codeword that

belongs to C or not. For decoding the received word ܡ	 that can be any vector of the	2ܰ, the

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

32

following vector should be foundܛ ൌ ܡ ∙ 	.்ࡴ It is called syndrome, dimension are 1(ܰ-ܭ)

and its element are parity checks. We can consider that variable nodes are the bits of the

codewords. For example, if C is the binary linear code with the parity-check matrix

0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0

=

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

H , (3.2)

then C		is the set of all binary 8-tuples that satisfy the four following equations expressed in

the matrix ࡴ	

ଵݏ ൌ ଶݎ ⊕ ସݎ ⊕ ହݎ ⊕ ݎ଼

ଶݏ	 ൌ ଵݎ ⊕ ଶݎ ⊕ ଷݎ ⊕ ଺ݎ

ଷݏ ൌ ଷݎ ଺ݎ	⊕ ⊕ ଻ݎ ⊕ ݎ଼

ସݏ	 ൌ ଵݎ ⊕ ସݎ ⊕ ହݎ ⊕ ଻ݎ

(3.3)

To simplify the implementation on hardware and lower power consumption, a linear

block LDPC codes are used. Considering that LDPC codes the best solution for many

applications in the communication systems which used coding for error correction as

transmission mode forward error correction (FEC), they have met a lot of interest to

overcome their imperfection. In the next section, we introduce the basic concepts regarding

LDPC codes, how they are constructed, encoded and in particular how they decoded with the

various classifications.

3.2. Preliminaries

Following the known graphical representation of convolutional codes. Tanner in his

pioneering work observed that it is possible to represent LDPC codes by a bipartite graph,

later called Tanner graph or TG for brevity [84]. He introduced the principle of equivalence

between the construction of codes by matrix ࡴ and graphs and that the characteristics of a

graph can be utilized to extract bounds on the minimum distance of the code. Each variable

node corresponds to a code symbol of the codeword and each check node represents one

check equation. The TG introduces an efficient way to describe iterative decoding algorithms

for LDPC codes.

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

33

Let TG denote the Tanner graph of an (ܰ,ܭ) binary LDPC code C of rate ܴ=ܭ/	ܰ, as a

linear block code, which consists of a set of ܰ variable nodes ܸ(ܶܩ) ={2 ,1,…, ܰ} and a set

of ܯ check nodes C(ܶܩ)={ܯ ,…,2 ,1}. The parity check matrix ࡴ is the bi-adjacency matrix

of TGsince it is composed by ܭ linearly independent row vectors.

1
v

2
v

3
v

4
v

5
v

6
v

7
v

8
v

1
c

2
c

3
c

4
c

Figure 3.2. The TG for the parity check matrix (8,4)ࡴ given in (3.2)

Two nodes in TG are neighbors if there is an edge between them. An edge

corresponds to the value 1 in the parity check matrixࡴ. The degree of a node ݒ is the number

of its neighbors and is denoted as ݒߛ. Graph TG is said to be ߛ-variable node regular if all

variable nodes in ܸ	have the same degree, ߛ =ݒߛ. The degree of a check node ܿ is ܿߩ, and ρ-

check-regular codes are defined analogously. We denote regular codes by (ߩ ,ߛ). Otherwise,

it’s an irregular LDPC code. Degree of variable node ݒߛ determines abilityof the LDPC codes

to correct the errors. With high ݒߛ, node ݒ	 can receive more information from the its

neighbors, which has a great opportunity for error correction during the decoding process. On

the other hand, a check node can with high ܿߩ helps its neighbors, variable nodes, which have

low ݒߛ by sending useful information. For finite block length, the performances of irregular

LDPC codes are better than those of regular LDPC codes in waterfall region. The sets of

neighbors of nodes ݒ and ܿ are denoted as ௩ and ௖, respectively. The length of the shortest

cycles in the graph is called girth ݃	of TG. The presence of cycles in the Tanner graph is not

avoidable due to the restriction on the block length. All mechanisms for construction of

LDPC codes seek to maximize the girth as much as possible. The negative impact of the short

cycles in the bipartite graph is degraded when length of codes increases. However, avoidance

of short cycles can be available for proportionately short-length LDPC codes when these

codes are designed with an appropriate construction.

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

34

3.3. Encoding of LDPC codes

The LDPC codes can achieve near-capacity performance with iterative message-passing

decoding and sufficiently long block sizes for random or pseudorandom constructions. An

algebraic construction is one of the methods for constructing LDPC codes. This type is used

for relatively short or medium long codes. When an application uses these code lengths, then

it is preferred to use an algebraic construction since is no difference between them in the

performance. However, there are many additional reasons that algebraic method is desirable

in many applications. Construction principles of LDPC codes are evaluated in terms of error

performance, as well as complexity of encoding and decoding operations, with is especially

pronounced applications such as magnetic recording and optical communications. The

performance of LDPC codes depends on the code constructions and decoding algorithms.

There are many methods and each of them attempt to overcome problems typical for this

class of codes such as short cycles and trapping set. Here we give short explanation for some

constructions of LDPC codes which are used in our numerical results.

3.3.1. Progressive edge growth construction

The important LDPC code class is made by PEG method [85]. In this procedure the

constructed graph created by adequately connecting variable and check nodes in an edge-by-

edge manner. Based on a number of variable and check nodes and a variable - node - degree

sequence, the optimum connection at the time is established. That way, the graph is updated

an edge by an edge, taking care that girth is as large as possible. As a result, regular and

irregular PEG LDPC codes can be produced. This is a very simple and efficient algorithm

that provides flexibility in codeword length and code rate. In the improved algorithm IPEG

[86], a check node is selected which maintains the highest degree of connectivity for the

newly created cycles to the rest of the graph. That way these cycles will receive a great

amount of information from the rest of the graph which will decrease their negative impact.

The PEG LDPC codes are known to have the error capability performance as good as random

codes in spite of they are composed by algebraic construction.

First, we determine ܰ variable nodes ܸ= {ܰݒ ,...,3ݒ ,2ݒ,1ݒ}and ܯ parity check nodes

C ={ܿ1,ܿ2, ܿ3, …,ܿܯ}. Then, the degree distribution is defined as

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

35

ሻݔሺߣ ൌ ෍ ௜ݔ௜ߣ
ఊౣ ౗౮

௜ஹଶ

, (3.4)

where ߣ௜ presents fraction of edges emanating from variable nodes of degree ݅and ߛmax is a

maximum degree of variable nodes. After that, by using density evolution, variable node

degree sequence ߛ௩ ൌ ሼߛଵ, ,ଶߛ ,ଷߛ … , ேሽ has to be determined in non-decreasing orderߛ

ሼߛଵ ൑ ଶߛ ൑ ଷߛ ൑ ⋯ ൑ ேሽ.The rest of the procedure will be explained in one illustrativeߛ

example.

For example, ܰ	=6, 3=ܯ and degree distribution ߣሺݔሻ ൌ ݔ0.8576 ൅ ଶ, byݔ0.14237

using density evolution [87] we get five variable nodes with degree two and one variable

node with degree three. To illustrate the procedure of PEG we assume the PEG arrives at

variable node 6ݒto establish its edges, bipartite graph is given in Figure 3.3 and the parity

check matrix is

ܪ ൌ ൥
1 1 0
1 0 1
0 1 1

				
1 1 0
1 0 0
0 1 0

൩. (3.5)

1
2=γ

2
2=γ

3
2=γ

4
2=γ

5
2=γ 6

3=γ

1
c

2
c

3
c

Figure 3.3. Bipartite graph before PEG procedure

Here, we define ௩೔
௟ as the set contains all of the check nodes reached by a sub-graph

spreading from variable node ݒ௜ within depth ݈. The complementary of that set is donated

asഥ௩೔
௟

, i.e., C\௩೔
௟ , as shown in this example. Now for variable node 6ݒ, the PEG will put the

connections from 6ݒ to three check nodes.

Stage 1: At the first connection step (݇=1), PEG directly selects a check node which

has the minimum degree. In this case we have two check nodes with degree of three (ܿ2 and

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

36

ܿ3), PEG randomly selects one of them, and we suppose the PEG adds the first edge to ܿ2, as

shown in Figure 3.4 (depth ݈=0).

Stage 2: At the second connection step (݇=2), PEG algorithm starts from 6ݒ as

follows: the variable 6ݒhas only one connection to ܿ2so during depth (0):

{௩ల
଴ =ሼܿଶሽ,ഥ௩ల

଴
ൌ ሼܿଵ, ܿଷሽ },

PEG moves to depth (݈=1):

{௩ల
ଵ =ሼܿଵ, ܿଶ, ܿଷሽ,ഥ௩ల

ଵ
ൌ ∅},

the PEG algorithm calculates summation of check nodes in termination of every depth, so if

summation is equal to ܯ, then PEG algorithm stops. In this case, the summation is equal to

three, so PEG returns to the previous depth and selects from ഥ௩ల
௟ିଵ

 check nodes one that has

minimum degree (ܿ3), Figure 3.4.

Stage 3: As a third connection (݇=3), like the previous stage, PEG algorithm adds an

edge to c1 and resulting parity check matrix is:

ࡴ ൌ ൥
1 1 0
1 0 1
0 1 1

				
1 1 0
1 0 1
0 1 1

൩. (3.6)

6
v

1
v

3
v

4
v

1
c

3
c

2
c

6

0
2

0 1 0{ },
v

c=

6

0
1 3

{ , }
v

c c=

6

1
1 2 3

{ , , }
v

c c c=

6

0
v
Æ=

Figure 3.4. The second stage from procedure PEG for 6ݒ	

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

37

	

Figure 3.5. Illustration of parity-check matrix of PEGReg (504, 252) LDPC code; the blue dots
correspond to positions of the value 1 in the parity check matrix

3.3.2. Quasi cyclic construction

The QC LDPC block codes are desirable to use in many applications. The main advantage of

this construction principle compared to randomly constructed codes and PEG codes is

that QC-LDPC encoding procedure is easier to implement using simple shift registers due

to the regularity in their parity-check matrices. These codes consist of circulant submatrices,

which could be either based on the identity matrix or a smaller random matrix. The parity

check matrixࡴof a QC-LDPC code is constructed by a concatenation of circulant submatrices

as shown in the following

2 1

2 1

1 1 2 1 1 1

1

,

k

k

j j j k j

a a a

b ab a b a b

b ab a b a b

I I I I

I I I I

I I I I

H





    

 
 
   
 
  




    


(3.7)

where ݔܫ represent an identity matrix which rows are cyclically shifted to the left by positions

 and ߩ = (ܽ)and parameters ܽ and ܾ are two nonzero elements with multiplicative orders o ,ݔ

o(ܾ) = ߛ, respectively. The parameters ܽ and ܾ should be chosen from Galois field GF(݉),

where ݉ is a prime number. For example, by choosing ݉=31, ܽ=2, ܾ=5, which produces

regular code with parameters 5=ߩ and 3= ߛ and ܰ=155. It is so-called Tanner code (155,64).

The regular and irregular codes can be designed by this form. Commonly, these codes suffer

from restrictions on code length and rate with keeping the good performance. The main

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

38

problem lies in changing structure of parity check matrix to avoid that the number of ones

increases which creates the short cycles. There are many methods to construct QC LDPC

codes with different forms, and every method tries to overcome disadvantages mentioned

above. Some of them are seeking to design LDPC codes with flexible code rate and length

[35].

Figure 3.6. Illustration of parity-check matrix of Tanner (155, 64) LDPC code; the blue dots correspond
to positions of the value 1 in the parity check matrix

The parity-check matrices obtained by PEG and QC code construction principles are

illustrated in Figure 2.5 and Figure 2.6, respectively, where each 1 in the respective parity-

check matrix is shown as a dot and each 0 is shown as a white space. The encoding procedure

of QC LDPC codes is easier to implement and it can be implemented by using a series of

shift registers, which allows its complexity to be proportional to code length [88].

3.3.3. Encoding process

Most of algorithms that design the parity check matrix ࡴdo not give this matrix with the

systematic form suitable for directly deriving the generator matrix	ࡳ ൌ ሾࡼ	ࡵ|௄ሿ. Instead, the

Gaussian elimination (modulo-2) is used for converting the resulting matrix ࡴ into a

systematic formࡴᇱ ൌ ሾࡵேି௄்ࡼሿ, where ࡵேି௄is the identity submatrix of dimension (ܰ−ܭ) ×

 to systematic form is (ܰ3)ࡴ In general, the computation cost of reducing the matrix .(ܭ−ܰ)

and for actual encoding is (ܰ2). The matrix ࡴcan be written as ࡴ ൌ ሾ࡭	࡮ሿ, where ࡭ is square

non-singular matrix submatrix with dimension ܰ−ܭ. Result of ሾ࡭	࡮ሿ ∗ ଵ equivalents to theି࡭

systematic form of ࡴ. This procedure is useful for PEG LDPC codes. The main problem for

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

39

some of constructions is that the matrix ࡭ is singular, and then cannot be obtained the

generator matrix.

It is useful to exploit the sparseness of matrix ࡴ to reduce the cost complexity for

encoding. In [83] the authors presented method (encoding by erasure decoding) that used the

encoding process is exactly the same as decoding for transmission over the binary erasure

channel (BEC) after supposing that bit nodes corresponding to parity bits are assumed to be

unknown. However, success of this method is restricted to the case when matrix ࡴ is free of

stopping sets [89].

Here we investigate the approach presented by [90]. This approach is called a Greedy

Permutation Algorithm which converts the ࡴmatrix by permutation rows and columns into

two forms: approximate lower triangular (ALT) form and systematic approximate lower

triangular (SALT) form. The first work was presented by Richardson et al in [91]. The

computations cost for encoding is (ܰ+݄2), where ݄ is called a gap of the matrix ࡴand

depends on its type and dimensions. This means that complexity of the encoding increases

almost linearly with the code length if ݄≪ܰ. The gap is defined as the number of rows which

decrease dimensions of the triangular submatrix ࢀ. The value of ݄	 cannot be determined

directly especially for large code lengths, so empirically we can test all possibilities such that

the gap takes the smallest value.

The first step is transforming the parity check matrix ࡴ into ࡴଵ with ALT form as

illustrated in Figure 3.7. The main task is to obtain the diagonal structure for sub-matrixࢀ.

The column with the minimum ݊݅݉ߛ in the matrix ࡴ is selected to permute with the column of

index ܰof ࡴଵ. If there is more than one column with ݊݅݉ߛ or the matrix ࡴ is a regular code,

then the selection can be random. Then ݊݅݉ߛ positions of ones for this column are appeared at

the right-down of ࡴଵby permutation of rows. This column is excluded from any next

procedure and the current ࢀ submatrix arises to up from the row index ܯ-݄. Now all columns

left of the column (1,..., ܰ‐1) are used for formation the submatrix ࢀ by searching the

columns with the minimum weight on or above the main diagonal of ࢀ to facilitate the

procedure. By permutation the columns and rows, the procedure continues until we reach the

first row with the main diagonal of the matrix ࢀ. During the converting from ࡴ to ࡴଵ, all

permutations of the columns are saved to relocate bit-positions of the codeword. Then ALT

form is obtained.

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

40

Figure 3.7. Approximate lower triangular (ALT) form

The second step is converting the ࡴଵ ALT form to the matrix ࡴଶ with the SALT form

presented in Figure 3.8.Cancelling all ones in the submatrix ࡱ is performed by adding rows

from the submatrix ࢀ and by Gaussian elimination over ࡰ and࡯. This creates identity

submatrixࡰ′. The gap ݄ may be reduced during Gaussian elimination such that produces some

linearly dependent rows at the bottom of the matrix which are eliminated from the matrix. 	

N

M

h

M - h

h

K M - h

A B T

D'

C'

Figure 3.8. Systematic approximate lower triangular (SALT) form

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

41

3.3.3.1. Example of Greedy Permutation Algorithm

We give simple example for this method and we use QC LDPC code with dimension ܰ=21,

 ଶwith SALTࡴ ଵ with ALT form and ݄=1 and Matrixࡴ Matrix .(3 ,2) = (ܿߩ ,ݒߛ) and 14=	ܯ

form and ݄=0.

 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
 0 1 0 0 0 0 0 1 0 0 0 0

=H

 0 0 0 0 0 0 0 1 0
 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0
 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

,

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

1

 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 1 0 1 0 0

=H

 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

,

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

2

 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 1 0 1 0 0

=H

0 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

.

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

42

The transmitted codeword ܠ is divided into three pieces 1݌ ,ݑ and 2݌. According to

the parity check condition	ࡴ ∙ ்ܠ ൌ ૙, equivalently the condition can be rewritten as:

࡭ ∙ ்ݑ ൅ ࡮ ∙ ଵ݌
் ൅ ࢀ ∙ ଶ݌

் ൌ 0 , (3.8)

where ݑ represents a sequence of ܭ information bits and 1݌ denoted the first parity bits with

size ݄ and can be determined directly by multiplication with submatrix ࡯′	as	݌ଵ ൌ ݑ ∙ .ᇱ்࡯

The last part 2݌ of the codeword can be determined by back-substitution [91] as

ଶሺ݈ሻ݌ ൌ෍࡭௟,௝ ∙ ௝ݑ ൅෍࡮௟,௝ ∙ ଵሺ݆ሻ݌ ൅෍ࢀ௟,௝ ∙ ଶሺ݆ሻ݌
௟ିଵ

௝ୀଵ

௛

௝ୀଵ

௞

௟ୀଵ

, (3.9)

where ݌ଶ ൌ ሼ݌ଶሺ1ሻ, …,ଶሺ2ሻ݌ , ܯଶሺ݌ െ ݄ሻሽ.

It should be noted that for any regular LDPC code where ߛ	2 =, the gap is always ݄=0

and complexity of the encoding is totally linear cost with the code length.

3.4. Decoding of LDPC codes

The error correction capability of LDPC codes depends on two elements: construction of the

parity check matrix ࡴ and an optimal decoding algorithm. Let assume that a codeword

ܠ ൌ ሺݔଵ, ,ଶݔ … , ேሻݔ 	∈ ܡis transmitted over a noisy channel and is received as a vector ܥ ൌ

ሺݕଵ, …,ଶݕ , ො is the maximum aܠ ேሻ. The optimal decision rule used to determine the estimateݕ

posteriori (MAP) decoding rule, which basically selects a codeword ܠ ∈ that maximizes the ܥ

posteriori probability	Prሺܠ|ܡሻ ൌ ∏ Prሺݕ௜|ݔ௜ሻ௜∈௏ , i.e., ܠො ൌ argmaxܠ∈஼ Pr	ሺܡ|ܠሻ. The MAP

decoding problem can be reduced to maximum likelihood (ML) decoding problem under

assumption that all codewords are equally likely to be transmitted.

Message Passing (MP) decoders have a significant attribute such that their procedure

is comfortably described over a bipartite graph. For an infinite code length and assuming that

the Tanner graph is a cycle-free or has a tree structure, the Belief-Propagation (BP) algorithm

proposed by Gallager is considered as the optimal iterative decoding algorithm with linear

complexity.

During MP decoding messages are exchanged between a set of variable nodes ܸ and a

set of check nodes C along edges of the Tanner graph, in order to calculate a posteriori

probability of a codeword bit associated to each variable node. Two update functions are used

in MP decoders, check node update function which updates the output messages of the check

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

43

nodes and variable node update function which updates the output messages of the variable

nodes. These functions are symmetric functions on the incoming messages. This procedure is

carried out until either ܠො is a codeword or maximum number of iterations is reached.

In an MP algorithm, nodes along edges of the TG iteratively exchange the messages

and every node uses incoming messages from its neighbors to calculate outgoing messages.

These nodes carry out local decoding operations along the edges of the TG, e.g., calculations

at a particular node are performed independent of the comprehensive structure of the code. In

addition, the computations are distributed, i.e., computations are performed by all nodes in the

graph and so an effective decoder implementation can be realized. The number of messages

exchanged in an iteration of a message passing decoder is the same as the number of edges in

the TG; a sparser TG means fewer computations.

Only in the first iteration, the incoming messages at the variable nodes which are

received from the channel, are immediately passed along the edges to the related neighboring

check nodes and there no extrinsic messages from the check nodes in the first iteration. Every

check node carries out the local decoding operations to determine the outgoing messages

according to the incoming messages received from the neighboring variable nodes. After that

outgoing messages from the check nodes are sent back to the related variable nodes and

variable nodes perform the local decoding operations to determine the outgoing messages

depending on the incoming messages received from the neighboring check nodes. The

complete iteration is defined when the extrinsic message has passed in both directions along

every edge. After every complete iteration the estimated codeword ܠො௟ is tested if it is valid

codeword or not by calculating the syndrome. The decoding process continues if the result is

a negative until maximum number of iteration is reached or the valid codeword is found.

We suppose input sequence to the MP decoder is defined by

௖௛ߤ ൌ ሺߤ௖௛ଵ, ,௖௛ଶߤ … , ,௜ݒ௟ሺߤ ௖௛ேሻ. Letߤ ௝ܿሻbe an extrinsic message passed by a variable node

௟ሺߤ to the neighboring check node ݆ܿ in the ݈-th iteration and ݅ݒ ௝ܿ, ௜ሻ the extrinsic messageݒ

passed by a check node ݆ܿ to the neighboring variable node ݒ௜ in the l-th iteration. Let

ሺሺݒ௜ሻ, \௜ሻݒ௟൫ሺߤand ݅ݒ ௜ሻ denote a set of all incoming messages to the variable nodeݒ ௝ܿ, ௜൯ݒ

denote a set of all incoming messages to variable node ݅ݒ except from check node ݆ܿ. Sets

൫൫ ௝ܿ൯, ௝ܿ൯ and ߤ௟൫൫ ௝ܿ൯\ݒ௜, ௝ܿ൯ can be clarified in a similar manner.

Two functions are required to complete the decoding process: variable update function

	ܿݐ݂ܿ to update the extrinsic message to the check node and check update function ݒݐ݂ܿ to

update the extrinsic message to the variable node, where:

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

44

,௜ݒ௟ାଵ൫ߤ ௝ܿ൯ ൌ ௩ݐ݂ܿ ቀߤ௖௛௜, \௜ሻݒ௟൫ሺߤ ௝ܿ, ௜൯ቁݒ , (3.10)

௟ାଵ൫ߤ ௝ܿ, ௜൯ݒ ൌ ௖ݐ݂ܿ ቀߤ௟൫൫ ௝ܿ൯\ݒ௜, ௝ܿ൯ቁ . (3.11)

After each complete iteration ݈ at the variable node ݅ݒ, a posteriori information for each

variable node is computed as

෤௩೔ߤ ൌ ௖௛௜ߤ ൅෍ߤ௟ሺሺݒ௜ሻ, ௜ሻ, (3.12)ݒ

and a bit value is estimated by

ො௜ݔ
௟ ൌ ቐ

0 if ෤௩೔ߤ ൏ 0
1 ifߤ෤௩೔ ൐ 0
signሺߤ௖௛௜ሻotherwise

, (3.13)

where the sign function outputs a 0 if the sign of the argument is positive, and a 1 if it is

negative.

