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Manifestations of intrinsic and induced
magnetic properties of graphene nanostructures

Abstract

The dissertation can be roughly divided into two parts. In the first part it deals

with magnetic properties of quasi-zero dimensional graphene structures, such as

nanodots and nanorings. In particular, a circular graphene quantum dot is analyzed

in Chapter 3 using the Dirac-Weyl equation. The energy and the optical absorption

spectra are computed for the case of the present external magnetic field. The results

are obtained for two distinct boundary conditions, namely infinite-mass and zigzag

boundary conditions, which model different physics in the structure with different

edges. It is found that the energy spectrum of a dot with zigzag boundary condition

exhibits a zero energy band regardless of the value of the magnetic field, while for

the infinite mass boundary condition the zero energy states appear only for high

magnetic fields in the form of the zeroth Landau level. The analytical results are

compared to those obtained from the tight-binding model in order to show the

validity range of the continuum model. It is found that the continuum model with

infinite mass boundary condition describes rather well its tight binding counterpart,

which can partially be attributed to blurring of the mixed edges by the staggered

potential.

The mean-field Hubbard model is subsequently used to investigate the formation

of the antiferromagnetic phase in hexagonal graphene quantum rings with inner

zigzag edges. The outer edge of the ring is taken to be either zigzag or armchair,

and it is found that both types of structures exhibit a larger antiferromagnetic

interaction than hexagonal quantum dots. This difference could be partially ascribed

to the larger number of zigzag edges per unit area in rings than in dots. Furthermore,

edge states localized on the inner ring edge are found to hybridize differently than

the edge states of dots, which results in important differences in the magnetism of

graphene rings and dots. The largest staggered magnetization is found when the

outer edge has a zigzag shape. However, narrow rings with armchair outer edge

are found to have larger staggered magnetization than zigzag hexagons. The edge

defects are shown to have the least effect on magnetization when the outer ring edge

is armchair shaped.



In the second part of the dissertation, the focus is shifted onto bulk graphene

structures with augmented properties, and the resulting transport traits. This part

reflects recent trends in 2D materials research, involving sandwiching different layers

together, enabling functionalities beyond those found in the constituent parts. These

structures are termed van der Waals heterostructures, and in particular case of

graphene enable engineering of massive quasiparticles, either through enhancement

of spin-orbit coupling, or by breaking the inversion symmetry. This is of interest

because in honeycomb Dirac systems with broken spatial symmetry for instance,

orbital magnetic moments coupled to the valley degree of freedom arise due to

the topology of the band structure, leading to valley-selective optical dichroism.

On the other hand, in Dirac systems with prominent spin-orbit coupling, similar

orbital magnetic moments emerge as well. It is shown that they are coupled to

spin, but otherwise have the same functional form as the moments stemming from

spatial inversion breaking. Moreover, the impact of these moments on graphene

nano-engineered barriers with artificially enhanced spin-orbit coupling is studied in

detail. In particular, the transmission properties of such barriers in the presence of a

magnetic field are examined. The orbital moments are found to manifest in transport

characteristics through spin-dependent transmission and conductance, making them

directly accessible in experiments. Moreover, it is found that Zeeman-type effects

appear without explicitly incorporating the Zeeman term in the models, i.e., by

using minimal coupling and Peierls substitution in the continuum and tight-binding

methods, respectively. It is shown that a quasi-classical view is able to explain all

the observed phenomena.

Finally, the interplay of massive Dirac fermions with strain induced pseudomag-

netic fields in 1D barriers is studied. The combined presence of spin-orbit coupling

and broken spatial symmetry in bulk graphene results in a spin-valley dependent

gap. Thus, a barrier with such properties can act as a filter, transmitting only op-

posite spins from opposite valleys. It is shown that the pseudomagnetic field in such

a barrier will enforce opposite cyclotron trajectories for the filtered valleys, leading

to their spatial separation. Since spin is coupled to the valley in the filtered states,

this also leads to spin separation, demonstrating a spin-valley filtering effect. Fur-

thermore, it is shown that filtering behavior can be controlled by electrical gating

as well as by strain.

Keywords: graphene, magnetic field, magnetic moment, quantum dot, spin-

orbit coupling, valley, transport
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Ispo	ava�e sopstvenih i indukovanih
magnetskih svojstava grafenskih

nanostruktura

Apstrakt

Ova doktorska disertacija se mo�e grubo podeliti u dva dela. U prvom

delu, ona se bavi magnetskim svojstvima kvazi-nulto dimenzionih grafen-

skih struktura, kao xto su nanotaqke i nanoprstenovi. Konkretno, kru�na

grafenska kvantna taqka je analizirana u poglav	u 3 koriste�i Dirak-Vejlovu

jednaqinu. Energetska sta�a i optiqki apsorpcioni spektar su izraqunati

za sluqaj prime�enog spo	ax�eg magnetnog po	a. Rezultati su dobijeni za

dva razliqita sluqaja, primenom graniqnog uslova beskonaqne mase i takoz-

vanog cikcak graniqnog uslova, koji opisuju strukture sa razliqitim vrstama

ivica. Prona�eno je da energetski spektar taqke za cikcak graniqni uslov

podr�ava nultoenergetski nivo, bez obzira na vrednost magnetskog po	a, dok

se za graniqni uslov beskonaqane mase nultoenergetska sta�a pojav	uju samo

za visoke vrednosti magnetskog po	a i to u obliku nultog Landauovog nivoa.

Analitiqki dobijeni rezultati su zatim upore�eni sa rezultatima dobijenim

pomo�u metoda jake veze, da bi se odredila oblast va�e�a kontinualnog mod-

ela. Prona�eno je da se kontinualni model sa graniqnim uslovom beskonaqne

mase dobro sla�e sa metodom jake veze, xto se donekle mo�e pripisati mini-

mizova�u uticaja ivica, xto je posledica naizmeniqnog potencijala.

Nakon ovoga disertacija se bavi analizom formira�a antiferomagnetizma

u heksagonalnim grafenskim kvantnim prstenovima sa cikcak unutrax�om

ivicom koriste�i Habardov model u aproksimaciji sred�eg po	a. Spo	na

ivica prstena je ili cikcak ili fote	astog tipa. Prona�eno je da obe vrste

struktura pokazuju ve�u sklonost ka antiferomagnetizmu nego heksagonalne

kvantne taqke. Ova razlika se delimiqno mo�e pripisati ve�oj du�ini cik-

cak ivica u prstenovima nego u taqkama. Pored toga, hibridizacija iviq-

nih sta�a lokalizovanih na unutrax�oj strani prstena je drugaqije prirode

nego hibridizacija sta�a na ivici taqaka, xto dovodi do bitnih razlika mag-

netizma prstenova u odnosu na taqke. Najve�a magnetizacija je dobijena za

sluqaj kada je i spo	ax�a ivica cikcak tipa. Ipak, vrlo uski prstenovi sa



fote	astom spo	ax�om ivicom imaju ve�u magnetizaciju nego xestougaone

kvantne taqke sa cikcak ivicama. Tako�e je pokazano da iviqni defekti imaju

najma�e uticaja na magnetizaciju kada je spo	na strana prstena fote	astog

tipa.