The MP decoder converges if an estimated codeword ܠො௟ for some number of iteration ݈

is a valid codeword, i.e. ݈ݏൌ0 and the decoding failed if not, i.e. ݈ݏൌ1, where ݏ௟ ൌ

ሺݏଵ
௟ , ଶݏ

௟ , … , ெݏ
௟ ሻis a syndrome vector calculated as, multiplying the temporarily decoded bit

sequence ܠො௟ with the transpose of the ࡴ, i.e., ݏ௟ ൌ The MP algorithm runs until a valid .்ࡴො௟ܠ

codeword is found or the maximum number of iteration is reached.

The MP decoder is an optimal (i.e. maximum likelihood ML decoding) for those

codes whose graph is cycles free otherwise is a sub-optimal due to closed paths (cycles) in the

graph. So, if the codes have cycles then the MP decoder will perform close to ML decoder.

Furthermore, the overall decoding complexity is linear with the code length.

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

45

1
v

2
v

3
v

4
v

5
v

6
v

7
v

8
v

1
c

2
c

3
c

4
c

1ch
μ

2ch
μ

3ch
μ

4ch
μ

5ch
μ

6ch
μ

7ch
μ

8ch
μ

1 2
(,)l v cμ

() 7 11
(\ ,)l c v cμ ()7 1 7

(\ ,)l v c vμ

3 8
(,)l c vμ

Figure 3.9. Passed messages over TG for MP decoder at iteration ݈

3.4.1. Belief Propagation Algorithm

The Belief Propagation (BP) algorithm, also known as Sum-Product Algorithm (SPA), is

considered to be one of the most important algorithm in field of an error correction and

represents the state-of-the art algorithm for decoding of LDPC codes. This algorithm belongs

to a class of MP algorithms, where the messages passed between nodes along the edges are

probabilities, i.e., this algorithm runs in the probability domain and intends to find the most

probable transmitted codeword at every decoding iteration until reaches to the valid

codeword. BP algorithm estimates a posteriori probability of each message symbol as a

function of the received signal, the code information, expressed in the case of LDPC codes as

parity equations, and the channel attributes. The BP also works in the log likelihood ratio

(LLR) domain for numerical stability and to reduce the complexity calculations of the

probabilistic approach where the value of the check node is determine by multiplication of

probabilities for 0 and 1 in the probability domain. The operations are converted to

summation in LLR domain where the messages are real-valued. Here we consider BP

algorithm in LLR domain.

The priori information in LLR domain is given by

௖௛௜ߤ ൌ log ቆ
Prሺݕ௜|ݔ௜ ൌ 0ሻ

Prሺݕ௜|ݔ௜ ൌ 1ሻ
ቇ , (3.14)

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

46

for the Binary Symmetric Channel (BSC) we can write

௖௛௜ߤ ൌ ቐ
log ቀଵିఈ

ఈ
ቁ if ௜ݕ ൌ 0

log ቀ ఈ
ଵିఈ

ቁ if ௜ݕ ൌ 1
, (3.15)

where ߙ is a value of crossover probability in BSC and for AWGN we have ߤ௖௛௜ ൌ
ଶ௬೔
ఙమ

 where

 .degree ߛ be a variable node with a ݒ is a variance of a zero-mean Gaussian process. Let 2ߪ

Hence, 1-ߛ incoming messages to variable node ݒ are needed to determine an extrinsic

message from node ݒ and these messages can be defined asሺߤଵ, ,ଶߤ … , ܿ ఊೡିଵሻ. Similarly, letߤ

be a check node with a degree ߩ. Similarly, 1-ߩ incoming messages to ܿare required to

calculate an extrinsic message from node ܿ and defined as ሺߤଵ, ,ଶߤ … , ఘ೎ିଵሻ. The updateߤ

functions of the BP decoder are given as follows

,௖௛௜ߤ௩൫ݐ݂ܿ ,ଵߤ	 ,ଶߤ	 … , ఊೡିଵ൯ߤ ൌ ௖௛௜ߤ ൅ ෍ ௝ߤ

ఊೡିଵ

௝ୀଵ

, (3.16)

,ଵߤ	௖൫ݐ݂ܿ ,ଶߤ	 … , ఘ೎ିଵ൯ߤ	 ൌ ෑ sign൫ߤ௝൯ ∙ ∅ ቎෍ ∅ሺ|ߤ௜|ሻ

ఘ೎ିଵ

௝ୀଵ

቏

ఘ೎ିଵ

௝ୀଵ

ൌ 2	 tanhିଵ ቌෑ tanh ቀ
௝ߤ
2
ቁ

ఘ೎ିଵ

௝ୀଵ

ቍ , (3.17)

where ∅ሺݔሻ ൌ െ log ቀtanh ቀ
௫

ଶ
ቁቁ and sign denotes the standard signum function.	

The BP algorithm is a powerful algorithm with high error correction capability, but its

applicability in practice is limited, due to its complexity and low throughput. In any event, the

presence of cycles of relatively short lengths in the Tanner graph cannot be avoided, which

leads to degradation of BP performance. Performance degradation of BP decoder is visible at

some fixed point of channel error probability which is called the error floor phenomenon. This

event can be noticed when Frame Error Rate (FER) curve slowly changes its tendency while

the Signal-to-Noise (SNR) takes adequately large value. BP decoder at the error floor region

cannot reach to arbitrary low error probability. Regardless of these drawbacks, the BP

algorithm is significant and over the years there were some attempts to reduce computations

complexity of the decoder in the LLR domain. The central idea concentrates about

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

47

simplification the check node updating function of messages, and leads to a much simpler

Min-Sum (MS) algorithm. Although, the Min-Sum (MS) algorithm has lower complexity than

BP, there is a significantly gap between their performances. However, ߣ-min decoding [92] is

algorithm such tries to decrease the gap between BP and min-sum algorithms and sometimes

offers the same performance. The complexity of λ-min decoding is lower than the complexity

of the BP decoder. Another algorithm for that aims to reduce the performance gap is the offset

min-sum decoder proposed by Chen et al [93]. The offset parameter seeks to reduce the

overestimate of the outgoing message which is calculated by check node updating function.

There are methods to pick this parameter [93] and could be determined or could be changed

as a function of the SNR.

A number ways are presented which try to reduce the complexity of procedures in the

standard BP algorithm, and also computation cost, while preserving the performance up to

certain level. Here we present a brief survey of simplified BP decoding algorithms.

3.4.2. Reduced Complexity Decoders

The largest values of the function ∅ሺݔሻ depend on the minimum values 	of	ݔ, so the function

 that calculates an extrinsic message received by a variable node depends on the ܿݐ݂ܿ

minimum absolute value of the incoming messages to the check node. We assume the vector

 :can be approximated as ܿݐ݂ܿ smallest absolute value, then the ߣ is the [λݐ	,…,2ݐ	,1ݐ]

,ଵߤ	௖൫ݐ݂ܿ ,ଶߤ	 … , ఘ೎ିଵ൯ߤ	 ൎ ቌෑ sign൫ߤ௝൯

ఘ೎ିଵ

௝ୀଵ

ቍ ∅ሾ∅ሺ|ݐଵ|ሻ ൅ ∅ሺ|ݐଶ|ሻ ൅ ⋯൅ ∅ሺ|ݐఒ|ሻሿ, (3.18)

 this algorithm is called ߣ-min algorithm where ܿߩ>ߣ.	

Min-sum algorithm also approximates the function ݂ܿܿݐin such a way thattakes only

the minimum absolute value which corresponds to the largest magnitude of the incoming

messages. The check-node update function of the MS decoder is given by

,ଵߤ	௖൫ݐ݂ܿ ,ଶߤ	 … , ఘ೎ିଵ൯ߤ	 ൎ ቌෑ sign൫ߤ௝൯

ఘ೎ିଵ

௝ୀଵ

ቍ min
௝∈ሼଵ,…,ఘ೎ିଵሽ

൫หߤ௝ห൯. (3.19)

The gap between the standard BP and the min-sum decoders is large specifically in the

low to mid SNR regions, but its complexity is lower than BP algorithm. One important

algorithm which narrows the gap is offset min-sum algorithm [93]. The update function of the

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

48

check node is modified by inserting one factor to reduce an excessively high estimate of the

extrinsic message from a check node using the min-sum algorithm. This factor is called an

offset or a correction factor. The modified function is given by

,ଵߤ	௖൫ݐ݂ܿ ,ଶߤ	 … , ఘ೎ିଵ൯ߤ	 ൌ ቌෑ sign൫ߤ௝൯

ఘ೎ିଵ

௝ୀଵ

ቍmax ൬ min
௝∈ሼଵ,…,ఘ೎ିଵሽ

൫หߤ௝ห൯ െ ,ߟ 0൰. (3.20)

It can be noted from ݂ܿܿݐ	 that an extrinsic message is zero if the magnitude of an

incoming message is less than offset factor ߟ. There are many methods to determine value of

this factor that assume that it could be fixed or code dependent. In the second case the offset

factor value can be obtained by a brute force simulation.

On the other hand, the authors in [94] proposed a very simple and powerful self-

correction algorithm for the min-sum decoding of LDPC codes. In that algorithm, an update

variable function is modified by erasing unreliable messages, while the check node update

function is the same as in the min-sum algorithm. The basic idea is track sign changes of a

variable node message in the two consecutive iterations and deletes forces this message to 0 if

a change is detected. After updating the extrinsic check messages ሺ݆ܿ,	 at iteration ݈ and	ሻ݅ݒ

determine a posteriori informationߤ෤௩೔, the extrinsic variable messages are calculated as:

,௜ݒ௟൫ߤ ௝ܿ൯
୲୫୮

ൌ ෤௩೔ߤ െ ௟൫ߤ ௝ܿ, ௜൯ݒ , (3.21)

,௜ݒ௟൫ߤ ௝ܿ൯ ൌ ቊߤ
௟൫ݒ௜, ௝ܿ൯

୲୫୮
ifsgn ቀߤ௟൫ݒ௜, ௝ܿ൯

୲୫୮
ቁ ൌ sgn ቀߤ௟ିଵ൫ݒ௜, ௝ܿ൯ቁ

0 otherwise
	. (3.22)

When the message ߤ௟ାଵ൫ݒ௜, ௝ܿ൯ takes a zero value and arrives to the check nod to have

both negative and positive signs in the next iteration we update the new variable node

message byߤ௟ାଵ൫ݒ௜, ௝ܿ൯ ൌ ,௜ݒ௟ାଵ൫ߤ ௝ܿ൯
୲୫୮

.

3.4.3. Gallager A\B decoder

Gallager A\B algorithm is a hard decision iterative decoder. In spite of its simplicity, it

belongs to the class of MP decoders. Gallager A\B decoder is a sub-optimal decoder for BSC

channel with binary format.

Gallager-B decoder is a hard decision decoder, which means that messages passed

between nodes in Tanner graph are binary. The small range of values makes this decoder as a

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

49

hard decision, as opposite to a soft decision decoder which consumes a wide range of values.

The procedure of Gallager-B decoder is a follows:

The input of the Gallager-B decoder is defined by ࢟ൌ	 ሼ1ݕ,	 	,…,2ݕ ሽas a binaryܰݕ

received signal. The update check function ݂ܿܿݐ is given by:

,ଵߤ	௖൫ݐ݂ܿ ,ଶߤ	 … , ఘ೎ିଵ൯ߤ ൌ ቌ෍ ௝ߤ

ఘ೎ିଵ

௝ୀଵ

ቍmod 2 , (3.23)

and the update variable function is defined as:

,ଵߤ	௩൫ݐ݂ܿ ,ଶߤ	 … , ఊೡିଵ൯ߤ	 ൌ

ە
ۖ
۔

ۖ
1ۓ if ෍ ௝ߤ ൒ ܾ௩,௟

ఊೡିଵ

௝ୀଵ

0				if		ߛ௩ െ 1 െ෍ ௝ߤ ൑ ܾ௩,௟
ఊೡିଵ

௝ୀଵ

௩otherwiseݕ

			, (3.24)

where ܾݒ, represents a threshold of the majority voter function in the variable ݒ, which in

general can depend on iteration ݈-th and should be greater than (1‐ݒߛ)/2 and smaller than ݒߛ.	

After predefine number of iterations the final decision of transmitted bit is made on of the

basis of majority of its estimate (݅ݒ,	݆ܿ).

In a special case, when the threshold ܾݒ,is fixed at	ܾݒൌ1‐ݒߛ for all iterations and all

variable nodes. Worth mentioning that Gallager-B decoder is more powerful than algorithm-

A while for ݒߛൌ3, both algorithms have the same performance.

Performance of this algorithm is lower in both the waterfall and the error regions

compared with BP. The error correction capability of regular 3=ߛ LDPC codes on the BSC

decoded under the Gallager A\B algorithm has been analyzed in [95], [96]. We can

summarize their results. For ݃≥10, where ݃ is the girth of the Tanner graph representation of

a code, Gallager A\B can correct all error patterns with up to (݃/2-1) errors in the at most ݃/2

iterations. This means that there is a relation between capability error correction and girth

when ݃≥10 under Gallager A\B algorithm. However, when ݃≤ 8 it was shown that the girth is

not sufficient condition for assurance correcting the errors with weight (݃/2-1).

The Figure 3.10 and Figure 3.11 represent FER performance on Tanner code (155,64)

by passing decoding algorithms over BSC and AWGNC, respectively.

Chapter 3. LDPC Codes and Iterative Decoding Algorithms

50

Figure 3.10. FER performance on Tanner code (155,64) by passing decoding algorithms over BSC

Figure 3.11. FER performance on Tanner code (155,64) by passing decoding algorithms over AWGN

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Cross−over probability α

F
ra

m
e

E
rr

or
 R

at
e

 F
E

R

Gallager A\B
Min−sum
SPA
6−offset Min−sum

1 2 3 4 5 6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Signal To Noise Ratio (Eb/No,dB)

F
ra

m
e

E
rr

or
 R

at
e

 F
E

R

Gallager A\B
Min−sum
SPA
6−offset Min−sum

51

Chapter 4

Improvement of the Bit-Flipping
Algorithm and Faulty Decoder

All attempts for achieving the better balance between complexity of LDPC decoder and error

performance, launched from two opposite directions: the first direction aims to diminish the

high complexity of BP decoding with maintaining the high performance as much as possible

as the mentioned algorithms in Chapter 3. The second direction aims to improve performance

of hard-decision decoding to be closed to BP performance. In our research we follow the

second direction.

There are many differences between high and low complexity decoding algorithms.

High-complexity decoding algorithms such as Believe Propagation (BP) algorithm can

correct more errors created by the channel noise, and thus, they should be used when the

complexity and computation time is not important. Low-complexity decoding algorithms,

however, are more attractive when we demand the fast decoders for high-throughput systems

or delay-sensitive applications. Low-complexity decoding algorithms have two main

disadvantages. First, they have an inferior threshold of decoding compared to high-

complexity algorithms so, to ensure the better performance, a lower code rate should be used.

Second, because of their relatively poor performance, some decoding algorithms need large

number of iterations to obtain a wanted bit or frame error rate.

Bit flipping algorithms are the fastest, least complex and easy to implement in

hardware. Original BF decoding was introduced by Gallager in his seminal work. The BF

decoders are hard-decision decoders and their performance gap can be significantly wider

compared to for example the Gallager A\B. BF algorithm is a rather simple because its

procedure only requires calculation the number of unsatisfied check nodes for every bit in

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

52

code, which can be done by the logical operations. Based on the specified threshold for each

bit, the bit is flipped if number of unsatisfied check nodes is larger than the threshold.

We begin by introducing some algorithms designed for the Additive White Gaussian

Noise Channels (AWGNCs). These algorithms depend on the real values of the received

signal to approach the better performance with lower computations cost. Our proposed

algorithm is derived from Gradient Descent Bit Flipping (GDBF) algorithm which is designed

only for an AWGNC [100]. By inserting some modifications on this algorithm, we can

optimize this algorithm for BSC with sufficient performance. The optimization is performed

by analyzing some of harmful trapping sets in the TG.

4.1. Bit flipping algorithm

Bit flipping BF is a simple iterative algorithm and it is classified with the hard decoding

algorithms. In the BF algorithm the number of satisfied and unsatisfied check nodes that are

connected to the certain variable node is determined and compared with a predefined

threshold. The threshold is designed to optimize the error performance. Let ߰ୱ௟ሺݒሻ denote a

number of satisfied check nodes and ߰୳ୱ௟ ሺݒሻ the number of unsatisfied check nodes, that are

connected to variable node ݒ. The check node ܿ is satisfied if ݏ௖௟ିଵ ൌ 0 and unsatisfied if

௖௟ିଵݏ ൌ 1 before a new iteration ݈. When ߰୳ୱ௟ ሺݒሻ ൐ ∆௩ then the value of the variable node is

flipped, where ∆ݒ is a threshold for each variable node ݒ and it can be empirically selected to

obtain the better performance and in general it could be selected as 2/ݒߛ. The procedure is

repeated until all parity check equations are satisfied or a determined maximum number of

iterations is reached. The BF decoder is given in Algorithm 0.

In recent years, there are a number of improvements of the BF algorithm. Many of

these algorithms depend on joining the bit-flip decision with the received symbols where the

bit is represented in bipolar form [+1,-1]. Adding the received symbols in the bit-flip

decisions improves performance of the decoding. The most of previous modifications of the

BF algorithm, including some kind of reliability information of the received symbols in their

decoding decisions, are designed for the AWGNC or any soft information channel.

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

53

Algorithm 0 Parallel Bit Flipping Algorithm over BSC

Input: ࢟ received word

ො௩ݔ : ܸ∋ݒ∀
ሺ଴ሻ 	⟵ ௩ݕ

ሺ଴ሻ࢙ 	← 	 	ܿ∀ቀ்ܪሺ଴ሻܠ ∈ ܥ ∶ 	 ௖ݏ
ሺ଴ሻ 	←	⊕௨∈೎ ො௨ݔ

ሺ௟ሻቁcalculate the syndrome	

݈=0

while ࢙ሺ଴ሻ ് ૙and ݈≤ ܮdo
Compute ߰୳ୱ௟ :ܸ∋ݒ∀ ሺݒሻ
 1=ݒ
while ݒ	൑	ܰ	do

 if ߰୳ୱ௟ ሺݒሻ ൐
ఊೡ
ଶ

then

ො௩ݔ
ሺ௟ାଵሻ 	← ො௩ݔ	⊕1

ሺ௟ሻ flip bit
else

ො௩ݔ
ሺ௟ାଵሻ 	← ො௩ݔ

ሺ௟ሻ
end if

ݒ ← ݒ ൅ 1
end while

ሺ௟ାଵሻ࢙ 	← 	 syndrome check ்ܪሺ௟ାଵሻܠ
݈ ← ݈ ൅ 1

end while

Output: ܠොሺ௟ሻ

4.2. Weighted Bit Flipping algorithm and modified

Kou et al introduced the Weighted Bit-Flipping (WBF) algorithm [97]. In this algorithm a

magnitude of the received symbol is used as a simple measure of the reliability of a received

symbol. The checksums for each check node is weighted by the minimum magnitude of the

received symbols which participate in the same check node. The bit-flip decision is

determined by summation all weighted syndrome of check nodes, which are connected to the

same bit (variable node). This summation can be defined as an estimation criterion of

reliability the symbol. The bit with minimum estimation criterion value is selected to be

flipped. The estimation criterion in the WBF algorithm, can be chosen in such a way that only

one bit is flipped during a iteration, which slowdowns the convergence. The WBF algorithm

significantly increases the complexity of computations as the minimum value estimation is a

global function, which means that it is carried out over all variable nodes.

We assume the message ࣑ ൌ ሺ߯ଵ, ߯ଶ, … , ߯ேሻ is transmitted in the bipolar format

߯௩ ൌ ∓1across a noisy channel that adds a vector of independent, identically distributed

Gaussian noise,࢔, to the message. At the receiver, a vector of samples,ࣁ ൌ ሺߟଵ, ,ଶߟ … , ேሻ, isߟ

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

54

obtained and given by ࣁ ൌ ࣑ ൅ ௩ denote the value of the sample associatedߟ where ߯௩ and ,࢔

with variable node ݒ.

As we said that improvement of the BF algorithm can be achieved by taking into

account the reliability of the received samples. In weighted bit flipping algorithm WBF for

AWGNC, an information reliability of the received sample can be considered by its

magnitude|ߟ௩|. The reliability information is determined for each check node by selecting the

minimum reliability of the variable nodes which are connected to a particular check node.

Information reliability for each check node ܿߚcan be defined as:

௖ߚ ≜ ሼminሼ|ߟ௩|ሽ ݒ	: ∈ ௖ሽ.

An estimated sample at the beginning of the decoding process is defined by ߯̂௩
ሺ଴ሻ ൌ signሺߟ௩ሻ

while an inversion function∆௩
ሺ௟ሻ is given by the sum of the weighted bipolar syndromes and

can be defined as:

∆௩
ሺ௟ሻሺ࣑ෝ, ሻࣁ ≜ ෍ ௖ߚ ෑ ߯̂௨

ሺ௟ሻ

௨∈೎௖∈ೡ

. (4.1)

This function gives the measure of invalidness of symbol assignment on ݒ and the sign of an

estimated bit ߯̂௩
ሺ௟ሻ is flipped if ∆௩

ሺ௟ሻሺ࣑, ሻࣁ ൌ ܾሺ௟ሻ. The threshold is defined as

ܾሺ௟ሻ ൌ min൫∆ሺ௟ሻሺ࣑ෝ, ,	ሻ൯ࣁ

while ∆ሺ௟ሻሺ࣑, ሻࣁ ൌ ቀ∆ଵ
ሺ௟ሻሺ࣑ෝ, ,ሻࣁ ∆ଶ

ሺ௟ሻሺ࣑ෝ, …,ሻࣁ , ∆ே
ሺ௟ሻሺ࣑ෝ, .ሻቁࣁ

Zhang et al modified the WBF algorithm and added another term to the last

summation [98]. In MWBF, a term is added to the inversion function which depicts the effect

of the received symbol. For AWGNC if reliability of the symbol is denoted as |ߟ௩|, represent

the absolute value of the received symbol, we have the following criterion function:

∆௩
ሺ௟ሻሺ࣑ෝ, ሻࣁ ≜ ෍ ௖ߚ ෑ ߯̂௨

ሺ௟ሻ ൅ .ߙ |௩ߟ|
௨∈೎௖∈ೡ

, (4.2)

where the weighting factor ߙ is a positive real number optimized for different signal-to-noise

ratios [98].

Performance of MWBF is better than WBF but has the same problem of the high

computation complexity, which is the negative side paid for the performance improvement.

Another flipping algorithm is presented by Jiang et al [99]. In that paper, improvement of

MWBF is made by taking into account that reliability of checksums involving this bit should

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

55

exclude the bit itself if its reliability is the minimum. In the other word, remedies the update

of the check message in the min-sum algorithm. IMWBF algorithm demands additional

computational complexity before decoding iterations.

The WBF, MWBF and IMWBF are a single-bit flipping algorithms and need a large

number of iterations during the decoding process to reach the valid codeword. Wadayama et

al designed a new formulation for bit-flipping decoding based on the gradient descent model

[100]. The GDBF decoding algorithm is designed to correct the errors over AWGNs as

shown in Figure 4.1. This model is optimized for maximum likelihood ML decoding problem

by combining the correlation of received samples with the syndromes. This model is called

the objective function. The gradient descent inversion function for each bit is based on the

partial derivative of the objective function. The error performance of GDBF algorithm is

superior compared to the WBF, MWBF and IMWBF algorithms especially if the number of

allowed iteration is limited to a small number. To reduce the number of iterations during

GDBF decoding, the authors of GDBF modified the condition for bit-flipping. After

specifying an inversion threshold, all bits are flipped if their inversion functions are smaller

than this threshold.