Drugi deo teze je fokusiran na masivne grafenske strukture sa vextaqkim

svojstvima, i �ihove transportne osobine. Ovaj deo disertacije predstav	a

skorax�a istra�iva�a 2D materijala koja se bave slaga�em razliqitih slo-

jeva, xto omogu�uje pojavu funkcionalnosti koja se ne mo�e na�i u pojedinaq-

nim materijalima. Ovakve strukture se nazivaju van der Valsove heterostruk-

ture i kod grafena omogu�uju in�e�ering masivnih kvaziqestica, bilo pomo�u

spin-orbitne interakcije, bilo naruxava�em inverzione simetrije. Zanim	iv

efekat je da usled topologije energetske strukture sa�astih Dirakovih sis-

tema bez prostorne simetrije dolazi do pojave orbitalnih magnetnih mom-

enata spregnutih sa dolinskim stepenom slobode, xto dovodi do dolinski-

selektivnog optiqkog dihroizma. S druge strane, u Dirakovim sistemima sa

istaknutom spin-orbit interakcijom pojav	uju se sliqni magnetski momenti.

Pokazano je da su ovi momenti spregnuti sa spinom, ali imaju identiqnu

funkcionalnu zavisnost kao i magnetni momenti nastali usled nepostoja�a

inverzione simetrije. Naposletku, analiziran je uticaj ovih momenata na

nanobarijere formirane u grafenu pomo�u vextaqki pojaqane spin-orbitne

interakcije. Konkretno, ispitivana su transmisiona svojstva ovih barijera u

prisustvu magnetnog po	a. Orbitalni momenti se manifestuju u transport-

nim osobinama spin-zavisnom transmisijom i provodnox�u, xto ih qini di-

rektno vid	ivim u eksperimentima. Prona�eno je da se efekti Zemanovog tipa

jav	aju bez eksplicitne upotrebe Zemanovog qlana u modelima, tj., koriste�i

samo minimalno spreza�e i Pajerlsovu zamenu u kontinualnom i metodu jake

veze, respektivno. Pokazano je da kvaziklasiqni opis dobro objax�ava sve

prime�ene efekte.

Konaqno, analizirana je sprega masivnih Dirakovih fermiona sa pseudo-

magnetskim po	ima izazavanim napreza�em u 1D barijerama. Prisustvo spin-

orbitne interakcije i nepostoja�e prostorne simetrije ima za posledicu po-

jav	iva�e spin-dolinski zavisnog energetskog procepa. Zbog toga se ovakva

barijera ponaxa kao filtar, propuxtaju�i samo suprotne spinove iz suprot-

nih dolina. Pokazano je da pseudomagnetsko po	e dovodi do pojave suprot-

nih ciklotronskih trajektorija u suprotnim dolinama, dovode�i do �ihovog

prostornog razdvaja�a. Poxto je spin spregnut sa dolinom u filtriranim

sta�ima, ovo tako�e dovodi i do razdvaja�a spinova, xto sveukupno pred-



stav	a efekat spin-dolinske filtracije. Pored toga pokazano je da se efekat

filtrira�a mo�e kontrolisati elektriqnim gejtovima kao i napreza�em.

K	uqne reqi: grafen, magnetsko po	e, magnetni momenat, kvantna taqka,

spin-orbitna interakcija, dolina, transport

Nauqna oblast: Elektrotehniqko i raqunarsko in�e�erstvo

U�a nauqna oblast: Nanoelektronika i fotonika

UDK broj: 621.3
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Chapter 1

Introduction

1.1 Elementary properties of carbon and its al-

lotropes

Carbon is arguably the most versatile chemical element in nature. One illustration of

this is offered by two of its 3D allotropes: diamond and graphite. While diamond is a

very hard, transparent insulator, graphite is a soft, opaque conductor. Furthermore,

carbon is a prolific atomic connector, able to form more compounds than any other

element in nature, and allows unique and complex structures to take shape [1].

The molecules it builds also display a Goldilocks-like combination of stability and

reactivity, a feat essential for metabolism, which makes carbon the building block

of life. Such a wide diversity of properties stems from the electronic configuration

of carbon.

Carbon has 6 electrons, which in the ground state occupy the 1s22s22p2 config-

uration. However, once the possibility of forming covalent bonds arises, the excited

state becomes energetically favorable, the basis of which is formed by the orbitals 2s,

2px, 2py and 2pz [1, 2]. The hybridization of these orbitals gives rise to a variety of

ways carbon atoms can bond with other atoms, including themselves. For instance,

in diamond the valence electrons form the sp3 hybridization, resulting in four σ

bonds between neighboring sites. While diamond has been familiar since antiq-

uity, recent additions to the family of carbon allotropes include the exotic fullerens:

quasi-0D buckyballs and quasi-1D nanotubes. These could be envisaged as a sin-

gle membrane of triply connected carbon atoms wrapped around in a spherical and

cylindrical shape, respectively. These low-dimensional structures were discovered at

1



1.1 Elementary properties of carbon and its allotropes

the very beginning of the nanotechnology era, and feature a mixture of sp2 and sp3

hybridization due to their highly curved surfaces. Larger bending requires higher

ratios of tetravalent orbitals, which in turn increases the amount of unsaturated

bonds, making the structure more reactive and at the same time ties up more en-

ergy in the form of strain [3, 4]. It should not be surprising then that sheets of

triply connected carbon atoms favor pure sp2 hybridization, which is realized only

in a fully planar structure - graphene.

Therefore, graphene is a honeycomb monolayer of carbon atoms connected with

three σ bonds. Apart from being the fabric from which carbon’s 0D and 1D al-

lotropes are fashioned, stacking graphene layers on top of each other forms graphite,

carbon’s 3D allotrope. In fact graphene derives its name from graphite, which is

itself an 18−th century coinage rooted in the Greek word for writing; the sufix -ene

refers to the 2D nature of its structure akin to benzene. The basic properties of

graphene shed light on this feature of graphite. Since in graphene the connections

between carbon atoms are completely due to in-plane sp2 hybridization, made up of

s, px and py orbitals, the remaining valence electron is to be found in the pz orbital,

wandering perpendicularly to the sheet. The sp2 bonds are the strongest in nature,

making each sheet robust. On the other hand, pz orbitals hybridize weakly between

the adjacent layers, thus keeping them loosely connected through the van der Waals

forces. This loose connection, easily broken by hand, is what gives the ”lead” pencils

the ability to write.

While in hindsight the theory sounds clear and straightforward, imagining a

stable, freestanding, one-atom thick structure requires a leap of faith, which might

explain why graphene was discovered so late. This is further substantiated formally

by the famous Mermin-Wagner theorem [5], stating that no crystal can be stable

in two dimensions, with the conventional wisdom on this matter being laid out

even earlier, by Peierls and Landau [6, 7]. It was therefore quite unexpected and

surprising to learn about the observation of monolayer graphene, reported in 2004,

the sheets of which were peeled away from a high quality graphite sample in a

rather low-tech process known as micromechanical exfoliation, also known as the

Scotch-tape technique [8]. The fact that this material displayed remarkable crystal

quality and room-temperature stability sparked a world-wide research frenzy, aimed

at tapping the previously unexplored theoretical and experimental resources that

suddenly appeared. Such a widespread effort resulted in an expansion of knowledge

further than anyone could have imagined, providing new and rich physics along

2



1.1 Elementary properties of carbon and its allotropes

the way. Amongst other things, graphene research stimulated the discovery of time-

reversal invariant topological insulators, which is proving to be a remarkably fruitful

field of study on its own [9, 10].

One of the main selling points that fueled the graphene-frenzy were its extraor-

dinary material properties. Graphene is currently the strongest and stiffest material

known [11], while at the same time having the best thermal conductivity [12], out-

performing its carbon cousins such as nanotubes and various forms of diamond.

Moreover, it has the best electrical conductivity ever measured [13], in no small part

thanks to record high electron mobility [13–15]. The fact that graphene features

electrical conductivity higher than the most conductive metals, such as silver, cop-

per or gold, is even more astonishing having in mind that graphene is not a metal at

all, but a semimetal, or, alternatively, a zero-gap semiconductor, with a vanishing

density of states at the Fermi energy. Despite this, the conductivity does not vanish

at this point, reflecting a peculiar underlying nature of what is best described as

charge-carrying quasiparticles of graphene. As it turns out, the band structure of

graphene does not bear resemblance to that of massive particles described by the

Schrödinger equation; this usual description of semiconducting materials in which

quadratic dispersion relation is attributed to an effective mass is inadequate here.

Instead, its low-energy excitations obey a linear energy-momentum relation, akin

to photons, with the difference that the charge carriers in graphene are electri-

cally charged fermions of spin one-half. In other words, graphene is a material in

which electrons behave as ultrarelativistic massless particles, describable only by the

Dirac equation, forged out of the union of quantum mechanics and special relativity.

Therefore graphene is a unique and exotic condensed matter emulator of relativistic

quantum physics, a property ultimately responsible for the first unambiguous and

definitive detection of single layer graphene signatures experimentally, through the

so called anomalous quantum Hall effect [16, 17]. All of the fundamental electronic

properties of graphene are quite easily obtainable by standard procedures such as

tight binding (TB) modeling, while the continuum picture emerges as its low-energy

expansion. At the same time this process provides great insight and the ability to

grasp the physics unexpected at the solid state level, so it becomes beneficial to an-

alyze these problems analytically. This is what the following sections of this chapter

are devoted to.

3



1.2 Tight-binding band structure of graphene

1.2 Tight-binding band structure of graphene

We start with the Schrödinger equation in it’s most fundamental, second quantized

form in two dimensions

H =

∫
r

drΨ†(r)

[
− ~2

2m
∇2 + U(r)

]
Ψ(r). (1.1)

Here Ψ†(r) and Ψ(r) are quantum field creation and annihilation operators, and

U(r) is the atomic potential landscape due to the lattice. As already mentioned,

the bonds that hold carbon atoms together in the honeycomb shape originate from

the s, px and py orbitals, which hybridize strongly and thus shift the energies of

the corresponding σ bands away from the Fermi level, leaving them without any

impact on the electronic structure of graphene. On the other hand, since we focus

on a single layer here, the leftover pz orbitals do not have an adjacent layers to bind

to, which leaves them free to hybridize relatively weakly among themselves. As we

will soon show, this will result in bands touching conically at the Fermi energy, near

certain points in the Brillouin zone. We therefore chose to expand the quantum field

operators in a basis of atomic pz orbitals of carbon atoms φ(r)

Ψ†(r) |0〉 = |r〉
=
∑
iα

|iα〉 〈iα|r〉

=
∑
iα

φ∗ (r−Riα) c†iα |0〉 , (1.2)

and similarly

Ψ =
∑
iα

φ (r−Riα) ciα, (1.3)

where i denotes the unit cell in the sum. The periodicity of the honeycomb structure

can only be appreciated by acknowledging the fact that there are two unequal atomic

sites. This basis can be imagined to consist out of two interpenetrating hexagonal

sublattices A and B, which are labeled by the variable α ∈ {A,B}, as depicted

in Fig. 1.1(a), and whose position in space is denoted by Riα. In other words,

the honeycomb lattice is not a Bravais lattice, and the three nearest neighbors of

a carbon atom in one sublattice belong to the opposite sublattice. c†iα and ciα
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1.2 Tight-binding band structure of graphene

are the creation and annihilation operators of the electron for the pz orbital at

the appropriate site. Note that in a certain way the field operators represent the

superposition of all the ways to create a particle at a given position. Replacing Eqs.

(1.2) and (1.3) in Eq. (1.1) one obtains the following operator

H =

∫
r

dr
∑
iαi′α′

φ∗ (r−Riα) c†iα

[
− ~2

2m
∇2 + U(r)

]
φ (r−Ri′α′) ci′α′ . (1.4)

Only two classes of integrals are relevant in the most simple procedure, which turns

out to describe graphene rather well [18]. The first one represents the site energy εα

of the α sublattice sites

εα =

∫
r

drφ∗ (r−Riα)

[
− ~2

2m
∇2 + U(r)

]
φ∗ (r−Riα) . (1.5)

This is basically the energy of the pz orbitals. In graphene this quantity does not

depend on the sublattice, and therefore only has the effect of shifting the Fermi

energy, so we shall ignore it. Note that one must take this factor into account when

dealing with hexagonal boron-nitride (hBN) for instance, since in that case the

sublattices A and B in the honeycomb structure are made up of boron and nitrogen

atoms, rendering their on-site energies different. In fact, breaking the sublattice

symmetry will result in the appearance of a band gap in honeycomb crystals in

general, giving rise to massive quasiparticles. Nevertheless, these systems will still

require the relativistic quantum treatment, as will be demonstrated below. The

only remaining non-zero integral is the nearest neighbor matrix element, the so

called hopping integral

− t =

∫
r

drφ∗ (r−Riα)