Most of the proposed algorithms improve original BF algorithm, but they depend on

the soft information from a channel. Miladinovic and Fossorier introduced a new algorithm

Probabilistic BF (PBF) on the BSC [101]. In their algorithm, a probabilistic parameter ݌ is

used to convert the BF algorithm from the determinism to the probabilism. It uses an addition

condition for bit-flip decision such that the bit is flipped if number of unsatisfied check sums

is greater than the predetermined threshold, but the flipping will occur only with some

probability 1≥݌. Probabilistic values of ݌ may be increased during decoding process with a

certain step. For ߛ	3 = a significantly improvement is obtained and possible improvement

quickly decreases as ߛ increases. PBF algorithm is designed for practical LDPC codes are

represented by Tanner graphs which contain cycles. Because of the probabilistic nature of

PBF algorithm the convergence of the decoding process is delayed.

Recently, a new class of algorithms is designed to improve BF decoding on the BSC

in [102]. These algorithms use two bits to represent variable node and another two bits to

represent check node and are called two-bit bit flipping (TBBF) algorithms. For variable

node, an additional bit can refer to strength of a variable node and the algorithms may

decrease its strength based on a combination of satisfied and unsatisfied check nodes. For

check node, an additional bit can refer to its reliability. In an efficient manner for failure

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

56

analysis of these algorithms, a concatenation of TBBF algorithms is used to give excellent

improvement and a good performance complexity tradeoff has been proposed.

4.3. Gradient Descent Bit flipping algorithm

Figure 4.1. Simple telecommunication model for AWGNC using GDBF decoder

The BF algorithm can be seen as a process to minimize a hidden objective function

with certain number of iterations. An objective function is designed to converge to the correct

codeword with low complexity. The main idea behind the GDBF algorithm is combination

two decoding processes. The first process is maximum likelihood (ML) decoding and the

second process is sum of the bipolar syndromes of ࣑ෝ. The ML decoding problem for an

AWGNC is process for finding an estimated codeword at the particular iteration which gives

the largest correlation to a given received signal ࣁ. In the other words, ML decoding aims to

find ࣑ෝ∈ܥ that maximizes the correlation

ෝ࣑ ൌ argmax
஼∋࣑

෍ ߯̂௨ߟ௨

ே

௨ୀଵ

. (4.3)

Actually, finding a set of all possible messages must subject to the parity constraint

and this is a complexity method. One of the simple methods to solve ML decoding problem is

joint it with the second process as a penalty term, so an objective function for GDBF

algorithm can be defined as

݂ሺ௟ሻሺ࣑ෝ, ሻࣁ ≜ ෍߯̂௩
ሺ௟ሻߟ௩ ൅෍ ෑ ߯̂௨

ሺ௟ሻ

௨∈೎

ெ

௥ୀଵ

ே

௩ୀଵ

, (4.4)

i c t 

r

'i ,ˆ { 1, 1}N R    

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

57

where ࣑ෝ ∈ ሼെ1	 ൅ 1ሽே and it is noticeable that the second term is maximized when ࣑ෝ ∈ ,ܥ

∑ ∏ ߯̂௨௨∈೎
ெ
௥ୀଵ ൌ ෝ࣑ i.e. all syndromes are equal to +1, and when ,ܯ ∉ at least one of the ܥ

syndromes is equal to -1 due to parity breach. An objective function is a nonlinear function

and has many local maxima as shown in Figure 4.2. Wadayama in [100] defined an inversion

function as

∆௩
ሺ௟ሻሺ࣑ෝ, ሻࣁ ൌ ߯̂௨

ሺ௟ሻ ݂ߜ
ሺ௟ሻሺ࣑ෝ, ሻࣁ

௨̂߯ߜ
ሺ௟ሻ ൌ ߯̂௩

ሺ௟ሻߟ௩ ൅ ෍ ෑ ߯̂௨
ሺ௟ሻ

௨∈೎௖∈ೡ

, (4.5)

i.e. move direction and position of the guess toward the objective function. An iteratively

procedure for GDBF algorithm with respect to each symbol for convergence of the codeword,

flips the sign of bits for which ∆௩
ሺ௟ሻሺ࣑ෝ, ሻࣁ ൌ ܾሺ௟ሻ. It can be noted that GDBF algorithm tries to

maximize an objective function during iterations in a gradient ascent manner. An objective

function can be used as a tool to describe the decoding process. In each iteration, maybe only

a single bit is flipped corresponding to the condition. Wadayama [100] introduced a

MultiGDBF algorithm in order to increase the speed of algorithm such that the bits are

flipped in parallel, i.e., every bit is flipped whose inverse function value is higher than the

threshold operation. To increase the decoding speed and to improve the stability, a sign of

any bit ߯̂௩
ሺ௟ሻ is changed if ∆௩

ሺ௟ሻሺ࣑ෝ, ሻࣁ ൏ ൏0 is a threshold parameter. Worthߠ where ,ߠ

mentioning that procedure of GDBF gets stuck at the certain local maximum, i.e., decoder

cannot converge to a correct codeword even if the number of iterations tends to infinity.

There are many mechanisms to escape from the local maximum and to approach to the global

maximum by inserting a random perturbation in the inversion function [103].

Figure 4.2. Convergence behavior and escape from local max

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

58

The GDBF decoding is in way soft-decision decoding and to make the decisions,

required real addition operations to compute an inversion function. It is well known that a real

addition operation is much more complex than a logical operation, the computational

complexities of GDBF decoding are dominated by the total number of real additions needed

to decode a received sequence. In our proposed algorithm we optimize GDBF algorithm to

work over BSC and most computations can be done by a logical operations.

4.4. Optimize GDBF algorithm to the BSC

To adapt GDBF for BSC, we first rewrite the polar based inverse function in a binary form.

Let ܠ ൌ ሺݔଵ, ,ଶݔ … , that is transmitted over a BSC with crossover ܥ ேሻ denote a codeword ofݔ

probability ߙ and let ܡ ൌ ሼݕଵ, ,ଶݕ … , ேሽ is be a vector received by a decoder from BSCݕ

where ܡ ൌ 	ܠ ⊕ ܍ and܍	 ൌ ሺ݁ଵ, ݁ଶ, … , ݁ேሻ denotes the error pattern introduced by the BSC,

and ⊕ is the component-wise modulo-two sum. Let ߯̂௩
ሺ௟ሻ ൌ 1 െ ௩ݔ2

ሺ௟ሻ and ߟ௩ ൌ 1 െ ௩, byݕ2

using modul-2 arithmetic, the inverse function can be written into:

∆௩
ሺ௟ሻሺܠො, ሻܡ ൌ 2 െ 2ቀݔො௩

ሺ௟ሻ ⊕ ௩ቁݕ ൅ ௩ߛ െ 2 ෍ ໄݔො௨
ሺ௟ሻ

௨∈೎௖∈ೡ

. (4.6)

This equation has constant terms and variable terms, as we have above mentioned that

GDBF algorithm tries to maximize an inverse function and because of the negative values of

the some variable terms, the modified inverse function (MIF) can be rewritten for BSC,

where the above expression is minimized by maximization of the following modified inverse

function

Λ௩
ሺ௟ሻሺܠො, ሻܡ ൌ 1 െ 0.5 ∙ ∆௩

ሺ௟ሻሺܠො, ሻܡ

	ൌ 	 ො௩ݔ
ሺ௟ሻ ⊕ ௩ݕ ൅ ෍ ໄݔො௨

ሺ௟ሻ

௨∈೎௖∈ೡ

െ 0.5 ∙ .௩ߛ
(4.7)

For ߛ- variable-regular codes, the modified inverse function can be simplified as

Λ௩
ሺ௟ሻሺܠො, ሻܡ ൌ ො௩ݔ

ሺ௟ሻ ⊕ ௩ݕ ൅ ෍ ໄݔො௨
ሺ௟ሻ

௨∈೎

.
௖∈ೡ

 (4.8)

The values of the modified inverse function MIF are always positive and the range of

these values is restricted to the set of positive integer values [0, 1+ߛ]. To minimize the

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

59

expression (4.6), the maximum value of the modified inverse function is found at the ݈-th

iteration, and let ܾሺ௟ሻ ൌ max௩ሺΛ௩
ሺ௟ሻሺܠො, ሻሻ be the largest value and as a counterpart, inܡ

AWGNC the minimum value, min௩ሺ ∆ሺ௟ሻሺ࣑ෝ, ሻሻ, is found. The bit with maximum value isࣁ

flipped to get the convergence, the new decoder over BSC is given in Algorithm 1. Many

variable nodes maybe satisfy the relation Λ௩
ሺ௟ሻሺܠො, ሻܡ ൌ ܾሺ௟ሻ, which has a negative impact on the

algorithm convergence. If the flipping decision was wrong, the “flip messages” would

propagate through the short cycles in TG. According to (4.8), for a (ߩ ,ߛ)-regular code it is

necessary to calculate the parities in the neighboring check nodes, by using ߩ-input exclusive

or (XOR) gates. An additional two-input XOR gate is required to check if the ݒ-th bit of the

current estimate is the same as the bit initially estimated from the channel. The value of

Λ௩
ሺ௟ሻሺܠො, ሻ is equal to the number of non-zero outputs of the XOR gates. Combinational logicܡ

at the variable nodes is based on a set of majority logic (MAJ) gates, each having 1+ߛ inputs

and adaptable threshold. The output of the ݒ-th MAJ gate in the ݈-th iteration is non-zero only

if the modified inverse function value is equal to the threshold valueܾሺ௟ሻ. This threshold is the

same for every variable node as presented in Figure 4.3 (a). The Figure 4.3 shows the variable

node processing unit for GDBF and BF algorithms over BSC, it can be noted that both

algorithms have the same structure and for GDBF there is two-input XOR logic gate to XOR

an initial estimated value of the bit with current estimated value for the same bit.

How threshold adaptation can be realized?

The threshold can be adapted in hardware by three steps for every iteration:

 The threshold may be initialized to the maximum valueܾሺ௟ሻ ൌ ߛ ൅ 1.

 The threshold is decremented when all MAJ logic gate outputs are zeros, for instance

by using N-input OR gate.

 When the output of at least one MAJ gate is not equal to zero, the threshold is set

toܾሺ௟ሻ ൌ max௩ ቀΛ௩
ሺ௟ሻሺܠො, .ሻቁܡ

This is important for hardware implementation, as it significantly simplifies global operation

of maximization of MIF.

It seems interesting to investigate the performance of GDBF in binary model and

compare it with GDBF in way soft-decision. We can compute the probability of error by this

relation ߙ ൌ ሻሻas a performance measure from BSC to AWGNC where	0_ܰ/ܾ_ܧሺ√ሺܿݎ݂݁	0.5

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

60

 is a complementary error function [104]. Figure 4.4 shows important performance ݂ܿݎ݁

degradation for the GDBF in hard-decision compared with GDBF in soft-decision.

()
1̂

lx

(1)ˆ 0l
vx  

()ˆ l
Nx

ML logic
Calculate ()

& compare with
y
D

l

us

v

v

(a) (b)

Figure 4.3. Illustration of the variable node processing unit for (a) GDBF and (b) BF algorithms over BSC

Figure 4.4 (a). Performance of GDBF in soft and
hard ways for Tanner (155,64), 100=ܮ

Figure 4.4 (b). FER performance comparison for the
(155,64) Tanner code, 100=ܮ

()
1̂

lx

(1)ˆ 1l
vx  

(0)ˆ

(

 1

)
vx

initial estimation



()ˆ l
vx

()ˆ l
Nx

()lb

1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Signal To Noise Ratio (Eb/No,dB)

F
am

e
E

rr
or

 R
at

e
 F

E
R

GDBF−Hard
GDBF−Soft

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Crossover probability in BSC, α

F
ra

m
e

E
rr

or
 R

at
e,

 F
E

R

BF
PBF
GDBF
Gallager A\B
PGDBF, p=0.7
SPA

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

61

Algorithm 1 GDBF Algorithm over BSC

Input: ܡ received word

ො௩ݔ : ܸ∋ݒ∀
ሺ଴ሻ 	⟵ ௩ݕ

ሺ଴ሻ࢙ 	← 	 	ܿ∀ቀ்ܪሺ଴ሻܠ ∈ ܥ ∶ 	 ௖ݏ
ሺ଴ሻ 	←	⊕௨∈೎ ො௨ݔ

ሺ௟ሻቁcalculate the syndrome	

݈=0

while ࢙ሺ଴ሻ ് ૙and ݈≤ ܮdo

Compute Λ௩ :ܸ∋ݒ∀
ሺ௟ሻሺܠො, ሻܡ

ܾሺ௟ሻ 	← 	max௩ሺΛ௩
ሺ௟ሻሺܠො, ሻሻ find the maximum valueܡ

 1=ݒ
while ݒ	൑	ܸdo

 if Λ௩
ሺ௟ሻሺܠො, ሻܡ ൌ ܾሺ௟ሻthen

ො௩ݔ
ሺ௟ାଵሻ 	← ො௩ݔ	⊕1

ሺ௟ሻ flip bit
else

ො௩ݔ
ሺ௟ାଵሻ 	← ො௩ݔ

ሺ௟ሻ
end if

ݒ ← ݒ ൅ 1
end while

ሺ௟ାଵሻ࢙ 	← 	 syndrome check ்ܪሺ௟ାଵሻܠ
݈ ← ݈ ൅ 1

end while

Output: ܠොሺ௟ሻ

4.4.1. Comparison between GDBF and other decoders

Before analyzing the failure of the GDBF decoder over BSC to approach the same

performance of GDBF over AWGNC, let us explain why GDBF has a superior performance

compared to BF and PBF decoders over BSC for waterfall anderror-floor regions. We show

that a number of error pattern corrected by the BF algorithm is correctable with GDBF. This

is an absolutely evident becausethe gap between two algorithms is very large as shown in

Figure 4.4 (b). Also GDBF decoder has good convergence behavior only for high crossover

probability values of the BSC and is not for lower values when compared to Gallager A/B on

the well-known Tanner code (155,64) with ݒߛ	ൌ3	and	ܿߩ	ൌ5 [105], [83]. We consider in our

simulations this code for two reasons: the difference between its minimum distance ݀௠௜௡ ൌ

20 and its minimum pseudo-distance ݓ௣௠௜௡ ≃ 10 is large, that means the difference in the

guaranteed error correction capability between customary iterative decoders is anticipated to

be large. Second, the (155,64) Tanner code is adequately small and structured, so that a brute

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

62

force checking of whether all errors get up to the determined weight-ݐ are corrected by

decoding variety set can be done by Monte-Carlo simulations with rational computation time.

We briefly discuss some harmful constructions in the LDPC code which impede the

GDBF algorithm to achieve the convergence. As we know that curves of linear codes in

general show purposely tendency towards partition into two distinct regions. The gain is high

at the beginning, we talk certainly about good codes, but this phenomenon appears within the

first few decibels. With higher SNR the quality of the signal increases and a negative impact

of the channel decreases and the number of errors reduces. It is expected that the performance

of the code are meaningfully better and it is ability of LDPC codes to shove this gain to be

adjacent to the theoretical limit [106]. At some point, this gain may stop abruptly and this

event because of some harmful constructions inside of the LDPC codes which are called

trapping sets.

For GDBF algorithm the situation maybe be different, the tendency of the GDBF

curve is relatively constant for all crossover probability values of BSC ߙ, this case is blamed

on low-weight codewords, which imply poor ݀݉݅݊and on the other hand on the nature of this

algorithm which concerns only on the maximum value of an inverse function to flip the bits

such that prevent to correct another error pattern in the graph as we will see in the next. We

begin with a short debate of trapping sets and related matters. For our work we use the same

definitions of the trapping set for another decoders and expand the concept of the trapping set

to the GDBF decoder, which can to be analyzed efficiently than other more complex MP

decoders. We show trapping sets that GDBF can correct while Gallager A\B and BF

algorithms cannot and contrarily.

Definition 1. A variable node is regarded to be eventually correct if there exists a positive

integer ݈௦ such that for all ݈ ൒ ݈௦,ݔො௜
ሺ௟ሻ ൌ 0.

We assume that the all-zero codeword was transmitted and this legitimate assumption

for Gallager A\B, the Bit Flipping, BP algorithms operating over BSC [87]. Under this

assumption, a variable node is correct if it is 0 and corrupt if it is 1. Let ۴ሺ࢟ሻ is the set of

variable nodes that are not eventually correct.

Definition 2. In a Tanner graph TG and for an iterative decoding algorithm, a trapping set is

a non-empty set of variable nodes that are not eventually correct. A set of variable nodes T is

called an (a, b) trapping set if it contains a variable nodes and the subgraph induced by these

variable nodes has b odd-degree check nodes [107].

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

63

Definition 3. For transmission over the BSC, ࢟′ is a fixed point of the decoding algorithm if

and only if there exists a positive integer ݈௦ such that ݌݌ݑݏሺ࢟′ሻ ൌ ݈ ෝሺ௟ሻ) for all࢞ሺ݌݌ݑݏ ൒ ݈௦.	

Ifࡲሺ࢟ሻ ് ∅and࢟′ is a fixed point, then ࡲሺ࢟ሻ ൌ .ሻ is called a fixed set′࢟ሺ݌݌ݑݏ

For the BF and Gallager A\B algorithms the adequate and essential requirements are

defined for a set of variable nodes to form a fixed set given by theorem [96].

Theorem 1. Let ܥ be an LDPC code with ݀ݒ	–left regular graph TG. Let T be a subset of a

variable nodes with induced subgraph ࣮. Let the checks in ࣮ be partitioned into two disjoint

subsets; ࣩ consisting of checks with odd degree and ࣟ consisting of checks with even degree.

Then ࣮ is a fixed set for the Gallager A/B algorithm iff: (I) Every variable node in ࣮ has at

least ቒௗೡ
ଶ
ቓneighbors in ࣟ and (II) No ቔௗೡ

ଶ
ቕ of ࣩshare a neighbor outside ࣮.

The previous Theorem is used to generate the trapping set ontology (TSO) which is a

database of trapping sets that is organized as a hierarchy based on their topological relations

such that is used to define relevant trapping sets independent of a given code [108].

The main purpose is to obstructions that forbid Algorithm 1 to coincide with soft way.

Analyzing this problem will redound to develop the algorithm with different versions as we

will show in the next.

4.4.1.1. Motivating Examples

We will take some examples to show how the general GDBF can correct error pattern with

small number of iterations and its failure for another error patterns. Let ○ denotes a correct

variable node while ●a corrupt variable node at the end of the (݈‐1)th iteration, and ᇝ

denotes a satisfied check node and █	an unsatisfied check node at beginning of ݈th iteration.

Let ܥ be a regular LDPC code with column-weight 3=ߛ and ݃=8.

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

64

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

Figure 4.5. Weight-three error configurations uncorrectable by BF during 3 iterations

Figure 4.5 presents an error pattern with weight-three error and 2ݒ ,1ݒ, and 3ݒ are

initially corrupt variables and 4ݒ and 5ݒ are initially correct variables and the BF decoding is

employed. At the beginning of the decoding ܿ1,	ܿ2,	ܿ3,	ܿ4,	ܿ5,	ܿ6,	ܿ7,	ܿ8 and ܿ9 are unsatisfied

check nodes as shown in Figure 4.5 (a). ߰୳ୱଵ ሺݒଵሻ ൌ ߰୳ୱଵ ሺݒଶሻ ൌ ߰୳ୱଵ ሺݒଷሻ ൌ 3 ൒ ∆௩, where ∆ݒ	

=	2, so these variable are flipped to become correct variable nodes. On the other hand, the

variable 4ݒ and 5ݒ are flipped to become corrupt variable nodes because of ߰୳ୱଵ ሺݒସሻ ൌ

߰୳ୱଵ ሺݒହሻ ൌ 3 ൒ ∆௩ at the end of the first iteration, as illustrated in Figure 4.5 (a). In the

second iteration as shown in Figure 4.5 (b),߰୳ୱଶ ሺݒଵሻ ൌ ߰୳ୱଶ ሺݒଶሻ ൌ ߰୳ୱଶ ሺݒଷሻ ൌ 2 ൒ ∆௩ and

߰୳ୱଶ ሺݒସሻ ൌ ߰୳ୱଶ ሺݒହሻ ൌ 3 ൒ ∆௩, so the procedure is repeated and all variables are flipped to

return to the initial state with the same error pattern as in shown in Figure 4.5 (c). The set of

corrupt and correct variable nodes after decoding process alternate between {3ݒ ,2ݒ ,1ݒ} and

 and finally the decoder cannot converge. The BF algorithm fails to correct this error {5ݒ ,4ݒ}

pattern because it uses only syndrome as a criterion to flip the bit or not.

On the other hand, GDBF algorithm can correct above situation during two iterations,

the decoder calculates also number of unsatisfied check nodes for each variable node and adds

the sum of the received bit with the estimated bit, ݔො௩
ሺ௟ሻ ⊕ ௩, to get the Λ௩ݕ

ሺ௟ሻሺܠො, ሻ. At theܡ

beginning of the first iteration, Λ௩భ
ሺଵሻሺܠො, ሻܡ ൌ Λ௩మ

ሺଵሻሺܠො, ሻܡ ൌ Λ௩య
ሺଵሻሺܠො, ሻܡ ൌ 3 and also Λ௩ర

ሺଵሻሺܠො, ሻܡ ൌ

Λ௩ఱ
ሺଵሻሺܠො, ሻܡ ൌ 3, so all variable nodes are flipped at end of the first iteration. For the second

iteration, there are two corrupt variable nodes 4ݒ and 5ݒ and three correct variable nodes 1ݒ,

so Λ௩భ ,3ݒ and ,2ݒ
ሺଵሻሺܠො, ሻܡ ൌ Λ௩మ

ሺଵሻሺܠො, ሻܡ ൌ Λ௩య
ሺଵሻሺܠො, ሻܡ ൌ 3 and Λ௩ర

ሺଶሻሺܠො, ሻܡ ൌ Λ௩ఱ
ሺଶሻሺܠො, ሻܡ ൌ 4 and

decoder flips only 4ݒ and 5ݒwith maximum lambda. The GDBF succeeds to correct the above

situation only in two iterations Figure 4.6.

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

65

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

Figure 4.6. Weight-three error configurations correctable by general GDBF during two iterations

Unfortunately, we cannot say that GDBF is capable of correcting any weight-three

error pattern in a girth ݃=8. The proof of this note can be illustrated by the next example. Let

use the same error pattern but we consider that 4ݒ ,1ݒ, and 5ݒ are initial corrupt variable nodes

and 2ݒ and 3ݒare initial correct variable nodes as shown in Figure 4.7 (a). At the beginning of

the first iteration we have Λ௩మ
ሺଵሻሺܠො, ሻܡ ൌ Λ௩య

ሺଵሻሺܠො, ሻܡ ൌ Λ௩ర
ሺଵሻሺܠො, ሻܡ ൌ Λ௩ఱ

ሺଵሻሺܠො, ሻܡ ൌ 2 and

Λ௩భ
ሺଵሻሺܠො, ሻܡ ൌ 1, so the decoder will flip all variable nodes with maximum lambda=2. At the

second iteration an inverse function for each variable nodes as: Λ௩మ
ሺଶሻሺܠො, ሻܡ ൌ Λ௩య

ሺଶሻሺܠො, ሻܡ ൌ

Λ௩ర
ሺଶሻሺܠො, ሻܡ ൌ Λ௩ఱ

ሺଶሻሺܠො, ሻܡ ൌ 4 and Λ௩భ
ሺଶሻሺܠො, ሻܡ ൌ 3, so decoder flips all variable nodes with

maximum inverse function, Λ௩
ሺଶሻሺܠො, ሻܡ ൌ 4, Figure 4.7 (b). After flipping the variable nodes

the situation returns to the initial case with the same corrupt and correct variable nodes, the

same situation for error pattern in Figure 4.8. Finally, the GDBF decoder fails to correct these

error patterns which can be corrected by Gallager A\B decoder which explains why Gallager

A\B has superior performance than GDBF algorithm in the error-floor region. Although that

GDBF algorithm cannot correct these patterns, we will see in the next how we can solve this

problem and maybe introduce feature of this decoder for tolerant the fault caused by the noise.

Some error patterns are presented in Figure 4.9 and Figure 4.10 to show how GDBF based on

binary values can correct the errors or not.

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

66

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

Figure 4.7. Weight-three error configurations correctable by Gallager A\B decoder and uncorrectable by
GDBF algorithm.

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

Figure 4.8. Weight-three error configurations correctable by Gallager A\B decoder and uncorrectable
by GDBF algorithm.

In Figure 4.9, four bit error pattern is presented and cannot be corrected by GDBF

algorithm. In the first iteration only ݒଷ has two unsatisfied check nodes and has to be flipped.

In the next iteration there are three variable nodes with one unsatisfied check node but only ݒଷ

has the value different from the value initially received from the channel. As a general

conclude the maximum inverse function gets stuck only on the variable node ݒଷin two

successive iterations and the same variable node ݒଷis flipped for every iteration and GDBF

algorithm fails to correct the trapping set and it can be considered as a fixed set according to

the Definition 3.

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

67

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

Figure 4.9. Weight-four error configurations uncorrectable by GDBF algorithm where ܾሺ௟ሻ gets stuck
only on variable 3ݒfor each iteration.

2
v

3
v

1
v

5
v

4
v

8
v

6
v

7
v

1
c

2
c

3
c

6
c

5
c

4
c

7
c8

c

9
c

10
c

11
c

12
c

13
c

14
c

2
v

3
v

1
v

5
v

4
v

8
v

6
v

7
v

1
c

2
c

3
c

6
c

5
c

4
c

7
c8

c

9
c

10
c

11
c

12
c

13
c

14
c

Figure 4.10. Weight-five error configurations correctable by GDBF algorithm.

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

68

5
v

4
v

7
v

6
v

11
v

10
v9

v

12
v

1
v

2
v

3
v

8
v

5
v

4
v

7
v

6
v

11
v

10
v9

v

12
v

1
v

2
v

3
v

8
v

5
v

4
v

7
v

6
v

11
v

10
v9

v

12
v

1
v

2
v

3
v

8
v

a) ܾሺଵሻ ൌ 3 b) ܾሺଶሻ ൌ 2 c) ܾሺଷሻ ൌ 4

5
v

4
v

7
v

6
v

11
v

10
v9

v

12
v

1
v

2
v

3
v

8
v

5
v

4
v

7
v

6
v

11
v

10
v9

v

12
v

1
v

2
v

3
v

8
v

5
v

4
v

7
v

6
v

11
v

10
v9

v

12
v

1
v

2
v

3
v

8
v

d) ܾሺସሻ ൌ 3 e) ܾሺହሻ ൌ3 f) ܾሺ଺ሻ ൌ 2

5
v

4
v

7
v

6
v

11
v

10
v9

v

12
v

1
v

2
v

3
v

8
v

5
v

4
v

7
v

6
v

11
v

10
v9

v

12
v

1
v

2
v

3
v

8
v

5
v

4
v

7
v

6
v

11
v

10
v9

v

12
v

1
v

2
v

3
v

8
v

g) ܾሺ଻ሻ ൌ 4 h) ܾሺ଼ሻ ൌ 2 i) ܾሺଽሻ ൌ 2

Figure 4.11 Weight-six error configurations uncorrectable by GDBF algorithm where ܾሺ௟ሻ gets stuck
on variables 6ݒ	and	8ݒafter 9 iterations

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

69

4.4.2. Probabilistic GDBF decoder for BSC

We have seen that GDBF algorithm strategy over BSC creates periodic error patterns. This is

not only the consequence of Algorithm 1 but also of presence of short cycles in the code

graph. Because of the deterministic nature of Algorithm 1 and at some points of the

decoding, the set of some variable nodes is repeated after a number of iterations and

Algorithm 1 is trapped into an infinite periodic pattern, which cannot be resolved whatever

number of iterations. To improve performance of this algorithm it is logically to overcome

the drawbacks which make the GDBF algorithm fails to break some error patterns. The

stagnancy of GDBF algorithm at some points of the decoding can be fractured by flipping

some variable nodes which realize the condition∆௩
ሺ௟ሻሺ࣑ෝ, ሻࣁ ൌ ܾሺ௟ሻ. The proposed algorithm is

called Probabilistic GDBF algorithm (PGDBF) where a particular bit ݒݔ, for

which∆௩
ሺ௟ሻሺ࣑ෝ, ሻࣁ ൌ ܾሺ௟ሻ, will not be flipped automatically-instead it will be flipped with a

predefined probability ݌൏1. In Algorithm 2 this is done by multiplying the flipping decision

with Bernoulli (1, ݌) random variable ܽݒ.	In hardware, it can be realized by adding to each

variable node processor one AND gate and a generator of Bernoulli random variables ܽݒ with

Pr(ܽ1 = ݒ) = ݌, as shown in Figure 4.12.

Algorithm 2 Probabilistic GDBF Algorithm over BSC

.......⊳same as GDBF

while ݒ	൑	ܸdo

 if Λ௩
ሺ௟ሻሺܠො, ሻܡ ൌ ܾሺ௟ሻthen

ො௩ݔ
ሺ௟ାଵሻ 	← ܽ௩ ො௩ݔ	⊕

ሺ௟ሻ flip bit
else

ො௩ݔ
ሺ௟ାଵሻ 	← ො௩ݔ

ሺ௟ሻ
end if

ݒ ← ݒ ൅ 1
end while

…… ⊳same as GDBF

Our work is motivated by the Probabilistic BF algorithm proposed by Miladinovic

and Fossorier [101]. In PBF, code bits with a number of unsatisfied check sums higher than a

fixed threshold are flipped with some probability, which is adapted throughout the iterations.

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

70

()
1̂

lx

(1)ˆ 1l
vx  

(0)ˆ

(

 1

)
vx

initial estimation



 0, Pr 1v va a p  

()ˆ l
vx

()ˆ l
Nx

() 2lb 

Figure 4.12. Illustration of the variable node processing unit for PGDBF (Algorithm 2)

In PGDBF algorithm, the probability ݌ which defines the flipping criterion, is an

independent parameter and does not depend on the crossover probability of the BSC and it is

a constant parameter for all iterations. Optimization of parameter ݌ depends on the ߛ, column

weight, of the LDPC code. PGDBF algorithm selects a set of some variable nodes which need

to be flipped. It is possible that these nodes are correct or incorrect, so the transaction with

partition of the variable nodes will slow down the decoding process especially for error

pattern which is corrected directly by GDBF algorithm. However, PGDBF uses stochastic

method for solving the trapping sets, and this is an important affair to approach the

convergence point for codes that have short cycles. On the other hand, PGDBF uses the

probabilistic mechanism to change the error pattern to anther pattern that can be corrected.

Due to its randomness, PGDBF has a big chance to correct an error pattern as the number of

iteration increases. In general, PGDBF algorithm can correct all periodic error patterns with

sufficient number of iteration under some conditions, except the situation in Figure 4.9 where

only one variable node has the maximum value.

The proposed probabilistic decoding algorithm achieves gain in both performance and

decoding time in the waterfall and error-floor regions of the error performance curve

compared to the Gallager A\B decoder, especially for 3=ߛ. The following two examples are

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

71

intended to give perception on the performance of the PGDBF algorithm and the performance

gain that can be achieved over GDBF algorithm for BSC.

Let us consider a three-bit error pattern shown in Figure 4.7, if GDBF is applied (for

which 1=݌), the largest inverse function value ܾሺଵሻ ൌ 2 is associated with variable nodes

,ଶݒ ,ଷݒ ହ in the first iteration, for the second iteration the ܾሺଶሻݒ ସ andݒ ൌ 4 is associated with

the same variable nodes, as presented in Figure 4.5 (b). Note that these nodes have different

value compared to the initial values. As it results in the fixed set Definition 3, this error

pattern cannot be corrected by the GDBF algorithm. Now if the PGDBF is applied, the four

bits with the largest MIF are not flipped automatically but are only the candidates for flipping.

As a best solution to solve this pattern is by selection only the corrupt variable nodes ݒସ andݒହ

which have ܾሺଵሻ ൌ 2, and successful decoding can be resulted only exactly after two

iterations. Let denote ݒସ and ݒହ as a flipping sequence that results in a successful decoding

after two iterations and let ݏ௟ the probability that a given error pattern is successfully decoded

in the ݈-th iteration. In our example, probability of flipping sequence ݂ ൌ ሺ ଶ݂, ଵ݂ሻ ൌ

൫ሺ1ሻ, ሺ0,0,1,1ሻ൯ is ݏଶ ൌ ଷሺ1݌ െ .ሻଶ݌

It is clear that ݏଵ ൌ 0, as this pattern cannot be corrected in the first iteration. Note that

other flipping choices resulting in different flipping sequences might lead to the successful

decoding but, possibly, in a larger number of iterations. We refer to such flipping sequences

as suboptimal. In our case this number of iterations is ݈	>2. As there may be many suboptimal

flipping sequences, the closed form expression for ݏ௟ is complicate to obtain. However, its

numerical value can be easily estimated by using Monte Carlo simulation. The probability of

unsuccessful decoding at the ܮ iteration is obtained as:

ሻܮ௉ீ஽஻ிሺ݌ ൌ 1 െ෍ݏ௟

௅

௟ୀଵ

 (4.9)

The second example is illustrated in the Figure 4.13 and Figure 4.14, we take error

pattern on the Tanner code (155,64) where the corrupt error nodes are ݒଵ, ,ଷ଻ݒ ,ଽ଼ݒ ଵସ଻ andݒ

 ଵହଶ. Algorithm 1 cannot correct this pattern and the same procedure of bit flipping isݒ

repeated for some number of iterations over and over but without any usefulness as shown in

Figure 4.14 (a). If we use Algorithm 2 to correct this pattern there is a variety of choices how

the Algorithm 2 selects the path (flipping sequence) in order to converge. If the selection of

flipping candidates is optimal in the beginning of decoding, the decoder can correct the error

pattern in small number of iterations as shown in Figure 4.14 (b), where the number of

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

72

iteration at the successful decoding is 5. Figure 4.13 (c) shown that PGDBF have succeded to

correct this pattern after 28 iterations. In both scenarios, PGDBF have successed to converge

on a correct message, however, in the last situation, there is some local degradation due to the

unsuitable choice of flipped bits. This local degradation does not cause degradation in

performance, but prolongs the decoding, as the it number of iterations necessary to find a

solution increases. To obtain the better performance with small number of iterations, PGDBF

parallel decoders are used in the same time to correct the same error codeword, i.e. all

decoders fed with the same input and working in parallel. Maybe some decoders get the

convergance in small number of iterations, but we cannot decide the output of that decoder is

the correct codeword, i.e miscorrection. Hence, some decision rules are introduces to find a

final decoded word [101]

- If there is only one codeword among the candidate words, which is final decoded

word.

- If there is more than one codeword among candidate word, choose the one closet in

Hamming distance to the received word.

- If none of the candidate words obtained from decoders working in parallel is a

codeword, the final decoded word is obtained using majority logic rule for each based

on all the candidate words.

These rules are presented for wholeness of the decoding instruction, but if it is shown

that the probability that two decoders having the same sequence as input and working in

parallel converge to different codewords at the same time, is relatively small. Moreover,

when one decoder converges the decoding stops.

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

73

(a) Number of flipped bits vs Number of
iteration for GDBF behavior,
unsuccessful decoding.

(b) Number of flipped bits vs Number of
iteration for PGDBF behavior,
successful decoding.

(c) Number of flipped bits vs Number of
iteration for PGDBF behavior, successful
decoding.

(d) Number of flipped bits vs
Number of iteration for PGDBF
behavior, unsuccessful decoding.

Figure 4.13. Behavior of GDBF and PGDBF algorithms for five-error pattern on the Tanner code
(155, 64)

0 20 40 60 80 100
0

2

4

6

8

10

12

14

Number of iterations

N
um

be
r

of
 fl

ip
pe

d
bi

ts

1 2 3 4 5
1

1.2

1.4

1.6

1.8

2

Number of iterations

N
um

be
r

of
 fl

ip
pe

d
bi

ts

0 5 10 15 20 25 30
0

2

4

6

8

10

Number of iterations

N
um

be
r

of
 fl

ip
pe

d
bi

ts

0 20 40 60 80 100
0

2

4

6

8

10

Number of iterations

N
um

be
r

of
 fl

ip
pe

d
bi

ts

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

74

(a) Procedure of bit flipping by Algorithm 1, unsuccessful decoding for 100 iterations

(b) Scenario of bit flipping by Algorithm 2, successful decoding is obtained after 5 iterations

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

100

Position of bits

N
um

be
r

of
 it

er
at

io
ns

0 20 40 60 80 100 120 140 160
1

1.5

2

2.5

3

3.5

4

4.5

5

Number of iterations

N
um

be
r

of
 fl

ip
pe

d
bi

ts

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

75

(c) Scenario of bit flipping by Algorithm 2, successful decoding is obtained after 28 iterations

(d) Scenario of bit flipping by Algorithm 2, unsuccessful decoding for 100 iterations

Figure 4.14. Mechanism of GDBF and PGDBF to correct the error patterns on the Tanner code (155,
64)

In Figure 4.14, the black points denote to initial corrupt variable nodes and have the

largest MIF value and are in the flipping sequence, and blue points for initial corrupt nodes

and have largest MIF value but are not in the flipping sequence. The green and red points are

the same situations but for initial correct variable nodes, respectively.

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

Position of bits

N
um

be
r

of
 it

er
at

io
ns

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

100

Position of bits

N
um

be
r

of
 it

er
at

io
ns

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

76

4.4.3. Find optimal ࢖value for PGDBF

Because of the probabilistic nature of the PGDBF algorithm, there are several possible

scenarios to solve the trapping sets. In principle, the main idea is to escape from the constant

situation of the trapping set by aid Bernoulli (1, ݌) random variable. In general, to obtain the

best performance it is important to select the optimal value ݌. There exists no general way to

optimize the parameter ݌ but can be optimized through Monte-Carlo simulation. In the

proposed algorithm, the optimal value of parameter ݌	is constant for all iterations during the

decoding process, in contrast to ProbabilisticBF algorithm where the parameter ݌ has initial

value 0.1 and is increased by step is 0.1 if an estimated codeword equal to the previous

estimated codeword. Figure 4.15 shows the FER for the two codes (155,64) Tanner code and

QC(732,551) and fixed ߙ, for various values of the parameter ݌. Numerical results are

presented for non-faulty case, it can be observed that the PGDBF decoder has the best

performance for ݌ൎ	0.7for two codes with different lengths, where	ߛൌ3and it can be noticed

that PGDBF significantly reduces the FER compared to the GDBF (where 1=݌). On the other

hand, parameter ݌ for PGDBF algorithm does not depend significantly on the BSC crossover

probability, in contrast to NGDBF where the variance of the noise inserted to the variable

nodes has to be approximately equal to the variance of the noise in the channel [103].

In order to estimate the convergence speed of the PGDBF decoder, the average

number of iterations is used as an appropriate measure. Figure 4.16 shows the relation

between an estimated iterations number for the successful decoding with BSC crossover

probability. A PGDBF algorithm is presented with different values of parameter ݌. It can be

observed that for 0.7= ݌, the PGDBF has faster convergence speed compared to other values

with better performance. For 1= ݌, it can be noticed that GDBF decoder has faster

convergence for a few iterations number and it can be explicated because of the deterministic

nature of GBDF decoder in a way hard-decision.

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

77

Figure 4.15. Impact of the parameter ݌ on PGDBF optimized for the BSC. The plot is for the (155,64)
Tanner code and QC (732,551), 2‐10=ߙ ,3‐10×4=ߙ and 100= ܮ

Figure 4.16. Performance of PGDBF algorithm for the (155,64) Tanner code with different ݌ values

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 111
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p

F
ra

m
e

E
rr

or
 R

at
e

(F
E

R
)

α=0.01,QC(155, 64)
α=0.004,QC(155,64)
α=0.01,QC(732,551)
α=0.004,QC(732,551)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

60

70

80

90

100

α

E
st

im
at

ed
 n

um
be

r
of

 it
er

at
io

ns

p=0.1
p=0.3
p=0.5
p=1.0
p=0.7

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

78

4.4.4.The Multiple Decoding attempts and Random re-Initializations (MUDRI)

algorithm

We have seen from above that some bad choices of the bits which have the largest value of

MID lead to unsuccessful decoding. Wrong choices in the beginning of the decoding process

will prolong the decoding and/or reduce the probability that will be finish with success. In

general, the decoding process will have a good chance to correct codeword errors as the

number of iterations increases. By using equation (4.9) we are able to estimate ݌௉ீ஽஻ிሺܮሻ for

any error pattern. However, there are some error patterns which have high values of

 and one such error pattern is shown in Figure 4.18 with ,ܮ ሻ even for high values ofܮ௉ீ஽஻ிሺ݌

the same situation in Figure 4.7 and 4.8. In the first iteration, ܾሺଵሻ ൌ 3 is associated with the

variable nodes ݒଶ, ହ. The PGDBF update rule allows an independent flipping of allݒ ସ andݒ

these variables (23 possible choices), but only some of them are actually flipped. If only ݒହ is

flipped (with the probability ݌ሺ1 െ ሻଶ), the error pattern at the beginning of the second݌

iteration looks like the one shown in Figure 4.18 (b). In this case, ܾሺଶሻ ൌ 2 and six bits are

considered for flipping, with 26 possibilities for the flipping choices in this step. If only the

bits that are incorrectly received are chosen for flipping (ݒଵ, ,	ଷݒ ଻), with theݒ ଺ andݒ

probability ݌ସሺ1 െ ሻଶ, the decoding process is successfully completed. As only one flipping݌

sequence results in decoding after two iterations, the corresponding probability is obtained by

multiplying the probabilities in two successive steps as ݏଶ ൌ ହሺ1݌ െ .ሻସ݌

However, if a wrong choices are made in a few iterations at the beginning of

decoding, it does not have to be completed successfully even for large value of ܮ. Therefore,

we propose the modification of the PGDBF algorithm. If the syndrome has non-zero value

after ܮଵ iterations, the decoding is stopped and repeated ܮ/ܮہଵۂ times starting from the

received word for the other flipping random choices Figure 4. 17.

 If the random sequences are independent, the probability that decoding fails is

,ܮெ௎஽ோூሺ݌ ଵሻܮ ൌ ቌ1 െ෍ݏ௟

௅భ

௟ୀଵ

ቍ

ቔ ಽ
ಽభ
ቕ

. (4.10)

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

79

Figure 4.17. MUDRI algorithm scheme

In the special case when ܮଵ ൌ iterations, and the ܮ we have a single attempt with ,ܮ

above expression reduces to Equation (4.9). The probability of unsuccessful decoding can be

minimized with the proper choice of this parameter ܮଵ.

To return to the Figure 4.9 with the situation that MIF gets stuck on one variable node

in every iteration, and used many attempts does not lead to any improvement. In such a

situation we propose decrementing the threshold in variable nodes until it reaches the second

largest value, i.e.

ܾ௠௢ௗ
ሺ௟ሻ ൌ maxଶ

௩
ሺΛ௩

ሺ௟ሻሺܠො, ሻሻܡ . (4.11)

In our example ܾ௠௢ௗ
ሺଶሻ ൌ 1, the nodes with Λ௩

ሺ௟ሻሺܠො, ሻܡ ൒ 1are flipped and the decoding is

successful after the second iteration (Figure 4.19 (c)).

The above modifications are combined with the PGDBF algorithm to obtain the

Multiple Decoding attempts and Random re-Initializations (MUDRI) decoding algorithm,

formally given in Algorithm 3. The modification is applied under the condition that ݅݊ሺ௟ሻ ൌ

݅݊ሺ௟ିଵሻ ൌ 1 and that in two successive iterations the maximal MIF value corresponding to the

same bit in the codeword (denoted by ݒ௙
ሺ௟ሻ).

1

L

L

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

���������

�	��
	��
PGDBF

decoder

0≠

�
���	��

1
L

0= �	��������

�	��
	��

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

80

2v1v

4v 3v

5v

6v

7v

2v1v

4v 3v

5v

6v

7v

(a) A five-bit error pattern uncorrectable by using
GDBF.

(b) The second iteration of PGDBF, after the
first iteration with the optimal choice.

Figure 4.18. Performance of GDBF and PGDBF with optimal choice for five-error pattern

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

1
v

5
v

4
v

3
v

2
v

1
c

2
c

3
c

4
c

5
c6

c

7
c

8
c

9
c

a) A four-bit pattern critical in
PGDBF.

b) The second iteration if

ܾሺ௟ሻ ൌ max௩ሺΛ௩
ሺ௟ሻሺݔ, .ሻሻݕ

c) The second iteration if

ܾሺ௟ሻ ൌ max௩ሺΛ௩
ሺ௟ሻሺݔ, ሻሻݕ െ 1.