[
− ~2

2m
∇2 + U(r)

]
φ (r−Riα̃) , (1.6)

where t ≈ 2.7eV is the hopping term. Note that we anticipated the negative sign,

and defined the hopping term to be positive. The Hamiltonian now reduces to the

standard tight binding picture

H = −t
∑
〈iαi′α′〉

c†iαci′α′ . (1.7)
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1.2 Tight-binding band structure of graphene

~a1~a2

B

A

x

y

(a)

K′ Γ K

M
~b1~b2

kx

ky

(b)

Figure 1.1: (a) Crystal lattice of graphene. Unit vectors a1 and a2 connect adjacent
unit cells, which consist out of a two-atom basis, A and B. (b) The first Brillouin
zone and the corresponding reciprocal unit vectors b1 and b2, with distinctive points
in the reciprocal space K, K ′, M and Γ. This is the Wigner-Seitz cell of the reciprocal
lattice.

The angled brackets denote that the hopping occurs only between the nearest neigh-

bors in this model. In order to emphasize the 2D periodicity of the lattice, the

Hamiltonian needs to be reordered. To do this, we define the two unit vectors,

depicted in Fig. 1.1(a), as

a1/2 = a

(
±
√

3

2
,
3

2

)
, (1.8)

where a = 0.142 nm is the carbon-carbon distance. The two-atom basis unit cells

are also shown in Fig. 1.1(a), while the corresponding first Brillouin zone is depicted

in Fig. 1.1(b), alongside with the reciprocal unit vectors and characteristic points

in the inverse space. Denoting a unit cell with the coordinate R of the middle of a

line joining the two atoms, a manifestly periodic Hamiltonian can be written

H = −t
∑
R

c†RA (cR−a1B + cR−a2B + cRB) + h.c.. (1.9)

Here h.c. stands for Hermitian conjugate. Thus the Hamiltonian describes the

hopping within a given unit cell, and between this and the adjacent cells displaced by

−a1 and −a2 with respect to it, for all cells. In order to diagonalize the Hamiltonian

at hand, it is helpful to apply the thermodynamic limit, by imagining that there

are N unit cells in a superlattice, then enforcing the periodic boundary conditions

at the edges, and subsequently letting N →∞. In this way we are able to apply a

unitary (Fourier) transformation taking us into the momentum basis
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1.2 Tight-binding band structure of graphene

cRα =
1√
N

∑
k

eik·Rckα, (1.10)

while the Brillouin zone becomes a continuous space. Note that we chose the same

phase factor regardless of the sublattice index. This is not necessary, but it is more

convenient [2, 19]. The periodic boundary conditions ensure the closure relation

1

N

∑
R

ei(k−k
′)R = δkk′ . (1.11)

This procedure is formally equivalent to applying the Bloch theorem (see Appendix

A). Replacing this into the periodic Hamiltonian we obtain

H =− t

N

∑
Rkk′

e−ik·Rc†kA

(
eik

′·(R−a1)ck′B + eik
′·(R−a2)ck′B + eik

′·RckB

)
=− t

∑
k

c†kAckB
(
e−ik·a1 + e−ik·a2 + 1

)
+ h.c..

(1.12)

Thus the diagonalized Hamiltonian in momentum space takes the form (here we

explicitly represent the sublattice degree of freedom through spinors)

H =
∑
k

[
c†kA, c

†
kB

] [ 0 γ(k)

γ†(k) 0

][
ckA

ckB

]
, (1.13)

with γ(k) = −t
(
1 + e−ik·a1 + e−ik·a2

)
. Obviously the Hamiltonian remains to be

diagonalized in the sublattice subspace. The eigenvalues of the previous matrix

result in the energy dispersion

ε(k) = ±t
√

3 + 2 cos
(√

3kxa
)

+ 4 cos
(√

3kxa/2
)

cos (3kya/2), (1.14)

where + (−) refers to the conduction (valence) band stemming from the anti-bonding

(bonding) state, also referred to as the π∗ (π) band. The dispersion relation, Eq.

(1.14), is shown in Fig. 1.2. One can see that near certain points in the inverse

space, the bonding and anti-bonding states are degenerate, i.e. the conduction and

the valence band touch. Even though it appears that there are six such points,

the periodicity of the dispersion in the inverse space ensures that only two of them

are unique. Those points are Kτ =
(
τ 4π

3
√

3a
, 0
)

, where we explicitly include the
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1.3 The ultrarelativistic quasiparticles around the Dirac points

Figure 1.2: Energy dispersion of graphene, as obtained by the nearest neighbor tight
binding method. The conduction and valence bands touch at the two distinct valleys.
Insets show that this forms low-energy conical dispersion near the K and K ′ points.

valley index τ = ±1, denoting the K and K ′ valley, respectively. This occurs

because the effective hopping between the two sublattices in the momentum basis,

γ(k), vanishes, which also means that states at this particular point will have a

probability amplitude either on A or on B sublattice. Since graphene is half-filled

it means it is a semimetal.

1.3 The ultrarelativistic quasiparticles around the

Dirac points

The insets in Fig. 1.2 show that the low-energy excitations in the two valleys ex-

perience conical dispersion. The resulting linear energy-momentum relationship re-

sembles that of ultrarelativistic particles. With this in mind, we proceed to Taylor

expand the kernel (1.13) up to linear terms around these points

γ (Kτ + q) = γ (Kτ ) + q · ∇kγ (Kτ ) + . . .

= τ
3ta

2
qx − i

3ta

2
qy + . . . (1.15)
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1.3 The ultrarelativistic quasiparticles around the Dirac points

Then, by promoting the momenta displacements to operators,

(qx, qy)→ −i (∂/∂x, ∂/∂y)

we obtain the effective continuum theory for low-energy quasiparticles, in which the

underlying atomic structure is neglected, since the influence of the crystal lattice on

the electron motion is inherent in it. This procedure is also known as the effective

mass model, or the k ·p model, with the resulting wave function being the envelope

of the detailed atomic wave function. One benefit of the continuum approach is that

it allows one to study large structures analytically, while the tight-binding approach

is limited to relatively small structures due to the computational complexity of the

numerical scheme. The continuum Hamiltonian reads

H = ~vF


0 qx − iqy 0 0

qx + iqy 0 0 0

0 0 0 −qx − iqy
0 0 −qx + iqy 0

 , (1.16)

where vF = 3ta
2~ ≈ 106 m/s is the energy-independent Fermi velocity, at which the

electrons travel inside graphene. This Hamiltonian is written in the

[ΨAK ,ΨBK ,ΨAK′ ,ΨBK′ ]T

basis. The specific form of the Hamiltonian depends on the orientation of the axis

used and on the basis implicitly assumed, and varies significantly in the literature

[2, 20]. However in both valleys, and in all forms the low energy dispersion is linear.