Figure 4.19. Adaption method to solve the error pattern by decrease the threshold value

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

81

Algorithm 3 MUDRI decoder

Input:ܡ received word

ො௩ݔ : ܸ∋ݒ∀
ሺ଴ሻ 	⟵ ௩ݕ

ሺ଴ሻ࢙ 	← 	 	ܿ∀ቀ்ܪሺ଴ሻܠ ∈ ܥ ∶ 	 ௖ݏ
ሺ଴ሻ 	←	⊕௨∈೎ ො௨ݔ

ሺ଴ሻቁcalculate the syndrome	

݊ൌ0,	݈=0,

while ࢙ሺ଴ሻ ് ૙and ݊ ൑ doۂଵܮ/ܮہ

݈=0, ݅݊ሺ଴ሻ ൌ ௙ݒ ,0
ሺ଴ሻ ൌ ො௩ݔ :ܸ∋ݒ∀ ,0

ሺ଴ሻ 	← ௩ݕ

ሺ଴ሻ࢙ 	← 	 	ܿ∀ቀ்ܪሺ଴ሻܠ ∈ ܥ ∶ 	 ௖ݏ
ሺ଴ሻ 	←	⊕௨∈೎ ො௨ݔ

ሺ଴ሻቁ

while ࢙ሺ௟ሻ ് ૙and ݈ ൑ ଵdoܮ

Compute Λ௩ :ܸ∋ݒ∀
ሺ௟ሻሺܠො, ሻܡ

ܾሺ௟ሻ, ݅݊ሺ௟ሻ, ௙ݒ
ሺ௟ሻ 	← ቀΛ௩ܷܰܨ		

ሺ௟ሻሺܠො, ,ሻܡ ݅݊ሺ௟ିଵሻ, ௙ݒ
ሺ௟ିଵሻቁ

for ∀ݒ	൑	ܰ	do

 if Λ௩
ሺ௟ሻሺܠො, ሻܡ ൒ ܾሺ௟ሻthen

ො௩ݔ
ሺ௟ାଵሻ 	← ܽ௩ ො௩ݔ	⊕

ሺ௟ሻ flip bit
else

ො௩ݔ
ሺ௟ାଵሻ 	← ො௩ݔ

ሺ௟ሻ
end if
end for

ሺ௟ାଵሻ࢙ 	← 	 syndrome check்ܪሺ௟ାଵሻܠ
݈ ← ݈ ൅ 1

 end while
݊	 ← 	݊ ൅ 1
end while

Output: ܠොሺ௟ሻ

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

82

Algorithm 4 FUN: Adaption of threshold in MAJ gates

Input:Λ௩
ሺ௟ሻሺܠො, ,ሻܡ ݅݊ሺ௟ିଵሻ, ௙ݒ

ሺ௟ିଵሻ

ܾሺ௟ሻ ← max
		௩

ቀΛ௩
ሺ௟ሻሺܠො, ሻቁܡ

for ∀ݒ∈ܸ	do	

ifΛ௩
ሺ௟ሻሺܠො, ሻܡ ൌ ܾሺ௟ሻthen

݅݊ሺ௟ሻ ൌ ݅݊ሺ௟ሻ ൅ 1

௙ݒ
ሺ௟ሻ ← ݒ

 end if
end for

if ݈	>1 and ݅݊ሺ௟ሻ ൌ ݅݊ሺ௟ିଵሻ ൌ 1 and ݒ௙
ሺ௟ሻ ൌ ௙ݒ

ሺ௟ିଵሻthen

ܾሺ௟ሻ ← maxଶ
௩

ሺΛ௩
ሺ௟ሻሺܠො, ሻሻܡ

end if

4.4.5. Analysis of the MUDRI algorithm

To evaluate the algorithm performance, we first consider the decoding of the error patterns

presented in the mentioned examples, illustrated in Figures 4.7 (a) and Figure 4.18 (a), for the

case these patterns appear in the Tanner (155, 64) code. The probability of successful

decoding at exactly ݈ iterations is estimated by using Monte Carlo simulation, and the

corresponding probability distributions are presented in Figure 4.20.

As expected, the probability that a three-bit error pattern is not successfully decoded

steadily decreases with the increase of the parameter ܮ, and we obtain ݌௉ீ஽஻ிሺ100ሻ ൌ 3 ൈ

10ିହ for the standard PGDBF algorithm. On the contrary, the simulation results show that the

five-bit error pattern Figure 4.18 (a) is either corrected in 14 or less iterations, or it cannot be

corrected at all (ݏ௟ ൎ ݈	ݎ݋݂	0 ൐ 14). In this case, the probability of decoding failure is

estimated as ݌௉ீ஽஻ிሺ14ሻ ൌ 0.8768. The increase of ܮ cannot help by itself, but combined

with the proposed modification with multiple attempts, it results in lowering probability of

unsuccessful decoding. Further optimization of the parameter ܮଵ also results in

lowering݌ெ௎஽ோூ, as presented in Figure 4.21. It can be noticed that the best results are

obtained for approximately ܮଵ ൌ 6 decoding iterations per attempt. In Figure 4.22, the frame

error rate (FER) as a function of number of iterations is presented for ߙ ൌ 0.01. Although it is

not convenient to adapt parameter ܮଵ for every error pattern, the simulations indicated that the

minimal value of FER (i.e. ݌ெ௎஽ோூሺܮ, ଵሻ average over all received error pattern) is achievedܮ

for ܮଵ ൎ 25 for Tanner (155,64) code and this parameter is somewhat larger for longer codes.

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

83

It is interesting to notice that while the PBF, GDBF and Gallager-B decoders need not

more than 30 iterations to converge, after which their FER performance has reached the

lowest possible value, the PGDBF continues to improve its FER performance up to 100

iterations and results in significant gain compared to the GDBF. The MUDRI, with ten

attempts per each of 25= 1ܮiterations, results in an order of magnitude lower FER when

compared to the PGDBF. The algorithm performance further improves with the increase of

parameter ܮ, to approximately FER= 6 ൈ 10ି଻ when 2000=ܮ.

Figure 4.20. Probability distribution of the successful decoding in the ݈-th iteration of PGDBF, three-
bit and five-bit error pattern, Tanner(155,64) code, 0.7=݌

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

Required number of iterations, l

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
fu

ll
de

co
di

ng
 a

fte
r

ex
ac

tly
 l

ite
ra

tio
ns

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

Required number of iterations, l

s
l
 for the 3−bit error pattern

s
l
 for the 5−bit error pattern

p
PGDBF

(25)=8.1 × 10−2

p
PGDBF

(50)=6.1 × 10−3

p
PGDBF

(25)=0.8768

p
PGDBF

(50)=0.8768

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

84

Figure 4.21. Probability of unsuccessful decoding for the three-bit and five-bit error pattern, MUDRI
with ܮ/ܮہଵۂ attempts per 1ܮ iterations each, 0.7=݌

0 5 10 15 20 25 30 35 40 45 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Maximum number of iterations in one attempt, L
1

P
ro

ba
bi

lit
y

of
 u

ns
uc

ce
ss

fu
ll

de
co

di
ng

, p
M

U
D

R
I

3−bit pattern, L=100
5−bit pattern, L=100
5−bit pattern, L=250
5−bit pattern, L=500

Figure 4.22. FER as a function of number of iteration ݈, Tanner (155,64) code, 0.01=ߙ, various
decoding algorithms

0 50 100 150 200 250

10
−6

10
−4

10
−2

10
0

Number of Iterations, l

F
ra

m
e

E
rr

or
 R

at
e,

 F
E

R

PGDBF (p=0.7)Gallager−BGDBF

PBF

MUDRI (p=0.7, L
1
=25)

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

85

4.5.Fault-Tolerant PGDBF and MUDRI Decoders for BSC

In general, the error correction coding techniques used with the customary systems of

communication are exploited with supposition that the operation of an error correction

encoder and decoder are deterministic and noise exists only in the transmission or storage

channel. While appropriate in systems where the reliability of registers and logic gates used

in the decoder is many orders of magnitude higher than the reliability of the channel, this

assumption is invalid if digital logic in the decoder is built of faulty components. Because of

the high integration factor of integrated circuits together, low power consumption

requirements and variations in the technological process makes MOS and emerging

semiconductor devices inherently unreliable [109]. Two main reasons lead to unreliable

computing, the first one is declining of the consumption energy such that the level of the

signal will be close to the noise level and noise immunity is decreased. The second reason is

created when the decoder is built from faulty components, then the errors happening at the

gate level affect the operations carried out by the decoder. However, traditional von

Neumann-type triple modular redundancy architectures that ensure fault tolerance are

inefficient in handling such increased unreliability thus requiring solutions based on error

control coding. Recently there was a surge in research in fault-tolerant decoders. Vasic and

Chilappagari [110] established and information theoretical framework for analysis and design

of faulty decoders for low-density parity-check (LDPC) codes. They have also analyzed bit-

flipping decoding [110] or one-step majority logic (MAJ) decoding [111], [112]. Methods for

performance analysis of more complex decoders built from unreliable hardware based on the

sum-product algorithm (SPA) [113] and its suboptimal (min-sum algorithm) version [114]

have been also developed for transient failure model. In the similar context, finite-alphabet

decoders (FAID) were analyzed by Huang and Dolecek in [115]. Density evolution analysis

of the simplest massage-passing algorithm (Gallager-B) implemented in noisy hardware is

given in [116] and [117].

With an aim of demonstrating the robustness of the algorithm to the hardware failures,

we consider the canonical transient von-Neumann logic gate failure mechanism in which the

failures in different gates and in different time instants are independent and identically

distributed. The failures manifest themselves as random bit flips at the gate outputs. All XOR

gates have probability of failure ܲ⊕, and failures in the register where ܠොሺ௟ሻ is stored occur with

probability ܴܲ. We also assume that MAJ gates are reliable, i.e. ܲ0 ≈ܬܣܯ, Figure 4.23.

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

86

Although optimistic, this can be readily realized by using, for example, larger transistors in

MAJ gates.

()
1̂

lx

(1)ˆ 1l
vx  

, 0 MAJ v 

(0)ˆ

(

 1

)
vx

initial estimation



 0, Pr 1v va a p  

()ˆ l
vx

()ˆ l
Nx

, 0 v
 

() 2lb 

0
, 0v 

1
, 1v 

, 0 R v
 

Figure 4.23. Illustration of the variable node processing unit for PGDBF under faulty hardware

Figure 4.24. FER performance as a function of ߙ under various decoding algorithms, Tanner code
 100=ܮ ,10-3=ܴܲ ,10-2=⨁ܲ ,(155,64)

10
−4

10
−3

10
−2

10
−6

10
−4

10
−2

10
0

Crossover probability in BSC, α

F
ra

m
e

E
rr

or
 R

at
e,

 F
E

R

BF,perfect
BF,faulty
PBF,perfect
PBF,faulty
GDBF,perfect
GDBF,faulty

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

87

Now we present the numerical results of Monte Carlo simulations, in Figure 4.24, the

FER performance of the (155,64) Tanner code is presented for the maximum number of

decoding iterations 100 = ܮ. The results are presented for the BF, PBF and GDBF algorithms.

In the case of non-faulty hardware in the decoder, GDBF algorithm results in lower FER

values compared to the BF and PBF algorithms. As expected, the performances of faulty BF

and PBF decoders are significantly degraded. For the case when ܲ⨁=10-2, ܴܲ=10-3, the

performance of the two are approximately the same. On the other hand, for the same failure

rates, performance of the GDBF is improved compared to the non-faulty decoder case! This

surprising effect is related to the finite set of possible values ofΛ௩
ሺ௟ሻሺܠො, .ሻܡ

For longer codes, we present the FER performance of two codes with similar

codeword lengths but different column weight. The performance of (2388, 1793) code (code

C1) with girth-8 and ߛ	3 = based on Latin Squares [134] and (2212, 1880) code (code C2) with

girth-6 and 4 = ߛ are determined as a function of parameter ݌ for 100 = ܮ and 50 = 1ܮand

presented in Figure 4.25. When 1 = ݌, the algorithm realized in faulty hardware has lower

FER than the algorithm implemented in perfect hardware, and the performance can be further

improved by reducing the parameter ݌ for both codes. For C1 the best performance is obtained

for 0.7 ≈ ݌ in the non-faulty case, while the lowest FER is obtained for 0.8 ≈ ݌ when ܲ⊕ = 10-

3, and ܴܲ = 10-4. This corresponds to the previously results for short quasi-cyclic codes with

girth-8 and 3 = ߛ. For C2 (with 4 = ߛ), the best performance are obtained if 0.9 ≈ ݌for the non-

faulty case, while for the faulty implementation the optimum value of ݌ is slightly larger.

The FER performance of QC and LS codes with various code rates are presented in

Figure 4.26, as a function of the parameter ܲ⊕. If 1 = ݌, the best performance is achieved for

the non-zero value of ܲ⊕. On the other hand, if 0.7 = ݌ the FER is significantly reduced for

small values of ܲ⊕, when compared to the 1 = ݌ case. More importantly, when 0.7 = ݌ the

FER is almost insensitive to ܲ⊕ in a wide range of ܲ⊕ values, up to a certain threshold, and is

dominantly determined by the codeword length. The threshold can be estimated as ܲ⊕,th =

5/ܰ for the codes with 3 =ߛ and girth-8.

In Figure 4.27, we present the FER performance for five LDPC codes with various

code constructions (QC, PEG, LS), column weights and codeword lengths (available in

[118]), and for the case when α = 0.008, ܲ⊕ = 10-3 and 0.7 = ݌. It is clear that the MUDRI

decoder has approximately same performance, up to a certain threshold of ܴܲ. The value of

ܴܲ where FER doubles with respect to the non-faulty case is dominantly determined by the

codeword length. For the codes with 3 = ߛ and girth-8, this threshold is estimated to be ܴܲ,th =

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

88

1/(2ܰ). Although the codes with 4 = ߛ and girth-6 have lower error correction capability,

they are somewhat less sensitive to the logic gate failures.

The FER performance of C1 for various decoders is presented in Figure 4.28. It can be

noticed that the Gallager-B outperforms the GDBF for lower values of crossover probability

in BSC channel and the GDBF is more effective in the water fall region. In the presence of

gate failures, the performance is degraded for the Gallager-B decoder, but is improved for the

GDBF (1 = ݌). The performance of MUDRI with 0.7 = ݌ outperforms all hard decision

algorithms for the analyzed crossover probability, and the increase of the parameter ܮ results

in additional performance improvement. In addition, the MUDRI is less sensitive to hardware

failures when compared to the Gallager-B and PGDBF.

Figure 4.25. FER as function of parameter ݌, LDPC codes with 3=ߛ and 0.004=ߙ ,4=ߛ

0 0.2 0.4 0.6 0.8 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

p

F
ra

m
e
 E

rr
o
r

R
a
te

,
F

E
R

 LS(2388,1793), γ=3, P
R
=0, P

⊕
=0

LS(2388,1793), γ=3, P
R
=10−4, P

⊕
=10−3

QC(2212,1880), γ=4, P
R
=0, P

⊕
=0

QC(2212,1880), γ=4, P
R
=10−4, P

⊕
=10−3

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

89

Figure 4.26. FER as a function of probability of error XOR gates, 0=ܴܲ ,0.004=ߙ, LDPC codes with
 and girth-8, with various code rates and codeword lengths 3=ߛ

10
−4

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
⊕

F
ra

m
e

E
rr

or
 R

at
e,

 F
E

R

 Tanner (155,64), p=1
Tanner (155,64), p=0.7
LS (2388,1793), p=1
LS (2388,1793), p=0.7
QC (5184,4322), p=1
QC (5184,4322), p=0.7

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

90

Figure 4.27. FER as a function of probability of error in registers, 0.008=ߙ, ܲ⨁ൌ10‐3, LDPC codes
with ߛ ,3 =ߛ	4 = and girth-8, various codeword lengths

10
−5

10
−4

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
R

F
ra

m
e

E
rr

or
 R

at
e,

 F
E

R

QC(155,64), γ=3
PEG(504,252), γ=3
LS(1503,1004), γ=3
QC(1580,1264), γ=4
LS(2388,1793), γ=3
QC(2212,1880), γ=4

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

91

Figure 4.28. FER as a function of crossover probability in BSC channel. The code is
LS(2388,1793)(C1), the empty markers corresponds to perfect hardware and full markers to faulty
hardware with ܲ⨁=10‐3, ܴܲ=10‐4, 0.7=݌ in the PGDBF and MUDRI and other decoding algorithms

4.6. Hardware Realization and Complexity of PGDBF Algorithm

As we have seen from the above discussions and the obtained results that improvement of

performance for PGDBF can be realized by using the random generator to solve the trapping

sets in the Tanner graph. Therefore improvement of the PGDBF decoder needs extra

hardware resources where the hardware-exhausted random generators blocks have to be

implemented for every variable node processing unit.

Actually there is no problem to implement GDBF decoder designed for BSC in the

hardware, but the main problem is how to design random generator that produces the binary

sequences with the optimal value of ݌ for the different characteristics of LDPC codes.

In [119], the authors presented several implementations of our proposed algorithm

and in this section we just explain their designs of the random generator and obtained

performance on GDBF and PGDBF algorithm implementations.

Two models of random generator were presented. The first design uses the linear

feedback shift register (LFSR) to obtain the conventional implementation of the random

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Crossover probability in BSC, α

F
ra

m
e

E
rr

or
 R

at
e,

 F
E

R

Gallager−B, L=500
GDBF, L=500
PGDBF, L=500
IPGDBF, L=500
IPGDBF, L=5000
SPA, L=500

Gallager−B

GDBF (p=1)

IPGDBF, 50x100

SPA
(perfect)

IPGDBF, 5x100

PGDBF

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

92

generator and the second design is called Intrinsic-Value Random Generator (IVRG) such

that uses binary sequences produced by the LDPC decoder. They showed that both

implementation of the PGDBF improve greatly the error correction performance, while

maintaining the large throughput. In the case of LFSR-PGDBF, the performance gain

requires large hardware components while in the case of IVRG-PGDBF only the extended

expense is only 10%.

The idea of IVRG design is to use the values of the check nodes and interprets these

values as a random source of bits. The used values are already created by the existing

hardware block of the GDBF decoder. In this way, IVRG design economizes the hardware

component compared with the LFSR design.

Figure 4.29 shows the global architecture of PGDBF compared and GDBF, and it can

be noted in the context of hardware the GDPF and PGDBF have the same structure for the

check nodes and for the finder of the maximum value of the inverse function for all variable

nodes.

In [119], the authors implemented the GDBF and PGDBF decoders for the case of

Tanner code (155,64) with ݒߛ= 3 and ܿߩ= 5.The results shown that the probability of the

IVRG output is unstable during the iterations can be estimated around range 0.88<݌opt<0.92.

Figure 4.29. Global architecture of PGDBF
compared to the original GDBF

Figure 4.30. FER performance comparison of the
different decoders on the Tanner code (155,64)

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

93

Figure 4.30 shows performance of the Tanner code (155,64) with respect to the BSC

crossover probability for the two designs of the random generator. Performance of GDBF is

improved for two solutions and significant gain is obtained. Impact of the imprecise of the

random generator implemented with IVRG appears in the error-floor region where the

performance of PGDBF backs down compared in the case of LFSR-PGDBF. However,

decline in the performance for this code begins when FER<10ିସ in the case of IVRG-

PGDBF while the matched performance in the water region for the both solutions.

Table 4.1. Hardware and throughput estimation for PGDBF with different RG implementation
and for Min-Sum

 1-bit Register Slice LUTs Fmax(MHz) Throughput (Mbps)

GDBF 946 2151 132.721 4114.3

PGDBF (IVRG) 1038 2412 132.721 4114.3

PGDBF (LFSR) 9161 3545 134.56 4202.36

Offset min-sum 13694 15359 237.185 197.5

Table 4.1 represents the hardware component required to implement GDBF, PGDBF

for two designs and 6-Min-Sum algorithms. The hardware results obtained by using FPGA

Xilinx virtex 6 of 40nm technology and the results are the maximum frequency and

throughput. The throughput calculated by ݂max∗ܰ/(ܫaver∗ܵ), where ݂max, ܫaver, ܵ are the

maximum frequency, the average iteration number and the number of clock cycles needed for

one iteration, respectively. The results are ܵ = 1 for the PGDBF algorithms and ܵ = 10 for the

offset Min-Sum.

From Table 4.1 it can be noted that IVRG-PGDBF design needs an additional 92 1-

bit-registers compared with the GDBF decoder. On the other hand, LFSR-PGDBF design

needs additional 82515 1-bit registers compared with the GDBF decoder. Therefore, IVRG-

PGDBF decoder improves the performance of GDBF decoder with low complexity rather

than LFSR-PGDBF decoder.

For the Slice LUTs required, it can be noticeable that IVRG-PGDBF needs 261 more

slices than the GDBF (12.1%) and this number for LFSR-PGDBF is 1394 (64.8%). Although

the PGDBF decoder for two designs needs more hardware components to achieve the better

performance than GDBF, the throughput of PGDBF decoder approximately remains the same

Chapter 4. Improvement of the Bit-Flipping Algorithm and Faulty Decoder

94

as for GDBF (less than 2% mismatch). In terms of decoding speed, it can be note that Min-

Sum decoder is far more complex than BF type decoders.

95

Chapter 5

Performance and Complexity of Modified
McEliece Cryptosystem

Under a specific LDPC (or MDPC) decoding algorithm over BSC, an LDPC code is

considered to have a ݐ-threshold error correction capability if it can correct all error patterns

of weight ݐ or less. The determined threshold of an LDPC code has critical part in some

applications, such as flash memories, data-storage devices, optical communication and code-

based cryptography. In the other words, many systems require extremely low error rates,

solving the error-floor problem has been a critical issue.

For some classes of codes, like Reed-Solomon (RS) and Bose-Chaudhuri-

Hocquenghem (BCH) codes, this threshold can be exactly determined. In general, most of the

decoding algorithms for LDPC codes do not exactly guarantee that all error sequences with

 errors can be corrected. An essential reason for this problem comes from the fact (or less)ݐ

that in spite of the error floor analysis which includes the identification of code’s trapping

sets, there are still doubts in declaring whether a certain iterative decoder succeeds in

correcting all ݐ-error patterns. In theory, the threshold is computed by assuming the code-

length to be infinite and when there are no cycles of the length less or equal to double number

of iteration in the Tanner graph associated to the parity-check matrix. This means that the

probability of error does not depend on particular error positions [120].

Replacement of Goppa codes by QC-LDPC (or MDPC) codes in the McEliece

system, on one hand, decreases the key sizes with relatively good code rate, and on the other

hand may lead to inability to decide what is the intended message because of the failure

possibility of the decoding process. The correction of a large number of errors is not

interested for cryptography system but only a number which ensures an adequate security

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

96

level, so it is important to find a solution which employs the secure code with high correction

probability.

Generally, the attacks on McEliece code-based cryptosystem can be divided on two

types of attacks. Without the knowledge of the private key, the first type of attacks tries to

recover the plaintext from the ciphertext. This attack attempts to obtain an error vector ࢋused

for encrypting a ciphertext, and it can be found as the lowest weigh codeword in the extended

code [121]. The second type of attacks aims to retrieve the private key from the available

public one which is called structural attack. When an intentional error vector has low weight,

the decoding attacks against the McEliece cryptosystem are considered more dangerous than

structural attacks and provide the smallest work factor (WF).Therefore, increasing the

number of errors during the encryption step will make this type of attacks more difficult. In

fact, McEliece cryptosystem suffers from chosen ciphertext attacks, where a given plaintext

can be encrypted to give different ciphertexts. Therefore, an attacker can compare these

different ciphertexts to obtain the original plaintext. Many methods were proposed to protect

the system from chosen ciphertext attacks [59] [123], i.e., CCA2-secue variants.

The LDPC decoders can correct more errors with the larger code block, for the same

code rate. But for the some class of LDPC codes the situation looks different. Fossorier in

[124] proved that girth of cyclic and QC codes whose parity-check matrix has no zero blocks

is at most 12. That means, the known relationship	݃ ∝ logሺఊିଵሻሺఘିଵሻ ܰ, [49] will not be valid

for the girth ݃ of such codes. Therefore, the cyclic and QC codes have poor performance at

very long code block lengths, where the small girths discourage their usage in a number of

applications. However, in practical performance of LDPC (or MDPC) codes can be evaluated

by simulation under a certain decoding algorithm. Therefore, we concentrate on the decoding

algorithms that can achieve the better performance, i.e., lower FER, such that can increase

security of the system.

5.1 The choice of the decoding algorithm

One of the solutions for this problem is using more sophisticated decoding algorithms with

better error correction capability [48]. Surely, this comes at price of a significantly increased

decoding complexity as in the BP decoding algorithm.

In Chapter 4, we proposed novel algorithms to obtain a good performance of LDPC

codes with faster decoder and low complexity. We have seen that PGDBF decoder over BSC

is twenty orders of magnitude faster than offset min-sum decoder for Tanner code (155,64).

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

97

Also we have noted that performance of PGDBF decoder is improved for higher number of

iterations, which means that this algorithm has superior response to the number of iterations.

The main purpose of our research is to reduce the complexity of the LDPC decoder for any

application and especially for McEliece cryptosystem based on LDPC/MDPC codes. In this

chapter, we introduce an optimization solution for reducing the computational complexity of

LDPC (or MDPC) decoders in the McEliece cryptosystem with some tradeoffs between

complexity, security and performance.

A significant improvement would be obtained by using multiple PGDBF decoders.

Hence, we suggest using three schemes:

(i) MUDRI decoder, i.e., one decoder with multiple attempts in serial form, as

mentioned in Chapter 4.

(ii) MUDRI-P decoders, i.e., multiple decoders that work in the parallel form.

(iii) PGDBF-PR decoders, i.e., multiple PGDBF decoders in the parallel form with

periodical Resets, where the threshold of the bit-flip decision holds two values:

the first and second largest values of the MIF after some number of iterations. The

main idea of this decrement (decrease the threshold to the second largest value of

MIF) is to help the decoder to correct some error patterns that cannot be corrected

according to the used threshold.

1
PGDBF

2
PGDBF

n
PGDBF



1n
PGDBF -

Figure 5.1. PGDBF decoders in the parallel form

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

98

For the parallel form, as shown in Figure 5.1, multiple decoders are used and this

increases the complexity but helps to decrease the demanded number of iterations required to

converge to the correct codeword. In this case, probability that decoding converges to a

codeword with a small number of iteration increases, since the decoding stops when the

codeword is reached for the first time. On the other hand, this realization also increases the

probability that the decoder chooses the codeword that is different than actually transmitted

one. Probability of such event depends on the distance profile of the selected code and can be

minimize using rules described in [101].

5.5.1 Numerical results for LDPC codes

We begin with Tanner LDPC (155,64) code to illustrate the optimization between the

performance and complexity cost. Figure 5.2 shows error correction performance as a

function of the intentional errors under difference decoding algorithms represented in Table

5.1.

Figure 5.2. Error correction performance as a function of the intentional errors for Tanner code
(155,64) under BF, PGDBF, MUDRI, MUDRI-P, SPA and PGDBF-PR decoding algorithms

3 4 5 6 7 8 9 10 11 12
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

F
ra

m
e

E
rr

or
 R

at
e,

 F
E

R

BF
PGDBF
MUDRI
SPA
MUDRI−P
10−PGDBF−PR
50−PGDBF−PR

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

99

Figure 5.3. Average number of iterations as a function of the intentional errors for Tanner code
(155,64) under BF, PGDBF, MUDRI, MUDRI-P, SPA and PGDBF-PR decoding algorithms

The maximum number of iterations for each decoder or attempt is 100=ܮ. Figure 5.2

shows the MUDRI and MUDRI-P decoders have the same performance as the SPA decoder.

The better performance can be achieved by using LDPC decoding algorithms based on hard

decision. The same procedure of the PGDBF decoder but after number of iterations Reset, the

threshold holds two values: the first and second largest values of the inverse functions MIF,

i.e., maxଵ௩ሺΛ௩
ሺோ௘௦௘௧ሻሺܠො, ሻሻandmaxଶ௩ሺΛ௩ܡ

ሺோ௘௦௘௧ሻሺܠො, ሻሻ. In our simulations, we use thisܡ

procedure with the parallel decoders. The effectiveness of this procedure can be is higher for

the larger number of decoders.

On the other hand, the average numbers of iterations as a function of ݐ errors for

various decoders for Tanner code (155,64) are presented in Figure 5.3. It can be shown that

MUDRI-P and MUDRI decoders require more iteration for the larger ݐ. Also we can note that

for 5=ݐ, the required average number of iterations is approximately the same for SPA and

MUDRI-P while is large for MUDRI decoder.

In short, increasing the maximum number of iterations ܮ for MUDRI or increasing the

number of decoders for MUDRI-P schemes will guarantee superior performance. This

2 4 6 8 10 12
10

0

10
1

10
2

t

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

BF
PGDBF
MUDRI
SPA
MUDRI−P
10−PGDBF−PR
50−PGDBF−PR

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

100

improvement depends on the number of errors which can be corrected and the time to carry

out the decoding process.

Table 5.1. LDPC decoders are used to represent Figure 5.2

Method Number of
decoders\attempts*

Total number of
iterations

BF 1 100
PGDBF 1 100
MUDRI 10* 1000

SPA 1 100
MUDRI-P 10 1000

PGDBF-PR 10 1000, Reset =10
PGDBF-PR, 50 50000, Reset =10

Table 5.2 shows the number of errors ݐ that can be corrected at performance FER =10-

4 for Tanner code (155,64). It can be noted that periodical decrement of the threshold during

the decoding process significantly improves the performance, especially with the increase in

the number of decoders.

Table 5.2. Average number of iterations and number of errors
that can be corrected with FER= 10-4

Decoder ݐ Itavr

PGDBF 4 1.8

MUDRI 6 4.42

MUDRI-P 6 2.43

SPA 6 2

10-PGDBF-PR 8 3.89

50-PGDBF-PR 10 4.93

The performance of the same decoders for a longer quasi-cyclic LDPC code, with

parameters ܿߩ ,4 =ݒߛ	8 = and ܰ=1296are shown in Figure 5.4 and Table 5.3. One can observe

that the PGDBF remarkably outperforms the GDBF. The MUDRI decoder significantly

outperforms PGDBF decoder in the waterfall while the decrease in the error probabilities

slows down in the error floor region. It can be seen that the PGDBF-PR surpasses the

MUDRI at the error floor region and the difference between them at FER performance 2·10-6

is about 14 errors.

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

101

Figure 5.4. Error correction performance as a function of the intentional errors for quasi-cyclic 4 =ݒߛ,
 and ܰ=1296, under GDBF, PGDBF, MUDRI, PGDBF-PR and SPA decoding algorithms 8 =	ܿߩ

Table 5.3. Number of errors that can be corrected with
FER= 2·10-6 for quasi-cyclic 8 =ܿߩ ,4 =ݒߛ and ܰ=1296

Decoder Number of
decoders/attempts*

 ࢚

GDBF 1 14

PGDBF 1 31

MUDRI 10* 40

PGDBF-PR 10 54

SPA 1 65

For the larger code block, we consider the QC-LDPC codes based Pseudo Difference

Families (PDFs) in our simulations [126]. The code’s parameters are݌	ݒߛ ,1021 =	5 =, ܴ	=

7/8, while eight base blocks of PDF can be selected such that an element appears only once

among their differences. The Table 5.4 shows the polynomials obtained by choosing eight

base blocks with distinct differences [125]. Using all polynomials in the Table 5.4 results in a

regular code with minimum distance ≤ 10 and the associated Tanner graph has 40840 edges.

20 30 40 50 60 70 80 90
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of errors t

F
ra

m
e

E
rr

or
 R

at
e,

 F
E

R

GDBF
PGDBF
MUDRI
PGDBF−PR
SPA

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

102

Table 5.4 Polynomials used in the construction of rate-7/8 QC-
LDPC code based on PDFs
Polynomial Value

ܽଵሺݔሻ ݔଶ଻଻ ൅ ସ଴ଽݔ ൅ ହଽ଻ݔ ൅ ଵସ଼ݔ ൅ ଽ଺଺ݔ

ܽଶሺݔሻ ଼ݔଷ ൅ ଶ଴ଵݔ ൅ ଽ଴଴ݔ ൅ ଽ଴ହݔ ൅ ଽ଻ସݔ

ܽଷሺݔሻ ݔଵ଺଻ ൅ ଵ଼ଷݔ ൅ ଷସ଻ݔ ൅ ହ଼ଶݔ ൅ ଻଺ଷݔ

ܽସሺݔሻ ݔଶ଻ ൅ ଶଵଷݔ ൅ ଷଵଽݔ ൅ ହ଼଼ݔ ൅ ଽହ଼ݔ

ܽହሺݔሻ ݔଵଽଽ ൅ ଷଶଶݔ ൅ ଻଻ଷݔ ൅ ଵ଻଼ݔ ൅ ଽହଶݔ

ܽ଺ሺݔሻ ݔଵ଼଴ ൅ ଵ଼ଵݔ ൅ ଷଽଽݔ ൅ ସଶହݔ ൅ ହ଻଼ݔ

ܽ଻ሺݔሻ ݔସସହ ൅ ହ଺ଵݔ ൅ ଺ସ଺ݔ ൅ ଺଼ଶݔ ൅ ଻ଶଽݔ

଼ܽሺݔሻ ݔଵ଻ଽ ൅ ଶ଺଼ݔ ൅ ସହଵݔ ൅ ହଶ଺ݔ ൅ ଺ଵ଼ݔ

Figure 5.5. Error correction performance as a function of the intentional errors for QC-LDPC PDFs
code with ݊= 8168, ݌	7/8=ܴ ,1021= and ݒߛ	5 = under SPA, PGDBF, MUDRI-P and PGDBF-PR
decoders

20 30 40 50 60 70 80 90
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N. of intentional errors

F
E

R
, B

E
R

BER, PGDBF
FER, PGDBF
BER, MUDRI−P
FER, MUDRI−P
BER,SPA
FER,SPA
FER, PGDBF−PR

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

103

Table 5.5. FER performance of different decoders for QC-LDPC, ݊=8168 at
 30=ݐ

Decoder Number of decoders FER
PGDBF 1 3×10-5

MUDRI-P 5 2×10-5
SPA 1 10-5

PGDBF-PR, reset=10 5 1.3×10-5

Figure 5.5 shows error correction performance as a function of the intentional errors

for QC-LDPC PDFs code with ݊	= 8168, ݌	ܴ ,1021 =	7/8 = and ݒߛ	5 = under SPA, PGDBF,

MUDRI-P and PGDBF-PR decoding algorithms, where the ܮ	100 = for every decoder. It can

be noticed that SPA has superior performance than the other decoders for all values of the

errors. For the error ݐ	 ≤ 30, and reset=10, the PGDBF-PR decoder can achieve the same

performance as the SPA decoder, as shown in Table 5.5.

5.1.2. Numerical results for MDPC codes

The normalized belief propagation (NBP) algorithm [133] represents a popular modification

of belief-propagation (BP) algorithm in which the reliability of messages computed in the

each decoding iterations is reduced, by some criterions. This modification is particularly

effective for short low-density parity-check codes, where the existence of cycles makes the

original BP algorithm perform suboptimal. QC-MDPC codes have short cycles because of the

large row or column weights which degrade the performance of the BP algorithm. Therefore,

it is preferred to use NBP as a decoding algorithm rather than original BP to correct the

channel errors for QC-MDPC codes.

In the following, two examples are given to illustrate the decoding performance for

QC-MDPC codes, we consider GDBF, 5-MUDRI-P, 10-MUDRI-P, MUDRI and NBP

decoders. In Figure 5.6, the performances of the QC-MDPC code with (9600, 4800, 90)

parameters and code rate = 0.5 are presented for the maximum number of the decoding

iterations 100=ܮ. The situation of the MDPC codes is different than LDPC codes, where

GDBF and PGDBF have the same performance for MDPC codes in terms of FER and use of

a random generator does not help itself to correct more codewords, in addition, the decoder

becomes slower.

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

104

Figure 5.6. Error correction performance as a function of the intentional errors for QC-MDPC
(9600,4800,90) under NBP, GDBF, 5-MUDR-P, and 10-MUDRI-P algorithms

Figure 5.7. Error correction performance as a function of the intentional errors for QC-MDPC
(12288,3072,220) under NBP, GDBF, and 5-MUDR-P algorithms

85 90 95 100 105 110 115 120
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N. of intentional errors (t)

O
ut

pu
t e

rr
or

 R
at

e

BER, GDBF
FER, GDBF
BER,5−PGDBF
FER,5−PGDBF
BER,10−PGDBF
FER,10−PGDBF
BER,NBP
FER,NBP

40 45 50 55 60 65 70 75 80
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

N. of intentional errors

O
ut

pu
t e

rr
or

 r
at

e

BER, GDBF
FER, GDBF
BER,5−PGDBF
FER,5−PGDBF
FER,NBP
BER,NBP

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

105

Figure 5.8. Average number of iterations as a function of the intentional errors for QC-MDPC
(12288,3072,220)

It can be noted that NBP decoder has better performance only in the waterfall region

(when the number of intentional errors ݐ	100 <) than the GDBF, but this performance with

low error correction probability (FER=0.01). Because of the high column degree of these

codes, the short-cycles in their Tanner graphs prevent the NBP decoder to keep its

performance in correcting the codewords with small errors. On the other hand, the GDBF

decoder has better performance than the NBP for the number of intentional errors < 92 and

this performance can be improved by using multiple decoders in the parallel form. For this

code we can determine the GDBF threshold (confirmed through simulation) ݐ	 = 91 with

FER=10-5, ݐ	93 = with FER=10-5 for 5-MUDRI-P and 94 =ݐ with FER =10-5 for 10-MUDRI-

P. In fact, interpretation of this phenomenon returns to the probabilistic nature of the PGDBF

decoder in correction the error patterns. Improvement of the performance for these codes

guarantees that most of transmitted messages can be corrected with the high probability that

avoids using another technique like Automatic Repeat Request (ARQ) for retransmission the

same message with the other intentional error vector, which can be attacked. Berson proved

that the McEliece public key cryptosystem is unable to keep safe for any message which is

sent more than once to a receiver using different random intentional error vectors [127]. In

this case, a suitable CCA2-secure conversion is used.

40 45 50 55 60
10

0

10
1

10
2

10
3

t

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

GDBF
MUDRI
Parallel
NBP

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

106

The second QC-MDPC code is presented in Figure 5.7, with (12316,3079,220)

parameters and code rate = 3/4. We can see that performance of GDBF decoder with higher

code rate is better than performance of the NBP when ݐ	52 <. The GDBF error correction

capability is ݐ	45 = where FER = 10-5 and 47 = ݐ for 5-MUDRI-P decoders at the same FER

performance.

In Figure 5.8 we illustrate average number of iterations as a function of the inserted

errors for QC-MDPC-based scheme (12288,3072,220) under NBP, GDBF, 5-MUDRI-P and

MUDRI decoders. It can be noticed that the average number of iterations for parallel

decoders is smaller than average iterations for MUDRI decoder. An average number of

iterations of NBP for ݐ	45 > is very small compared to the average number of iterations of

PGDBF decoders, that means increase the complexity of procedure to correct the codewords

in spite of the PGDBF decoders have better performance than NPB. Regardless of this

situation, the complexity of PGDBF decoder is smaller than NBP and sometimes it is

preferred to use a faster decoder although it needs larger number of iterations.

5.2. Computational Complexity

The syndrome computing is the same for all decoding algorithms; therefore, the complexity

comparisons are realized without the syndrome complexity. The computational complexity of

PGDBF algorithm consists mainly of three parts: (i) calculating inverse functions, (ii) finding

the threshold, and (iii) flipping the bits.

- Calculating inverse functions

Check node calculates XORs from the received messages and sends the result to all

neighbour variable nodes, so at the check node, there is (1 - ܿߩ) binary sums and the

total number of operations at the check nodes is	(1 - ܿߩ)ܯ. For every variable node,

there is one XOR logic gate between an estimated bit at ݈-th iteration and original

received bit. Therefore, hence, ܯ	 binary operations are needed. Also ܰ + (1 - ܿߩ)

 integer additions are needed to calculate the inverse functions for all variable nodesݒߛܰ

per iteration.

- Finding the threshold (maximum value of the inverse functions)

Usually, maximum-finder is used to find the maximum value, but in PGDBF decoder

we can exploit that the values of an inverse function are integer values and restricted in

the range [0, 1+ߛ]. Therefore, no need to use maximum-finder such that the threshold

may be initialized to the maximum value (1+ߛ), and the threshold is decreased by step

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

107

1 when all MAJ logic outputs are zeros, for instance by using N-input OR gate. The

number of decrements of the inverse function value to obtain the maximum value

differs in the case of LDPC and MDPC codes. Figures 5.9 and 5.10 represent values of

the threshold during decoding iterations for Tanner code (155,64) with ݒߛ	ൌ	3 and QC-

LDPC (8168,1021) code with ݒߛ	ൌ5, respectively. However, for some values of ݐ the

threshold may take one value with the high average value. For instance, for the Tanner

code (155,64) and 3=ݐ, the threshold =3 with average is 89%. Therefore, the threshold

can be initialized with value 3 for 3=ݐ rather than 4 value, i.e., (1+ߛ), and in this way

the number of decrements is decreased. In general, ൑ (1+ݒߛ) integer comparisons are

needed for every variable node per iteration.

- Flipping the bits

After finding the threshold, the bit is flipped with probability ݌. This can be realized by

adding to each variable node processor one AND gate. Therefore, it needs ܰ AND

logic gate and ܰ XOR logic gate to flip the bit.

Table 5.4 presents the summarizing the computational complexity which includes

binary/integer/real additions and comparison for BF, PGDBF and SPA decoders. Note that

the random generator for the PGDBF decoder did not take into account in computational

complexity. In [119] emphasized that IVRG scheme has advantage over LFSR in term of

implementation and there is a simple difference between GDBF and PGDBF as shown in

Table 4.1. Any way, it is still an open problem how to realize the precise random generator

with low complexity. In addition, it can be realized by the specified matrix where its rows or

columns are used instead of random generator.

Table 5.6. The total number of operations for some LDPC decoders during a single
iteration

Operation BF PGDBF SPA

Binary Operations ܰ	൅	ܯሺ3ܰ (1-ߩ൅(1-ߩ)ܯ -

Integer additions ܰ	ሺ1-ߛሻ ܰ - ߛ

Integer Comparisons ܰ ൑	ܰ *(1+ߛ) -

Real Multiplications - - 2ܰ(ߛ2+4ߛ)

Real additions - - 2ܰ(21+ߛ)

* It is a maximum number of comparisons and an average number can be relatively determined
according to the number of error ݐ as in Figures 5.8-5.11 for LDPC and MDPC codes.

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

108

Figures 5.9 - 5.12 present the rate of the threshold value of the bit-flipping decision in

the form of a histogram for Tanner (155,64), QC-LDPC (8168,1021), QC-MDPC

(9600,4800,90) and QC-MDPC (12288, 3072, 220) codes, respectively.

Figure 5.9. Comparison of the threshold during the decoding iterations for Tanner (155,64)
code, ݒߛ	3=

From Figure 5.9, it can be seen that for 3=ݐ, there are about 89% of all threshold

values at which threshold equals to 3. In this case, the initial threshold can be started by value

3 instead of value 4 and by this way the number of decrements is reduced. Also this idea is

applied when ݐ	 ∈ [4,5,6], where the rate of 3 value is very high. By this way, the

computational complexity during the iterations is significantly reduced.

Figure 5.10 interprets how the threshold during the most of iterations holds in the high

rates of values 4 and 5, which ensures that the comparison for every variable node is done

mostly two times.

1 1.5 2 2.5 3 3.5 4
 0.0%

11.1%

22.3%

33.4%

44.6%

55.7%

66.9%

78.0%

89.2%

Maximum of MIF

t=3
t=4
t=5
t=6
t=7
t=8
t=9

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

109

Figure 5.10. Comparison of threshold during the decoding iterations for QC-LDPC (8168,1021) code,
 5=	ݒߛ

Figure 5.11. Comparison of the threshold during the decoding iterations for QC-MDPC
(9600,4800,90) code, ݒߛ	45=

2 2.5 3 3.5 4 4.5 5 5.5 6
 0.0%

 9.4%

18.9%

28.3%

37.7%

47.1%

56.6%

66.0%

75.4%

Maximum of MIF

t=25
t=30
t=40
t=50

20 25 30 35 40 45 50
 0.0%

 5.2%

10.4%

15.7%

20.9%

26.1%

31.3%

36.5%

41.8%

47.0%

Maximum of MIF

t=80
t=90
t=95

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

110

Figure 5.12. Comparison of the threshold during the decoding iterations for QC-MDPC

(12288, 3072, 220) code, 55=ݒߛ

From Figures 5.11 and 5.12, it can be observed that for QC-MDPC codes, the higher

rate of the threshold value during the decoding process is small than 50% for some ݐ errors,

and in this case the initial threshold value starts with value which has the higher rate, for

instance, initial threshold value in Figure 5.11 can be started with value 30 for 80 = ݐ, and the

initial threshold is increased with step1 until obtain the maximum value of MIF.

25 30 35 40 45 50 55 60
 0.0%

 5.5%

10.9%

16.4%

21.8%

27.3%

32.8%

Maximum of MIF

t=45
t=46

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

111

Table 5.7. Average overall complexity per frame (Real: real comparison or addition; Int.: integer
comparison or addition; Bin.: binary operation)

Tanner code (155,64); complexity × 103
QC-LDPC (8168,1021) code; complexity ×

105

 40 35 30 7 6 5 ݐ

BF	

Itavr 67 84 94

Bin. 35.3 44.2 49.5

Int. 31.1 39 43.7

FER 0.6 0.8 0.9

PGDBF

Itavr 3.2 4.3 5.8 8.3 9.7 11.55

PGDBF
Bin. 2.6 3.5 4.8 5.3 6.2 7.4

Int. 2.728 3.6 4.9 28.4 33.2 39.6

FER 2·10-4 9·10-4 3·10-3 3.6·10-5 7·10-5 10-4

MUDRI

Itavr 3.2 4.4 6.3

Bin. 2.6 3.6 5.2

Int. 2.728 3.75 5.37

FER 6·10-6 5.3·10-5 2·10-4

10-

MUDRI-

P

Itavr 1.9 2.4 3 6.6 7.9 9.3

5-MUDRI-P
Bin. 15.9 20 25.9 21.2 25.4 29.9

Int. 16.1 20.46 25.57 113.20 135.5 159.52

FER 6·10-6 5.3·10-5 2·10-4 2·10-5 5·10-5 8·10-5

10-

MUDRI-

PR,

reset=10

Itavr 1.9 2.4 3.1 6.7 7.9 9.2
5-MUDRI-

PR,

reset=10

Bin. 15.9 20 25.9 21.5 25.4 29.58

Int. 17.670 22.320 28.830 114.9 135.5 157.8

FER 3.2·10-7 2·10-6 2·10-5 1.3·10-5 3·10-5 7·10-5

50-

MUDRI-

PR,

reset=10

Itavr - 2 2.4

Bin. - 83.7 100.4

Int. - 93 111.6

FER - 7·10-8 8.3·10-7

SPA

Itavr 1.7 2 2.4 2.34 2.68 3

SPA Real 14.7 17.3 20.8 21.4 24.5 27.44

FER 6·10-6 6.2·10-5 3·10-4 10-5 3·10-5 5·10-5

Table 5.7 shows the simulated average complexity of various BF, PGDBF and the

SPA algorithms for decoding a frame at different ݐ errors. As an integer (or real) comparison

requires the same computational complexity as that of an integer (or real) addition (hardware

implementation of comparison can even be simpler than addition). Both are, thus, counted

equally.