It is instructive to reorder the basis to the form [ΨAK ,ΨBK ,ΨBK′ ,ΨAK′ ]T , which

allows one to write the Hamiltonian in the compact form

H = ~vF τz ⊗ σ · k, (1.17)

where τz is the Pauli z matrix operating in the valley subspace, σ = (σx, σy) is

the vector of Pauli matrices operating in the sublattice subspace, and ⊗ denotes the

tensor product. Equation (1.17) is now fully analogous to the celebrated Dirac-Weyl

equation, the relativistic quantum equation corresponding to massless fermions.

Since neutrinos have negligible mass, they are often described by this equation,

leading to the popular picture, according to which carriers in graphene behave as
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1.3 The ultrarelativistic quasiparticles around the Dirac points

charged neutrinos [21].

There are four points that must be stressed here. i) The Dirac-Weyl equation for

neutrinos is fully three-dimensional, the equation describing electrons in graphene

operates in the 2D geometrical space. ii) The σ matrices in the neutrino case

operate in the real spin space, while they denote the sublattice degree of freedom

in graphene, consequently referred to as pseudospin degree of freedom as well. iii)

Even though non-relativistic Schrödinger equation was our starting point, in the

end we obtained the Dirac-Weyl equation of the relativistic quantum theory in the

process. Therefore this is only an effective low-energy approximation, and not in

any way some manifestation of the relativistic nature of carbon’s valence electrons.

iv) While massless neutrinos travel at the speed of light, electrons in graphene travel

at the Fermi velocity vF , which is approximately 300 times slower. This leads to

a frequent misconception that electrons in graphene travel at speeds so great that

they can only be described by the relativistic quantum theory. While it is true that

electrons in graphene travel very fast, the fact of the matter is that even if this

speed was orders of magnitude slower one would still have to use the Dirac-Weyl

ultrarelativistic equation in order to properly describe the conical dispersion. It is

the masslessness of the carriers that forces this prescription, and not their speed.

Due to these properties, K and K ′ are known as Dirac points, while the linear

low-energy dispersion in their vicinity is referred to as the Dirac cone. Note that,

while it results in breaking of the electron-hole symmetry, including the next-nearest

neighbor hopping in the starting model will not result in first order corrections to

the low energy dispersion [18].

Another frequent misconception is that electrons in graphene are a table-top

experiment in quantum electrodynamics (QED). While charge carriers on a honey-

comb lattice do effectively behave as relativistic quantum particles, and are treated

as such through the Dirac-Weyl equation, this approach is almost always short of

the true quantum field theory. One way to see this is to note that one of the most

famous achievements of QED, popularized by Feynman, is the precise calculation of

the anomalous magnetic moment. The Dirac equation does not capture this small

deviation of the g−factor away from two. Another way to see it is through the fact

that position and momenta are still treated as operators in the present theory, while

they are demoted to parameters in quantum field theories.

One more important thing is worth pointing out. The valley subspace, repre-

sented by τz in Eq. (1.19), ensures the existence of two effectively independent, and
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1.3 The ultrarelativistic quasiparticles around the Dirac points

nearly identical Dirac-Weyl fermions. The only feature distinguishing these quasi-

particles is called helicity. In the case of graphene, the helicity operator is defined

as the projection of the sublattice pseudo-spin on the direction of the momentum

h =
σ · k
|k| . (1.18)

Referring back to Eq. (1.17), one can easily verify that in the conduction band

h = +1 (−1) in K (K ′) valley, meaning that the pseudospin is pointing parallel

(antiparallel) to the momentum, while the opposite is true in the valence band. The

states with h = +1 (h = −1) are also known as right-handed (left-handed). This

situation corresponds exactly to the relativistic Dirac-Weyl equation for massless

neutrinos, except that all neutrinos (antineutrinos) in nature are only found to be

left-handed (right-handed), while in graphene both states are allowed thanks to the

existence of the additional valley flavor.

Note that it might be misleading to compare the helicity in the two valleys

though. This is because we have chosen a different sublattice basis in the K ′ valley

as opposed to the K valley, so that the Hamiltonian corresponds exactly to the one

for the neutrinos. For instance, one could also chose the [ΨAK ,ΨBK ,−ΨBK′ ,ΨAK′ ]T

basis, leading to the so-called valley-isotropic Hamiltonian [20]

H = ~vF τ0 ⊗ σ · k, (1.19)

where τ0 is a 2×2 unit matrix. In this way, both valleys feature a right-handed (left-

handed) Dirac-Weyl fermion in the conduction (valence) band. What is important to

stress though, is that the pseudospin is tied to the momentum direction, regardless

of the representation chosen. The most important consequence of this is that any

normal-incidence backscattering process must include pseudospin flipping. The lack

of any sublattice symmetry breaking potential (such as the staggered or sufficiently

steep electric potential) capable of doing this, will lead to pseudospin conservation,

which is the cause of the so called Klein tunneling [22, 23].

Finally, the valley subspace can be trivially taken into account, through the

use of the valley quantum number τ = +1 (τ = −1) for K (K ′) valley, which is

beneficial since it reduces the size of the spinors and matrices used in the derivations.

Then, after adopting the same basis for both valleys, [ΨA,ΨB]T , one is left with the

Hamiltonian
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1.3 The ultrarelativistic quasiparticles around the Dirac points

Figure 1.3: ARPES measurements verifying the TB band structure of graphene. (a)
Cut along principal momentum direction gives a very good match with the theoretical
results for t = 2.82 eV. (b-d) Energy cut shows how the conical dispersion diverges
from a near-perfect linear one, and deforms through trigonal warping. Adapted from
[24].

H = ~vF (τkxσx + kyσy) , (1.20)

with the corresponding plane-wave given by

Ψ =
eik·r√

2

[
1

ατeiτφ

]
, (1.21)

where α = +1 (-1) denotes the conduction (valence) band, and φ = arctan ky/kx is

the angle of phase propagation with respect to the x axis.

In the end, we would like to stress that besides the indirect, albeit unambiguous,

verification of the ultrarelativistic nature of graphene’s quasiparticles through their

magnetic properties (which are covered in Section 1.5), direct measurements of the

band structure are accessible via the angle resolved photoemission spectroscopy

(ARPES). This procedure is based on one of the most famous experiments which

stimulated the development of quantum theory - the photoelectric effect. Energies

and momenta involved in the photon-electron scattering must obey the laws of

conservation, enabling precise reconstruction of the band structure throughout the

Brillouin zone, and away from the Fermi energy. The corresponding measurements

from Ref. [24] are depicted in Fig. 1.3, and spectacularly confirm the validity of the

simple nearest-neighbor, single-orbital tight binding calculations we presented here.

In particular, Fig. 1.3(a) compares the dispersion given by Eq. (1.14) (black line)

with the experimentally detected energy and momenta of ejected electrons in the

valence band along the principal directions, shown by a colormap. Note that this

sample is slightly electron-doped, which is expected for a layer grown epitaxially on

SiC [24]. Figs. 1.3(b-d) depict the energy cut through the dispersion relation, and
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1.4 Massive relativistic particles: spin-orbit coupling and the staggered potential

a deviation from the conical spectrum, called trigonal warping, which emerges for

sufficiently energetic quasiparticles (Fig. 1.3(d)).

1.4 Massive relativistic particles: spin-orbit cou-

pling and the staggered potential

The second half of the thesis deals with spin-orbit interaction, staggered potential

and their interplay with the (pseudo)magnetic field. Even though spin-orbit interac-

tion in intrinsic graphene is vanishingly small due to the small atomic number, there

are some functionalization techniques through which this property can be enhanced.

Similarly, a staggered potential does not appear naturally in graphene, but can be

induced by forming the so-called van der Waals heterostructures. Therefore, the in-

fluence of these parameters on the band structure, effective continuum theories and

the nature of quasiparticles they describe is not only of academic significance, but

also practically relevant. In this section, we will give a basic introduction, leaving

the practical details and particular experimental achievements for the introduction

of Chapter 5.

The tight binding model with spin-orbit interaction (the celebrated Kane-Mele

model [9]), alongside with the staggered potential is

H = −t
∑
〈iαi′α′〉

c†iαci′α′ + i
∆SO

3
√

3

∑
〈〈iα,jα〉〉

sνijc
†
iαcjα + ∆

∑
iα

(−1)α c†iαciα. (1.22)

The first term describes the usual hopping between nearest neighbor pz orbitals, and

is identical for both spins. The second term describes the intrinsic spin-orbit coupling

(SOC), through the next-nearest-neighbor (NNN - symbolized by double brackets)

hopping amplitude ∆SO. Note that νij determines the sign of the hopping; it is

positive (negative) if an electron makes a right (left) turn at the intermediate atom in

hopping from site j to site i. s = +1 (s = −1) is the spin quantum number denoting

spin up ↑ (spin down ↓). It is important to stress that the single-orbital SOC part of

the Hamiltonian is only phenomenological, since the underlying microscopic process

leading to the appearance of the intrinsic SOC necessarily includes coupling with

other orbitals. In particular, the entire process is still NNN in nature, and besides the

atomic spin-orbit coupling, it also involves hopping (which are integrated out in the
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1.4 Massive relativistic particles: spin-orbit coupling and the staggered potential

effective Kane-Mele model) through either σ bands or d orbitals of the intermediate

atom as well [25, 26]. The latter is dominant in determining the size of the SOC

gap in pure graphene [27].

The final part of the Hamiltonian represents the so-called staggered potential,

where (−1)α is +1 (−1) on the A (B) sublattice; hence this term has opposite values

on opposite sublattices, and appears when describing a material with inequivalent

on-site energies on the two sublattices. This occurs either because the basis orbital

energies are different on the two sublattices (since the sublattices are composed out

of different atomic species - hBN), or due to a buckled lattice structure allowing a

perpendicularly applied electric field to distinguish the two sublattices energetically,

as is the case in silicene and germanene for example. Note that, while these effects

do in general shift the zero energy point, the only non-trivial effect is the difference

in on-site energies between the two sublattices, which can always be represented

through a symmetric term by declaring the new zero point.

Let us focus now on the spin-orbit part of the Hamiltonian in order to obtain

its form in momentum space. Indeed, the first part of the Hamiltonian was already

studied, while the third part is trivial to write in momentum space. Rewriting HSO

in a manifestly periodic form one obtains

HSO = is
∆SO

3
√

3

∑
R

c†RA (−cR+a1A + cR+a2A + cR+a1−a2A)

+c†RB (cR+a1B − cR+a2B − cR+a1−a2B) + h.c.. (1.23)

Here the sum again runs over all unit cells. Enforcing a unitary transformation to

the momentum basis, as in the previous subsection, we get

HSO =is
∆SO

3
√

3N

∑
Rkk′

e−ik·Rc†kAckA

(
−eik′·(R+a1) + eik

′·(R+a2) + eik
′·(R+a1−a2)

)
+ e−ik·Rc†kBckB

(
eik

′·(R+a1) − eik′·(R+a2) − eik′·(R+a1−a2)
)

+ h.c.

=is
∆SO

3
√

3

∑
k

c†kAckA
(
−eik·a1 + eik·a2 + eik·(a1−a2)

)
+ c†kBckB

(
eik·a1 − eik·a2 − eik·(a1−a2)

)
+ h.c.. (1.24)

In the more compact spinor form
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1.4 Massive relativistic particles: spin-orbit coupling and the staggered potential

Figure 1.4: Energy dispersion of graphene with a staggered potential included. The
conduction and valence bands are nearest to each other at the two distinct valleys,
however they do not touch, as shown in the two insets.

HSO = s∆SO

∑
k

[
c†kA, c

†
kB

] [ χ(k) 0

0 −χ(k)

][
ckA

ckB

]
, (1.25)

where

χ(k) =
2

3
√

3
[sin(k · a1)− sin(k · a2)− sin(k · (a1 − a2))] . (1.26)

Adding now the kinetic and staggered potential terms, the full tight-binding band

structure is given by

ε(k) = ±
√
|γ (k)|2 + (s∆SOχ(k) + ∆)2. (1.27)

Having in mind that χ(Kτ ) = τ , the low-energy expansion aroundK andK ′ provides

us with the effective continuum picture [9, 26]

H = ~vF (τkxσx + kyσy) + sτ∆SOσz + ∆σz. (1.28)

Apart from the spin-valley dependence, it is clear that the effective term for the

spin-orbit interaction takes the form of a staggered potential. However, while SOC

assumes the form given in Eq. (1.28) only for low energies in momentum space, the

staggered potential term remains unchanged compared to its real space representa-
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1.4 Massive relativistic particles: spin-orbit coupling and the staggered potential

tion. Also, note that the staggered potential breaks inversion symmetry, while the

SOC term does not. They both also preserve time-reversal symmetry.

Setting ∆SO = 0 at the moment, we depict the band structure given by Eq.