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

112

Tables 5.7 and 5.8 provide useful information for studying tradeoffs between

performance and complexity. For the PGDBF decoder, the majority logic gate is used for

every variable node to calculate the MIF with threshold comparison. Therefore, in the term of

binary operation, the maximum number of binary operations that is needed for one frame for

PGDFB is

 .[(1+ߛ)ܰ +3ܰ + (1-ܿߩ)	ܯ]	ൌ	PGDBFܥ

According to the implementation in [122], the decoding complexity in binary

operations of the LLR-SPA is given by [50]

 ,[(ߛ	൅	11ሻ-	ܴ	12+	ߛሺ8ݍ]	ܰ	݁ݒܽܫ	ൌ	SPAܥ

where ݁ݒܽܫ	 is an average number of iterations, ܴ is the code rate and ݍ is the quantization

number of bits used for the decoder, where ݍ	6 = has been considered in our computations.

Table 5.8. QC-MDPC (12288,3072,220); complexity × 107

 47 46 45 ݐ

PGDBF	

Itavr 27.8 28.5 30

Bin. 1.97 2.02 2.12

Int. 2 2.06 2.17

FER 10-5 2·10-5 5·10-5

MUDRI

Itavr 33.3 34.1 35.9

Bin. 2.3 2.4 2.5

Int. 2.41 2.47 2.6

FER 3·10-6 6·10-6 10-5

5-MUDRI-P

Itavr 30 32 32.6

Bin. 10.64 11.35 11.56

Int. 10.87 11.59 11.81

FER 3·10-6 6·10-6 10-5

NBP

Itavr 3 4 5

Real 24.74 32.99 41.23

FER 1.3·10-2 1.7·10-2 2·10-2

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

113

Table 5.13. The computational complexity (per decoding process) comparison in the term of binary
operations for Tanner code (155,64)

Table 5.14. The computational complexity (per decoding process) comparison in the term of binary
operations for QC-MDPC (12288,3072,220)

6 6.5 7 7.5 8 8.5 9
10

3

10
4

10
5

10
6

t errors

C
om

pu
ta

tio
na

l C
om

pl
ex

ity

PGDBF
MUDRI
10−MUDRI−P
10−PGDBF−PR
50−PGDBF−PR
SPA

45 45.5 46 46.5 47
10

7

10
8

10
9

t errors

C
om

pu
ta

tio
na

l C
om

pl
ex

ity

PGDBF
MUDRI
5−MUDRI−P
SPA

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

114

Figures 5.13 and 5.14 represent the computational complexity in term of binary

operations for the Tanner code (155, 64) and QC-MDPC (12288,3072,220), respectively. The

better choice is MUDRI decoder which has two advantages, low complexity and good

performance. The required average number of iterations approximately is the same for

MUDRI and parallel schemes in the case of small ݐ. It is preferred to use the parallel form

when the difference between minimum distance of the code is small ≤ 10, i.e., the probability

of miss-correction is relatively high where the decoder only decides according to the

syndrome sum if equals to zero. In this case, MUDRI cannot improve the performance

whatever number of attempts or iterations.

5.3. Cryptanalysis of the McEliece cryptosystem

The best ways to select the secure parameters that avoid all attacks are comprehension and

evaluation of the complexity of the decoding technique. An attack can be usually measured

by the work factor, which defined as the average number of binary operations needed to have

a successful work. We can say that work factors as high as 280 or larger are important enough

to guarantee that the system is protect at the certain technology.

The most dangerous attacks against public key cryptography based on LDPC (or

MDPC) codes are attack on the Dual Code and Information Set Decoding (ISD) and the

security level of the system could be decided as the smallest work factor of these attacks.

5.3.1. Attacks on the Dual Code

LDPC codes in McEliece cryptosystem risk its security. The main problem of using LDPC

codes in the McEliece system is easy to observe the low weight parity check rows in the dual

of the public code as codewords with low weights. There exists an easy method to find dual

low weight codewords of an LDPC code and employ them to reconstruct a sparse parity

check matrix, that is a straightforward attack against LDPC based McEliece cryptosystem.

When the dual of the secret code contains very low weight codewords for the

McEliece cryptosystem based on LDPC codes, then the vulnerability for this system may

increase and an attacker can directly recover the parity check matrix ࡴ and becoming able to

perform LDPC decoding without waste. In [128] it is said that when a sufficiently large set of

redundant check sums of small enough weight can be found, then an attacker can perform bit

flipping decoding based on such parity check equations. Therefore, the dual attack do not

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

115

exist only when LDPC code is used for McEliece cryptosystem, but also can be subject to

attacks based on low weight codewords in the dual of the public code.

Return to the form (2.8), let code rateܴ, column weightݒߛ, row weightܿߩ, code

length݊and dimension ݎ, be parameters of the dual of the secret codes and can be generated

by matrix ࡴ′. For weight ݓ	൑݉ܿߩ	the dual code has at least ܣ௪ ൒ .ݓ codewords of weight ݎ

The number of codewords ܣ௪with weightݓshould be in some way known. Then the

work factor of the attack can be precisely evaluated, but on the other hand estimation of the

number of codewords ܣ௪ is a difficult problem. Since for this case ߩ௖ ≪ ݊ and that sparse

vectors are most likely sumsof vectors of higher weight then it is assumed that ܣ௪ ൌ .ݎ

Stern’s algorithm can be used to search for minimum weight codewords in the dual of

the secret code [121]. In this case, the probability of finding, in one iteration, a codeword

with weight ݓ	is ൑ ௪ܣ ௪ܲ, where ܣ௪ represents the number of ݓ-weight codewords and ௪ܲ is

expressed by [129]

௪ܲ ൌ
ቀ
௪
௚ቁቀ

௡ି௪
௞ ଶ⁄ ି௚ቁ

ቀ
௡
௞ ଶ⁄ ቁ

∙
ቀ
௪ି௚
௚ ቁ൬

௡ି௞ ଶ⁄ ି௪ା௚
௞ ଶ⁄ ି௚

൰

൬
௡ି௞ ଶ⁄
௞ ଶ⁄

൰
∙
ቀ௡ି௞ି௪ାଶ௚

௟
ቁ

ቀ௡ି௞
௟
ቁ

, (5.1)

the values of parameters ݃ and ݈ must be optimized as a function of the total number of

binary operations.

The average number of iterations needed in order to find a ݓ-weight codeword is

hence ൒ ܿ ൌ ሺܣ௪ ௪ܲሻିଵ and it can be considered that each iteration of the algorithm requires

a number of binary operations expressed by

ܤ ൌ ሺ௡ି௞ሻయ

ଶ
൅ ݇ሺ݊ െ ݇ሻଶ ൅ 2݈݃ ቀ௞/ଶ௚ ቁ ൅

ଶ௚ሺ௡ି௞ሻቀೖ/మ೒ ቁ
మ

ଶ೗
, (5.2)

with݇ and ݎ interchanged, so the total work factor is൒ ܹ ൌ .ܤܿ

5.3.2. Information Set Decoding Attacks

Information set decoding (ISD) is considered as the best known attack algorithm especially

when the code structure is not known [39]. In spite that the general decoding problem is ࣨ࣪

hard, a precise choice of system parameters (݊,݇,) is demanded to guarantee that the security

level of McEliece cryptosystem is high enough. The ISD is the best known technique when

the weight of errors ݐ	is smaller than the Gilbert-Varshamov distance, which is defined as the

smaller integer ݀0	such that

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

116

൬
݊
݀଴
൰ ൒ 2௥.

In some cases it is preferred to use the Generalized Birthday Algorithm (GBA) [130]

when ݐ is larger than ݀଴ where GBA is more efficient than ISD.

An ISD algorithm tries to find a set of free error positions of the deformed ciphertext

when it is transmitted. In most situations the random generator of the intentional error vector

generates this vector in the random way, so eavesdropper could take, arbitrarily, with some

possibilities a piece of the ciphertext which is not changed by any intentional error. Also as

an addition condition to guarantee the continuous of this attack is code's generator matrix to

these positions is invertible as will be interpreted in the following. In the other words, ISD

tries to find an intentional error vector ࢋwhich has effect on the ciphertext (ࢋ is a correctable

error vector, i.e., has weight ൑	ݐ) and this mission can be completed by employing algorithms

which search for the minimum weight codewords in a linear block code [121].

The original message then can be computed by multiplying the encrypted vector by

the inverse of the sub-matrix constructed by the selected columns of the generator matrix. Let

݇ information bits and information vector is ܝthen only ݇ elements selected from ܠ and ࢋ

vectors for ISD algorithm. At the fixed positions ݇ of the ܠand ࢋ and corresponding to the

columns of the generator matrix ࡳ′. Using subscript ݇ to denote the vectors and matrix

reduced in size and according to the condition,ࡳ௞
ᇱ is invertible matrix (non-singular matrix,

even if this is always true only for maximum distance separable (MDS) codes), and we have

௞ܠ ൌ ܝ ∙ ௞ࡳ
ᇱ ൅ ௞. (5.3)ࢋ

In the case when all values of ݇ selected positions of the error vector ࢋ are zeros,

i.e.,ࢋ௞ ൌ ૙then it can be writtenܠ௞ ൌ ܝ ∙ ௞ࡳ
ᇱ . As long as the sub-matrix ࡳ௞

ᇱ is known, an

eavesdropper can obtain the plaintext byൌ ௞ܠ ∙ ௞ࡳ
ᇱିଵ . The probability that the vector ࢋhas݇

zeros symbols in fixed positions is given by

ܲሼ݁௞ ൌ 0ሽ ൌ
൫௡ି௞௞ ൯

൫௡௞൯
ൌෑ ሺ1 െ

ݐ
݊ െ ݅

ሻ
௞ିଵ

௜ୀ଴
, (5.4)

and work factor for this attack can be evaluated with considering the cost of each matrix

inversion as

ூௌ஽~݇ଷܨܹ
1

ܲሼ݁௞ ൌ 0ሽ
. (5.5)

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

117

The ISD algorithm is very simple and for binary linear codes, while the improvement

of ISD algorithm are introduced later by Lee–Brickell [65], Leon [131], Stern [121], Peters

[20], and Becker et al. [132]. It is worth mentioning that the Lee–Brickell algorithm is a

decoding algorithm whereas Stern’s algorithm originally was designated for finding the low-

weight codewords in a binary linear code.

In the case whenࢋ௞ ് 0, then

ᇱܝ ൌ ௞ܠ ∙ ௞ࡳ
ᇱିଵ ൅ ௞ࢋ ∙ ௞ࡳ

ᇱିଵ , (5.6)

where ࢋ௞ is an error vector chosen randomly with weight ൑	ݐ. In principle, all possible ܝᇱ

should be considered and examined through a deterministic procedure [65]. One can noticed

that considering a subset of all possible ࢋ௞ vectors, namely those with weight less than or

equal to a given integer ݆, can be convenient for the eavesdropper.

The work factor of Lee and Brickell’s algorithm can be evaluated as follows

௝ܹ ൌ ௝ܶ൫݇ߙଷ ൅ ௝ܰ݇ߚ൯	,

where ௝ܶ ൌ 1/∑ ൫௧௜൯൫
௡ି௧
௞ି௜൯/൫

௡
௞൯

௝
௜ୀ଴ , ௝ܰ ൌ ∑ ൫௞௜൯

௝
௜ୀ଴ and ߙ and ߚ are integers ൒ 1.

The complexity of decoding general linear codes depends on all three code parameters

 Table 5.9 summarizes the work factor of different ISD algorithms for the Goppa .(ݐ ,݇ ,݊)

code (1024, 524, 50).

Table 5.9. Work factor of ISD for (1024, 524, 50) McEliece cryptosystem

Algorithm Log. Of binary work factor Year

Adams-Mejier 80.7 1986
Lee-Brickell 70.89 1988

Stern 66.21 1989
Canteaut-Chabanne 65.5 1994
Canteaut-Chabaud 64.1 1998

Bernstein-Lange-Peters 60.4 2008
Finiasz-Sendrier 59.9 2009

Indeed, increase the Hamming weight of intentional error vector increases the security

of the message where the ISD attack (in ݈݃݋ଶ) increases linearly in the number of intentional

errors. Security of QC-MDPC is determined by the work factorܹܨௗ௘௖
ொ஼ ሺ݊, ,ݎ ሻ and here weݐ

Chapter 5. Performance and Complexity of Modified McEliece Cryptosystem

118

investigate the decoding attack where the security of the message is related to the hardness of

decoding ݐerrors [47],

ௗ௘௖ܨܹ
ொ஼ ሺ݊, ,ݎ ሻݐ ൌ

,௜௦ௗሺ݊ܨܹ ,ݎ ሻݐ

ݎ√
, (5.7)

where ܹܨ௜௦ௗis cost for decoding ݐ errors by ISD algorithm [39].

Table 5.10 shows work factor of the Peter’s attack [20] where the level security of the

system linearly increases with weight of error vectors.

Table 5.10 Peter’s level security for QC-MDPC codes

݊ GDPF 5-PGDBF 10-PGDBF NBP

9600	
 88 94 93 91 ݐ

WF 99.8456 101.7256 102.6656 97.035

12288	
 42 - 47 45 ݐ

WF 40.9475 41.4066 - 40.2975

119

Chapter 6

Conclusions and Perspectives

McEliece cryptosystem was rediscovered after long time of research as an interesting

alternative cryptosystem to existing systems as RSA and ECC. The quantum algorithms are

considered to be the major challenge for the public cryptosystem. Despite that the original

McEliece cryptosystem was not reported broken by quantum computers, it has been rarely

considered in practical applications due to the large keys and low transmission rate when

Goppa codes are used. The low complexities of the encryption and decryptions procedures

used in the McEliece cryptosystem compared to other systems make this system more

attractive in a number of applications. It can be implemented on small devices like PDAs,

USB Tokens and mobile phones if the public key size is reduced. Most researches used

highly structured codes which can be stored more efficiently. In this thesis, the McEliece

cryptosystem based on QC-LDPC and MDPC codes is analyzed, that are widely accepted as

a possible modification of the original version while maintaining robustness to known

security threats.

The larger part of this thesis was dedicated to develop a new class of decoders for

LDPC/MDPC codes. First, we have optimized GDBF decoding algorithm to work over the

binary symmetric channel. In fact, the original GDBF decoder is designed to work with soft-

decisions and change it to be pure hard decision decoding technique leads to performance

degradation. The deterministic nature and simplicity of the GDBF decoder allow simple and

comprehensive analysis. The hard decision bit-flipping in the GDBF decoder is related to the

maximum value of the modified inverse function (MIF). As we illustrated that failure of that

algorithm is related to its deterministic nature, we have developed a novel algorithm that

combine the idea of GDBF and probabilistic approach (PGDBF) [A1]. The value of MIF

suggests that a variable node should be flipped, but in the PGDBF decoder it is flipped with a

120

predefined probability ݌	1 > rather than being flipped automatically. It has been shown that

the optimal value of parameter ݌ depends on the column weight of the code. The

corresponding flipping probability is fixed during iterations, the tuning of parameters is

simpler compared to previously proposed algorithms, and results in a minor increase of the

decoding latency. It has been shown that FER performance of the PGDBF is significantly

better than GDBF for various classes of LDPC codes and various code rates.

By using the analysis of trapping sets, we have developed an improved version of the

algorithm (the MUDRI algorithm) [B1]. The proposed algorithm significantly increases the

probability of correcting error patterns un-correctable by the existing variants of bit-flipping

algorithm, especially in the case when large maximum number of iterations is permitted. In

MUDRI decoder, multiple decoding attempts with random re-initializations are used.

Moreover, the presented decoding algorithms are robust to the logic gate failures. We have

shown that the critical probability of failure in XOR logic gates and registers is rather

insensitive to the code construction method and rate, and it is mostly determined by the

codeword length. Furthermore, we have shown that the proposed decoder not only has large

immunity to gate failures but, surprisingly, can utilize the hardware failures to improve the

decoding performance.

A relevant issue concerns on that the work factor of the information set decoding

attacks (in݈݃݋ଶ) increases linearly with number of inserted errors to the transmitted messages

during encryption. Therefore, starting from observation that the security of the message in

McEliece cryptosystem is related to the hardness of decoding ݐ-error patterns and improving

of decoding abilities has impact on the security of the system, we introduced optimal solution

for improvement performance of the decoder with relatively low complexity. As long as the

decoding process in the code-based cryptosystem is mostly expensive procedure, we

proposed some decoding algorithms that can reduce the complexity. It has been observed that

the multiple PGDBF decoders can be exploited with independent parallel decoding or with

successive decoding. They are presented in the QC-LDPC/MDPC code-based McEliece

cryptosystems. The improvement performance provided by these schemes is large, which

allows correcting more errors and helps to protect the messages.

As the decoder is the most complex part of the code based cryptosystem, the main

challenge is to identify the solution with increased flexibility in the term of trade-off between

security and complexity. It has been shown that the PGDBF decoder requires only binary

logical operations and integer additions which can be implemented with simple

121

combinational logic gates, compared to the SPA algorithm which exploits the real valued

messages. It has shown in [119] that the PGDBF decoder can be sufficiently implemented

with high throughput and hardware resources required for the random generators can be

reduced using IVRG method. The computational complexity is expressed in terms of the

binary operations needed for each frame. The complexity of decoder is evaluated without

taking into account the storage and transport complexity, although it is also important for

efficient implementation. Taking these aspects in evaluating the overall complexity is not an

easy task, and it is usually ignored the in existing literature. However, it is worth to notice

that efficient FPGA implementation of PGDBF algorithm (that includes computing, storage

and transport of the massages through the edges of the graph) results in significantly

increased throughput when compared with state-of-the-art algorithms [119]. Also, it has been

shown that the multiple PGDBF decoders offer superior trade-off between security, latency

and decoding complexity. In this way the system designers can choose a fast procedure with

moderate the complexity and high security.

Our future research focuses on identifying the flipping sequences resulting in a

minimum number of iterations requires for successful decoding of critical error patterns. On

the other hand, if we allow restriction of the positions where the errors are inserted in the

codeword during the encryption, this would result to the intentional creation of the trapping

sets and further increase of the cryptosystem security. Also, it would be interesting to develop

the deterministic algorithm based on GDBF that outperforms PGDBF without using a random

generator with fast convergence, that would further reduce the cryptosystem complexity.

122

References

[1] Frank Miller, “Telegraphic code to Insure Privacy and Secrecy in the Transmission of
Telegrams,” Charles M. Cornwell, New York, 1882.

[2] S. M. Bellovin, “Frank Miller: Inventor of the One-Time Pad,” Cryptologia, vol. 35,
no. 3, pp. 203–222, Jul. 2011.

[3] National Bureau of Standards, “Data encryption standard,” Federal Information
Processing Standards Publication 46, U.S. Department of Commerce, January 1977.

[4] X. Lai and J. Massey, “A Proposal for a New Block Encryption Standard,” Proc. of
Advances in Cryptology EUROCRYPT ’90, Berlin, Springer-Verlag, 1991, pp. 389-
404.

[5] National Institute of Standards and Technology, “The Advanced Encryption
Standard,” Federal Information Processing Standards Publication (FIPS) 197, 2001.

[6] National Institute of Standards and Technology, “Recommendation for the Triple
Data Encryption Algorithm (TDEA) Block Cipher,” Special Publication SP800-67,
2004.

[7] Whitfield Diffie and Martin E. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[8] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for obtaining digital signatures
and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, Feb.
1978.

[9] M. Rabin, “Digitalized signatures and public-key functions as intractable as
factorization,” Technical Report MIT/LCS/TR-212, MIT Laboratory for Computer
Science, 1979.

[10] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE Trans. Inform. Theory, vol. 31, no. 4, pp. 469-472, 1985.

[11] V. Miller, “Use of elliptic curves in cryptography,” Advances in Cryptography Crypto
'85, Springer-Verlag New York, LNCS, vol.218, pp. 417-426, 1986.

[12] N. Koblitz, “Elliptic curve cryptosystem,” Mathematics of Computation, vol. 48,
1987, pp. 203-209.

[13] Sources: FIPS 186-2. NIST SP 800-57. ANSI X9.30.1 - 2002

[14] V. S. Dimitrov, K. U. Jarvinen, M. J. Jacobson, W. F. Chan, and Z. Huang, “FPGA
Implementation of Point Multiplication on Koblitz Curves Using Kleinian Integers,”

123

in Cryptographic hardware and Embedded Systems-CHES’06, pp. 445-459, 2006.

[15] T. Güneysu and C. Paar, “Ultra high performance ECC over NIST primes on
commercial FPGAs,” in Cryptographic Hardware and Embedded Systems – CHES
2008, ser. LNCS, vol. 5154, pp. 62–78, 2008.

[16] S. S. Roy, C. Rebeiro, and D. Mukhopadhyay, “A Parallel Architecture for Koblitz
Curve Scalar Multiplications on FPGA Platforms,” in DSD, pages 553–559, 2012.

[17] J. Hoffstein, J. Pipher and J. H. Silverman, “NTRU: A ring-based public key
cryptosystem,” Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, vol. 1423, pp.
267–288, 1998.

[18] J. Hermans et. al., “Speed Records for NTRU,” CT-RSA 2010, LNCS 5985, pp. 73–
88, 2010.

[19] R. J. McEliece, “A public-key cryptosystem based on algebraic coding theory,” DSN
Progress Report, pp. 114–116, 1978.

[20] D. J. Bernstein, T. Lange, and C. Peters, “Attacking and defending the McEliece
cryptosystem,” in Post-Quantum Cryptography, ser. Lecture Notes in Computer
Science. Springer Verlag, vol. 5299, pp. 31–46, 2008.

[21] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding theory,” in
Problems Control Inform. Theory, vol. 15, no. 2, pp. 159-166, 1986.

[22] Y. X. Li, R. Deng, and X. M. Wang, “On the equivalence of McEliece’s and
Niederreiter’s public-key cryptosystems,” IEEE Trans. Inform. Theory, vol. 40, no. 1,
pp. 271–273, Jan. 1994.

[23] http://www.ntru.com

[24] Nobel Committee for Physics. Particle control in a quantum world.
http://kva.se/Documents/Priser/Nobel/2012/fysik/pop_fy_en_12.pdf, Website accessed
2013-03-14.

[25] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM J. Comput., vol. 26, no. 5, pp. 1484–1509,
1997.

[26] P. W. Shor, “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring,” in Proc. 35th Annual Symp. on Foundations of Computer Science, Nov.
1994, pp. 124-134.

[27] L. M. K. Vandersypen, M. Steen, G. Breyta, C. S. Yannoni, M. H. Sherwood and I. L.
Chuang, “Experimental realization of Shor's quantum factoring algorithm using
nuclear magnetic resonance,” Nature, vol. 414, pp. 883-887, 2001.

124

[28] N. Xu et al., “Quantum factorization of 143 on a dipolar-coupling nuclear magnetic
resonance system,” Phys. Rev. Lett., vol. 108, p. 130501, Mar. 2012.