(1.27) for ∆ = 0.05 eV in Fig. 1.4. Note that the majority of the dispersion

remains similar to the intrinsic band structure, displayed in Fig. 1.2. However, as

shown in the insets, a difference arises near the two valleys; namely a band gap

appears, indicating a transition to an insulating phase. This property reflects on

the dispersion of low-energy quasiparticles near the two valleys

E = ±
√

p2v2
F + ∆2. (1.29)

This is the energy-momentum relation obeyed by a massive relativistic particle,

in which the Fermi velocity again plays the role of the speed of light, while ∆

mimics the rest energy. Therefore a stationary quasiparticle sits at ∆ (bottom of

the conduction band), while its antiparticle counterpart is to be found at −∆ (top

of the valence band), meaning that the band gap is given by 2∆. In the case of

hBN for example, the staggered potential leads to the opening of a 5.97 eV large

band gap [28]. However, the band structure for ∆ = 0 and ∆SO = 0.05 eV is

practically indistinguishable from the one depicted in Fig. 1.4, while the low energy

quasiparticles have virtually identical dispersion relation

E = ±
√

p2v2
F + ∆2

SO. (1.30)

So the question arises, what, if any, are the differences between the two cases? The

key to answering this question lies in acknowledging the fact that quantum mechanics

provides us not only with eigenvalues, but also with eigenvectors. And, not only

are the eigenvectors in the two cases different, they are different throughout the

entire Brillouin zone; so much so, that a topological invariant, denoted as Z2 is used

to distinguish the aforementioned insulators. The number in the index indicates

that there are two such insulator classes; ordinary insulators with Z2 = 0, and the

so-called topological insulators with Z2 = 1.

It must be said that topological insulators are not a new occurrence. The most

famous example is the quantum Hall effect (QHE - the integer version in particular),

which takes place in sufficiently cold 2D electron gases (2DEG) exposed to strong

magnetic fields. The effect is easily interpreted semiclassically; magnetic field en-

forces cyclotron motion, which in turn leads to the formation of the Landau level

16



1.4 Massive relativistic particles: spin-orbit coupling and the staggered potential

(LL) spectrum for closed orbits in the bulk. Because of this quantization, electrons

can only occupy discrete energy states with vanishing group velocity, making the

bulk insulating. On the sample boundary, however, the cyclotron trajectories do

not close in on themselves; instead the electrons are backreflected every time they

encounter the edge, thus effectively drifting along them in a motion referred to as

skipping orbits. Therefore, not only are they able to carry current, but the states on

opposite edges also form physically separate channels of flow in opposite directions,

enabling dissipationless conduction. As a result, the Hall conductance can take only

discrete values, given as n multiples of the quantum of conductance e2/h, which

itself is the conductance of a single transmission channel spared of any scattering.

Besides measuring the number of channels contributing to transport (the filling

fraction), n also turns out to be a topological invariant called the Chern number.

This comes out as a result of a more rigorous, and in-depth quantum treatment. The

formal procedure bears an analogy to the process of characterizing closed surfaces

in differential geometry through a topological attribute. As Gauss-Bonnet theorem

shows, the integral of the Gaussian curvature on a closed surface equals to an even

integer multiple of 2π; this integer is the topological invariant known as the Euler

characteristic. In a similar fashion, the Chern index of an energy band is obtained

as

Cn =
1

2π

∮
Ωn (k) , (1.31)

where Ωn (k) = ∇k × 〈unk|∇k|unk〉 and |unk〉 are the so-called Berry curvature

and the periodic part of the Bloch wave function, respectively. The Chern number

distinguishes different QHE states.

The phenomenal transport performance of the QHE regime, however did not

become of significant practical importance. The reason is that the effect appears only

when the 2DEG is subject to strong magnetic field, something not achievable easily

outside the lab (or even inside the lab). The major breakthrough of Kane and Mele

in 2005 was the realization that a nontrivial insulating phase can arise even in the

absence of magnetic fields, thus paving the way for time-reversal invariant topological

insulators. Their Hamiltonian is a generalization of the Haldane model, which for

spinless electrons provides quantum Hall effect strictly from the band structure,

and in the absence of a (net) magnetic field and Landau levels [29]. Combining two

opposite copies of this model for each spin gives rise to the so-called quantum spin
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1.5 Magnetic field

Hall (QSH) effect, that Kane and Mele showed appears in honeycomb lattices with

sufficiently strong spin-orbit interaction. Roughly speaking, spin-orbit interaction

plays the role of an effective magnetic field, with opposite directions for opposite

spins, hence creating two copies of the Hall effect. As a result, on the edges of the

sample the two spins are counter-propagating. It follows that the two spin sectors

have opposite Chern numbers, but the entire system has a vanishing Chern number

(no Hall effect), so the important index instead becomes the Z2 number. Another

way to interpret the appearance of edge states in the QSH phase is through the

bulk-edge correspondence; since the material in the QSH phase and the vacuum

surrounding it are topologically distinct insulators, the band gap must close and

reopen between them for the topological invariant to change, resulting in gapless

metallic edge states.

1.5 Magnetic field

We now return to the discussion of intrinsic graphene. One of the most remarkable

manifestations of the ultrarelativistic nature of graphenes quasiparticles is the exotic

Landau level spectrum. In fact, this spectrum provided the first definitive proofs of

the monolayer structure of exfoliated samples through the QHE. We therefore study

the impact of a magnetic field on an infinite graphene sample here (the Zeeman

energy is disregarded).

The influence of the magnetic field on the Hamiltonian is captured through the

minimal coupling scheme (a replacement rule p→ Π) so that

H = vF (τΠxσx + Πyσy) , (1.32)

where Π = p + eA (e > 0) is the kinematical or mechanical momentum, and A

is the magnetic vector potential. The magnetic field is associated with the curl of

the vector potential, B = ∇×A. Different functional forms of the vector potential,

called gauges, can give the same magnetic field. While the canonical momentum

p is gauge dependent, the kinematical momentum Π is gauge invariant, since its

expectation value is proportional to a measurable property - the electron velocity.