[29] A. K. Lenstra and H. W. Lenstra, Jr., editors, “The development of the number field
sieve,” Lecture Notes in Computer Science, Springer-Verlag, vol. 1554, 1993.

[30] A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes,” Journal of
Cryptology 14, pp. 255-293, 2001.

[31] S. Cavallar, B. Dodson, A. K. Lenstra, W. M. Lioen, P. L. Montgomery, B. Murphy,
H. J. J. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. C. Leyland, J. Marchand, F.
Morain, A. Muffett, C. Putnam, C. Putnam, and P. Zimmermann, “Factorization of a
512-bit RSA modulus,” In Advances in Cryptology – EUROCRYPT 2000, Springer,
Berlin / Heidelberg, 2000.

[32] Daniel J. Bernstein, Johannes Buchmann and Erik Dahmen, “Post-Quantum
Cryptography,” Springer, 2009.

[33] Lov K. Grover, “A fast quantum mechanical algorithm for database,” in Proc. 28th
ACM Symp. On Theory of Computing (STOC), pp. 212–219, Philadelphia, May, 1996.

[34] L. Minder and A. Shokrollahi, “Cryptanalysis of the Sidelnikov cryptosystem,” In
EUROCRYPT 2007, vol. 4515 of Lecture Notes in Comput. Sci., pages 347–360,
Barcelona, Spain, 2007.

[35] M. Beermann, F. Wickert, P. Vary, “Highly flexible design of multi-rate multi-length
quasi-cyclic LDPC codes,” 8th International Symposium on Turbo Codes and
Iterative Information Processing (ISTC 2014), pp. 37 – 41, 2014.

[36] D. Bernstein, “Grover vs. McEliece,” In the third international workshop on Post-
Quantum Cryptography PQCRYPTO 2010, Lecture Notes in Computer Science.

[37] R. Overbeck and N. Sendrier, “Code-based cryptography,” in Post-quantum
cryptography, Springer, 2009, pp. 95–145.

[38] F. Bahr, M. Böhm, J. Franke, T. Kleinjung, “Factorization of RSA-200,” public
announcement on May 9th, 2005.

[39] E. Prange, “The use of information sets in decoding cyclic codes,” IEEE Transactions
on Information Theory, vol. 8, no. 5, pp. 5–9.

[40] R. Niebuhr, et al. “Selecting Parameters for Secure McEliece-based Cryptosystems,”
Informational Journal of Information Security, vol. 11, pp. 137-147, issue 3, June
2012.

[41] P. Gaborit, “Shorter keys for code based cryptography,” in Proceedings of the 2005

125

International Workshop on Coding and Cryptography (WCC 2005), pp. 81–91,
Bergen, Norway, March 2005.

[42] A. Otmani, J. P. Tillich, and L. Dallot, “Cryptanalysis of two McEliece cryptosystems
based on quasi cyclic codes,” in Proc. First International Conference on Symbolic
Computation and Cryptography (SCC 2008), Beijing, China, April 2008.

[43] C. Monico, J. Rosenthal, and A. Shokrollahi, “Using low density parity check codes
in the McEliece cryptosystem,” in IEEE International Symposium on Information
Theory (ISIT'2000), page 215, Sorrento, Italy, 2000.

[44] M. Baldi and G. F. Chiaraluce, “Cryptanalysis of a new instance of McEliece
cryptosystem based on QC-LDPC codes,” in IEEE International Symposium on
Information Theory, pp. 2591–2595, Nice, France, March 2007.

[45] V. G. Umana and G. Leander, “Practical key recovery attacks on two McEliece
variants,” in Proceedings of the Second International Conference on Symbolic
Computation and Cryptograph, (SCC 2010), pp. 27-44, Royal Holloway, University
of London, Egham, UK, 23–25 June 2010.

[46] M. Baldi, M. Bodrato, and F. Chiaraluce, “A new analysis of the McEliece
cryptosystem based on QC LDPC codes,” in Security and Cryptography for
Networks, volume 5229 of Lecture Notes in Computer Science, pages 246–262.
Springer Berlin / Heidelberg, 2008.

[47] R. Misoczki, JP. Tillich, N. Sendrier, and P. Barreto, “MDPC-McEliece: New
McEliece variants from moderate density parity-check codes,” in Proc. IEEE
International Symposium on Information Theory (ISIT2013), Istanbul, Turkey, pp.
2069–2073. 2013.

[48] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and
convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 429–445, Mar.
1996.

[49] R. G. Gallager, Low-density parity-check codes, M.I.T. Press, 1963.

[50] M. Baldi, “LDPC codes in the McEliece cryptosystem: attacks and countermeasures,”
NATO Science for Peace and Security Series - D: Information and Communication
Security, IOS Press, vol. 23, pp. 160–174, 2009.

[51] A. Canteaut and F. Chabaud, “A new algorithm for finding minimum-weight words in
a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511,” IEEE Trans. Inform. Theory, vol. 44, 367–378, January 1998.

[52] E. Berlekamp, R.J. McEliece and H.C.A. Van Tilborg, “On the inherent intractability
of certain coding problems,”IEEE Transactions onInformation Theory, vol. 24, no. 3,

126

pp. 384-386, May 1978.

[53] V. D. Goppa, “Rational Representation of Codes and (L,g) Codes,” Probl. Pered.
Inform., vol. 7, pp. 41–49, September 1971.

[54] V. D. Goppa, “A new class of linear error-correcting codes,” Probl. Peredach
Inform., vol. 6, no. 3, pp. 24-30, Sept. 1970.

[55] P. Loidreau, “Strengthening McEliece Cryptosystem,” In Proc. Of ASIACRYPT 2000,
Springer–Verlag, 2000.

[56] P. Fitzpatrick, J.A. Ryan, “On the number of irreducible Goppa codes,” Workshop on
Coding and Cryptography 2003, 2003.

[57] K. Kobara and H. Imai, “Semantically secure McEliece public-key cryptosystems-
conversions for mceliece pkc,” in K. Kim, editor, Public Key Cryptography, LNCS,
vol. 1992, pp. 19–35. Springer, 2001.

[58] H. M. Sun, “Further cryptanalysis of the McEliece public-key cryptosystem,” IEEE
Communications Letters, vol. 4, no. 1, pp. 18–19, 2000.

[59] D. Engelbert, R. Overbeck, and A. Schmidt, “A summary of McEliece-type
cryptosystems and their security,” Journal of Mathematical Cryptology, vol. 1, no. 2,
pp. 151–199, May 2007.

[60] F. R. Kschischang, B. J. Frey and H. A. Loeliger, “Factor graphs and the sum product
algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498–519,
February 2001.

[61] E. M Gabidulin, A.V. Paramonov, and O.V. Tretjakov, “Ideals over a non-
commutative ring and their applications to cryptography,” in Proc. Eurocrypt ’91,
volume 547 of LNCS. Springer Verlag, 1991.

[62] E. M Gabidulin, A .V. Ourivski, B. Honary, and B. Ammar, “Reducible rank codes
and their applications to cryptography,” in IEEE Transactions on Information Theory,
vol. 49, no. 12, pp. 3289-3293, Dec. 2003.

[63] V. M. Sidelnikov, “A public-key cryptosystem based on binary Reed-Muller codes,”
Discrete Mathematics and Applications, vol. 4, no. 3, 1994.

[64] C. M. Adams, H. Meijer, “Security-Related Comments Regarding McEliece’s Public-
Key Cryptosystem,” in Proc. of CRYPTO ’87, LNCS 293, pp. 244-233, Springer,
1988.

[65] P. J. Lee, E. F. Brickell, “An Observation on the Security of McEliece’s Public-Key
Cryptosystem,” EUROCRYPT, 1988.

127

[66] V.M. Sidelnikov and S.O. Shestakov, “On the insecurity of cryptosystems based on
generalized Reed-Solomon codes,” Discrete Math. Appl., vol. 1, no. 4, pp. 439–444,
1992.

[67] H. Janwa and O. Moreno, “McEliece public key cryptosystems using algebraic-
geometric codes,” Designs, Codes and Cryptography, vol. 8, no. 3, pp. 293-307,
August 1996.

[68] C. Faure and L. Minder, “Cryptanalysis of the McEliece cryptosystem over
hyperelliptic curves,” in International Workshop on Algebraic and Combinatorial
Coding Theory, pp. 99 - 107, 2008.

[69] A. Otmani, J.P. Tillich, and L. Dallot, “Cryptanalysis of two McEliece cryptosystems
based on quasi-cyclic codes,” Special Is-sues of Mathematics in Computer Science,
vol. 3, no. 2, pp.129-140, January 2010.

[70] R. Misoczki and P. S. L. M. Barreto, “Compact McEliece keys from Goppa codes,”
Cryptology ePrint Archive, Report 2009/187, 2009.

[71] T. P. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani, “Reducing key length of the
McEliece cryptosystem,” in Progress in Cryptology - AFRICACRYPT 2009, ser.
Lecture Notes in Computer Science. Springer Verlag, 2009, vol. 5580, pp. 77–97.

[72] M. Baldi, F. Chiaraluce, R. Garello, and F. Mininni, “Quasi-cyclic low-density parity-
check codes in the McEliece cryptosystem,” In IEEE International Conference on
Communications (ICC 2007), pp. 951-956, June 2007.

[73] M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, and D. Schipani, “Enhanced public
key security for the McEliece cryptosystem,” 2011, http://arxiv.org/abs/1108.2462

[74] H. M. Sun, “Improving the security of the McEliece public-key cryptosystem,” in
ASIACRYPT 1998, ser. Lecture Notes in Computer Science. Springer Verlag, 1998,
vol. 1514, pp. 200–213.

[75] F. Strenzke, “Solutions for the Storage Problem of McEliece Public and Private Keys
on Memory-constrained Platforms,” in Proceedings of the 15th international
conference on Information Security, ISC 2012, Lecture Notes in Computer Science,
Springer Berlin / Heidelberg (2012).

[76] T. Eisenbarth, T. Güneysu, S. Heyse, and C. Paar, “MicroEliece: McEliece for
Embedded Devices,” Proceedings of the 11th International Workshop on
Cryptographic Hardware and Embedded Systems (Berlin, Heidelberg), CHES ’09,
Springer-Verlag, 2009, pp. 49–64.

[77] A. Shoufan, T. Wink, G. Molter, S. Huss, F. Strentzke, “A Novel Processor

128

Architecture for McEliece Cryptosystem and FPGA Platforms,” 20th IEEE
International Conference on Application-specific Systems, Architectures and
Processors (ASAP 2009), pp.98-105, July 2009.

[78] S. Heyse, I. Von Maurich, T. Güneysu, “Smaller keys for code-based cryptography:
QC-MDPC McEliece implementations on embedded devices,” in Cryptographic
Hardware and Embedded Systems (CHES ’13), vol. 8086, pp. 273–292, Springer,
Berlin, 2013.

[79] F. Strenzke, “A smart card implementation of the McEliece PKC”,in Proc. of the 4th
IFIP WG 11.2 Internat. Conf. on Information Security Theory and Practices: Security
and Privacy of Pervasive Systems and Smart Devices WISTP ’10, Passau, Germany,
2010 (P. Samarati et al., eds.), Lecture Notes in Comput. Sci., vol. 6033, Springer,
Berlin, 2010, pp. 47–59.

[80] D.J.C. MacKay, “Good error-correcting codes based on very sparse matrices,” in
IEEE Transactions on Information Theory, vol. 45, no. 2, pp.399-431, Mar. 1999.

[81] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar and S. Lin, “A class of low-density parity-
check codes constructed based on Reed-Solomon codes with two information
symbols,”Communications Letters, IEEE , vol.7, no.7, pp. 317,319, July 2003.

[82] J. L. Fan, “Array codes as low-density parity check codes,” in Proc. of the Intl. Symp.
on Turbo Codes, 2000, pp. 543–546.

[83] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, Jr., “LDPC
block and convolutional codes based on circulant matrices,” IEEE Trans. on Inform.
Theory, vol. 50, no. 12, pp. 2966–2984, Dec. 2004.

[84] R.M. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions
onInformation Theory, vol. 27, no. 5, pp. 533-547, Sep. 1981.

[85] H. Xiao, E. Eleftheriou and D. Arnold, “Regular and irregular progressive edge-
growth tanner graphs,”IEEE Transactions onInformation Theory, vol. 51, no. 1, pp.
386-398, Jan. 2005.

[86] H. Xiao and A. H. Banihashemi “Improved Progressive-Edge Growth (PEG)
Construction of Irregular LDPC codes,” IEEE Communications Letters, vol. 8, no. 12,
pp. 715-717, Dec. 2004.

[87] T. Richardson, M. Shokrollahi and R. Urbanke, “Design of capacity-approaching
irregular low-density parity check codes,” IEEE Trans. Inform. Theory, vol.47, pp.
619-637, Feb. 2001.

[88] Z. Li, L. Chen, L. Zeng, S. Lin, and W. H. Fong, “Efficient Encoding of Quasi-
Cyclic Low-Density Parity-Check Codes,” IEEE Transactions on Communications,

129

vol. 54, no. 1, Jan. 2006, pp. 71–81.

[89] C. Di, D. Proietti, I. E. Telatar, T. Richardson, and R. Urbanke, “Finite-length
analysis of low-density parity-check codes on the binary erasure channel,” IEEE
Trans. Inform. Theory, vol. 48, pp. 1570–1579, June 2002.

[90] H. Qi and N. Goertz, “Low-Complexity Encoding of LDPC Codes: A New Algorithm
and its Performance,” available at http://publik.tuwien.ac.at/files/PubDat_166941.pdf
, (06. 04. 2011).

[91] T. J. Richardson R. L. Urbanke, “Efficient encoding of low-density parity-check
codes,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 638–656, Feb.
2001.

[92] F. Guilloud, E. Boutillon, and J. Danger, “Lamda-Min Decoding Algorithm of
Regular and Irregular LDPC Codes,” in Proc. 3nd International Symposium on Turbo
Codes and Related Topics, Brest, France, pp. 451-454, Sep. 2003.

[93] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu, “Reduced
complexity decoding of LDPC codes,”IEEE Trans. Commun., vol. 53, no. 8, pp.
1288–1299, Aug. 2005.

[94] V. Savin, “Self-corrected min-sum decoding of LDPC codes,” in Proc. of IEEE Int.
Symp. on Information Theory (ISIT), 2008, pp. 146–150.

[95] S.K. Chilappagari, D.V. Nguyen, B. Vasic, M.W. Marcellin, “Error correction
capability of column-weight-three LDPC codes under the Gallager A algorithm - Part
II,”IEEE Transactions on Information Theory, vol. 56, no. 6, pp. 2626-2639, June
2010.

[96] S.K. Chilappagari and B. Vasic, “Error-correction capability of column-weight-three
LDPC codes,” IEEE Transactions on Information Theory, vol.55, no.5, pp. 2055-
2061, May 2009.

[97] Y.Kou, S.Lin, and M.P.C Fossorier, “Low-density parity-check codes based on finite
geometries: a rediscovery and new results,” IEEE Trans.Inform. Theory, pp. 2711–
2736, vol. 47, Nov. 2001.

[98] J.Zhang, and M.P.C.Fossorier, “A modified weighted bit-flipping decoding of low
density parity-check codes,” IEEE Communications Letters, pp. 165–167, vol. 8, Mar.
2004.

[99] M.Jiang, C.Zhao, Z.Shi, and Y.Chen, “An improvement on the modified weighted bit
flipping decoding algorithm for LDPC codes,” IEEECommunications Letters, vol. 9,
no. 9, pp. 814–816, 2005.

130

[100] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and I. Takumi,
“Gradient descent bit flipping algorithms for decoding LDPC codes,” IEEE Trans.
Commun., vol. 58, no. 6, pp.1610–1614, 2010.

[101] N. Miladinovic and M. Fossorier, “Improved bit-flipping decoding of low-density
parity-check codes,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1594–1606, Apr.
2005.

[102] D. V. Nguyen, M. W. Marcellin, B. Vasic, “Two-bit bit flipping decoding of LDPC
codes,” Proc. IEEE Int. Symp. on Inform. Theory, St. Petersburg, Russia, Jul. 31 -
Aug. 5 2011, pp. 1995 – 1999.

[103] G. Sundararajan, C. Winstead, and E. Boutillon, “Noisy gradient descent bit-flip
decoding for LDPC codes,” IEEE Trans. Commun., vol. 62, no. 10, pp. 3385–3400,
Oct. 2014.

[104] Proakis, John G, “Digital communications,” McGraw-Hill, New York, 1995.

[105] R. M. Tanner, D. Sridhara, and T. Fuja, “A Class of Group-Structured. LDPC
Codes,” in ISCTA, Ambleside, England, 2001.

[106] S.Y. Chung, G. Forney, T. Richardson, R. Urbanke, “On the design of low-density
parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Communications
Letters, vol. 5, pp. 58-60, 2001.

[107] T. Richardson, “Error floors of LDPC codes,” in Proc. 41st Allerton Conf. on
Communications, Control, and Computing, (Allerton House, Monticello, Illinois,
USA), October 1–3 2003.

[108] B. Vasic, S. K. Chilappagari, D. V. Nguyen, and S. K. Planjery, “Trapping set
ontology,” in Proc. Allerton Conf. on Commun., Control, and Computing, Sep. 2009.

[109] S. Ghosh, K. Roy, “Parameter variation tolerance and error resiliency: New design
paradigm for the nanoscale era,” Proceedings of IEEE, vol. 98, no. 10, pp. 1718–
1751, Oct. 2010.

[110] B. Vasic and S. K. Chilappagari, “An information theoretical framework for analysis
and design of nanoscale fault-tolerant memories based on low-density parity-check
codes,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 11, pp. 2438–2446,
Nov. 2007.

[111] S. Chilappagari, M. Ivkovic, and B. Vasic, “Analysis of one step majority logic
decoders constructed from faulty gates,” in Proc. 2006 IEEE International
Symposium on Information Theory, July, pp. 469–473.

[112] S. Brkic, P. Ivanis, and B. Vasic, “Analysis of one-step majority logic decoding under

131

correlated data-dependent gate failures,” in Proc. 2014 IEEE International
Symposium on Information Theory (ISIT), June, pp. 2599–2603.

[113] L. Varshney, “Performance of LDPC Codes Under Faulty Iterative Decoding,” IEEE
Transactions on Information Theory, vol. 57, no. 7, pp. 4427–4444, July 2011.

[114] C. Kameni Ngassa, V. Savin, and D. Declercq, “Min-Sum-based decoders running on
noisy hardware,” in Proc. 2013 IEEE GLOBECOM, Dec. 2013.

[115] C.-H. Huang and L. Dolecek, “Analysis of finite-alphabet iterative decoders under
processing errors,” in Proc. 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), May, pp. 5085–5089.

[116] S. Tabatabaei Yazdi, H. Cho, and L. Dolecek, “Gallager B Decoder on Noisy
Hardware,” IEEE Transactions on Communications, vol. 61, no. 5, pp. 1660–1673,
May 2013.

[117] F. Leduc-Primeau and W. Gross, “Faulty Gallager-B decoding with optimal message
repetition,” in Proc. 50th Annual Allerton Conference on Communication, Control,
and Computing, pp. 549–556, Oct. 2012.

[118] L. Danjean and S. K. Planjery, http://www2.engr.arizona.edu/∼vasiclab /tools/LDPC
Code List.

[119] K. Le, D. Declercq, C. Spagnol, P. Ivanis, B. Vasic, “Efficient Realization Of
Probabilistic Gradient Descent Bit Flipping Decoders,” Proc. 21-st IEEE
International Conference on Electronics Circuits and Systems (ISCAS 2015), Lisbon,
Portugal, May 24 - 27 2015, pp. 1-4.

[120] T. Richardson and R. Urbanke, Modern Coding Theory, Cambridge University Press,
2008.

[121] J. Stern, A method for finding codewords of small weight, In G. Cohen and J.
Wolfmann, editors, Coding Theory and Applications, vol. 388 of Lecture Notes in
Computer Science, pp. 106–113. Springer, 1989.

[122] X. Y. Hu, E. Eleftheriou, D. M. Arnold, and A. Dholakia, “Efficient implementations
of the sum-product algorithm for decoding LDPC codes,” In Proc. IEEE Global
Telecommunications Conference (GLOBE-COM ’01), vol. 2, pp. 1036–1036, San
Antonio, TX, November 2001.

[123] J. C. Faug`ere, A. Otmani, L. Perret and J. P. Tillich, “Algebraic Cryptanalysis of
Compact McEliece’s Variants - Toward a Complexity Analysis,” In International
Conference on Symbolic Computation and Cryptography, SCC 2010, pp. 45-56,
2010.

132

[124] M. P. C. Fossorier, “Quasicyclic low-density parity-check codes from circulant
permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788–1793, Aug.
2004.

[125] M. Baldi, “QC-LDPC Code-Based Cryptography,” Springer Briefs in Electrical and
Computer Engineering, Springer 2014, ISBN 978-3-319-02555-1, pp. 1-120.

[126] M. Baldi, F. Chiaraluce, “New Quasi Cyclic Low Density Parity Check codes based
on Difference Families,” In Proc. Int. Symp. Commun. Theory and Appl., (ISCTA 05),
Ambleside, UK, pp 244–249, July 2005.

[127] T. A. Berson,” Failure of the McEliece public-key cryptosystem under message-
resend and related-message attack,” In CRYPTO '97, LNCS, Vol. 1294, pp 213-220,
1997.

[128] M. P.C. Fossorier, K. Kobara, H. Imai, “Modeling Bit Flipping Decoding Based on
Non Orthogonal Check Sums with Application to Iterative Decoding Attack of
McEliece Crypto-System,” IEEE Trans. Inform. Theory, vol. 53, no. 1, pp. 402-411,
2007.

[129] M. Hirotomo, M. Mohri, and M. Morii, “A probabilistic computation method for the
weight distribution of low-density parity-check codes,” in Proc. IEEE Int. Symp. Inf.
Theory, Adelaide, Australia, Sep. 2005, pp. 2166–2170.

[130] P. Camion and J. Patarin, “The knapsack hash function proposed at CRYPTO ’89 can
be broken,” In D.W. Davies, editor, Advances in Cryptology - EUROCRYPT ’91, vol.
547 of LNCS, pages 39–53. Springer, 1991.

[131] J. S. Leon, “A probabilistic algorithm for computing minimum weights of large error
correcting codes,” IEEE Transactions on Information Theory, vol. 34, pp. 1354–
1359, 1988.

[132] A. Becker, A. Joux, A. May, A. Meurer, “Decoding random binary linear codes in
2n/20: How 1 + 1 = 0 improves information set decoding,” In EUROCRYPT 2012,
Lecture Notes in Computer Science, vol. 7237, Springer Verlag, pp. 520–536, 2012.

[133] M. R. Yazdani, S. Hemati, A. H. Banihashemi, “Improving belief propagation on
graphs with cycles,” IEEE Communications Letters, vol. 8, no. 1, pp. 57-59, 2004.

[134] D. V. Nguyen, S. K. Chilappagari, B. Vasic, and M. W. Marcellin, “On the
construction of structured LDPC codes free of small trapping sets,” IEEE Trans. Inf.
Theory, vol. 58, no. 4, pp. 2280-2302, Apr. 2012.