Since we are interested in a magnetic field perpendicular to the graphene plane,

B = Bez, we will employ the so-called Landau gauge A = B (0, x, 0). The resulting

Hamiltonian is translationally invariant along the y direction, rendering ky a good
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1.5 Magnetic field

quantum number

Ψ = eikyyψ(x). (1.33)

Replacing this into the Dirac-Weyl Hamiltonian one obtains the coupled equations

~vF

(
0 π

π† 0

)
ψ(x) = Eψ(x), (1.34)

where π = −iτ∂x − iky − ix/l2B. We transform the system of two coupled first

order differential equations into two independent second order differential equations

through H2ψ = E2ψ[
−~2∂2

x +
~2

l4B

(
kyl

2
B + x

)2
]
ψA/B =

(
E2

v2
F

∓ τ~2

l2B

)
ψA/B. (1.35)

Compare for instance the equation for the B sublattice in the K valley, with the

equation of the quantum harmonic oscillator (shifted by x0 = kyl
2
B, and rescaled by

2m)

[
p2
x +m2ω2 (x0 + x)2]ψ = 2mεψ, (1.36)

where m is the mass of the electron and ω is the angular frequency. By direct

matching, we are able to ascertain thatmω = ~/l2B. Substituting this in the standard

n-th eigenstate of the quantum harmonic oscillator, shifted by x0 we obtain

〈x|n〉 =
π−1/4

√
2nn!

e
−

(x+kyl2B)
2

2l2
B Hn

(
x

lB
+ kylB

)
. (1.37)

Solving for the eigenfunctions we obtain

|ψB〉 = |n〉. (1.38)

Going back to the coupled equations, and employing H ′n(x) = 2nHn−1(x) one can

obtain the other spinor

|ψA〉 = −iα|n− 1〉, (1.39)

where α = +1 (−1) in the conduction (valence) band. After performing similar

calculations for the K ′ valley, the total spinor for both valleys can be written as
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1.5 Magnetic field

|ψn〉 = eikyy

(
−iα|n− τ

2
− 1

2
〉

|n+ τ
2
− 1

2
〉

)
. (1.40)

On the other hand, having in mind that ε = ~ω (n+ 1/2), the Landau levels in

graphene are given as

En = αvF
√

2n~eB, (1.41)

with n ≥ 1. Besides these solutions, a peculiar zeroth LL is a valid solution with

energy E0 = 0. The corresponding eigenfunction is derived from Eq. (1.35), and

reads

|ψ0〉 = eikyy

(
−τ/2 + 1/2

τ/2 + 1/2

)
|0〉. (1.42)

Note that the zeroth LLs are fully localized on only one sublattice, a property re-

ferred to as pseudospin polarization. There are two striking features of the magnetic

spectrum of massless, Dirac-Weyl fermions as compared to the one corresponding

to massive and nonrelativistic 2DEG particles. On one hand, the level energies de-

pend on the square root of the magnetic field and the level index in the former case,

whereas they disperse linearly in the latter case. Moreover, apart from the usual

spin-degeneracy, each level also appears in both valleys, making the total degener-

acy of a given level four-fold. On the other hand, ultrarelativistic particles form

a Landau level at exactly zero energy (i.e. at the Dirac point). Intriguingly, this

level is shared equally by the conduction and the valence band because of the inher-

ent electron-hole symmetry of graphene, i.e. two of the levels have an electron-like

character, while the other two have a hole-like character.

Consider what that means for the QHE measurements, given that an occupied

electron (hole) LL state contributes e2/h (−e2/h) to the Hall conductance. When

the Fermi energy lies between n = 0 and n = 1 levels, the zeroth LL is completely

occupied, providing 2e2/h of conductance, due to the spin degeneracy. Each higher

LL occupied by electrons participates with 4e2/h of conductance, due to full spin

and valley degeneracy. Likewise, when the Fermi energy is between n = −1 and

n = 0 levels, electron states are completely empty, however the zeroth LL is fully

occupied by holes contributing with −2e2/h (again due to spin), with each new

hole level contributing with −4e2/h of conductance. Finally, this all leads to the
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1.5 Magnetic field

anomalous Hall conductance plateaus, expressed as

σxy = ±2e2

h
(2n+ 1) , (1.43)

for n ≥ 0, which were experimentally confirmed in Refs. [16, 17], thus paving

the way for the explosion of scientific exploration of graphene. It is also worth

mentioning that transport signatures of the QHE in graphene can also be seen at

room temperatures [30].

21



Chapter 2

Theoretical models and graphene

nanoribbons

2.1 Introduction

In the previous chapter, we investigated the case of infinite honeycomb lattices

using an analytical approach. In this chapter, we will do the opposite by applying

the numerical techniques and procedures that we will introduce in order to find

more about the fundamental properties of graphene nanostructures. In particular

we will present the nonequilibrium Green function (NEGF) formalism for studying

quantum transport for nanoscale devices [31–33], as well as the Hubbard method

for predicting the appearance of spontaneous magnetic ordering due to the electron-

electron interaction. Furthermore, we will employ the tight binding method for

extracting the band structure for a particular type of one-dimensional graphene

structures, called nanoribbons.

2.2 Nonequilibrium Green function method

The numerical transport formalism that is NEGF starts with three basic building

blocks: the left lead, the device and the right lead. The leads are assumed to be

translationally invariant and connected to electron reservoirs at the far ends. Given

that NEGF operates in the quantum domain, all of the blocks are described by a

corresponding Hamiltonian, written in a matrix form in the tight binding language.

Therefore, NEGF explicitly incorporates the atomic structure into the calculations of

the conductance, through the probability amplitudes for transition between different
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2.2 Nonequilibrium Green function method

orbitals that are the matrix elements.

The quantum nature of transport that NEGF captures, differs substantially from

the Ohmic point of view. For instance, enlarging the length of the channel (resis-

tor), would always bring about the increase in the resistance of the device in which

transport is diffusive. On the other hand, for the devices in which the decoherence

effects are minimized (by fabricating very small structures for example), the under-

lying quantum nature can be manifested and a resistance decrease can occur. Such a

counterintuitive phenomena comes about from the interference of the electron waves;

a feature captured only by the complex numbers present in the Hamiltonians. The

NEGF is a robust and powerful formalism, easy to implement numerically due to

its straightforward approach. However, this also means that some of the underlying

physics remains obscure. In fact, a deep and detailed theoretical understanding of

the obtained results is often missing. Therefore, it is always helpful to supplement

these sorts of calculations with some analytical, usually effective low-energy theories,

which could provide the essential details for interpreting the obtained results.

The Green’s function of a system is given by

G = (EI −H)−1 , (2.1)

where H is the Hamiltonian of the entire structure. Here it is implicitly assumed

that the energy is shifted infinitesimally along the imaginary axis, i.e. E → (E+iη).

This is done so as to enforce the computation of a retarded Green’s function, while

the advanced one can obtained by simply taking the Hermitian conjugate [33]. In

the case of a system consisting of a device attached to a couple of leads the tight

binding Hamiltonian can be written as

H =


HL HLD 0

H†LD HD H†RD

0 HRD HR

 . (2.2)

The only finite matrix here is the device Hamiltonian HD, while all other matrices

are infinite in size. HL describes the hopping in the left lead, HR describes the

hopping in the right lead, HLD and HRD describe the hopping from the device to

the left lead, and from the device to the right lead respectively, while their Hermitian

adjoints describe the hopping in the reverse direction.

The corresponding Green function is likewise represented via submatrix blocks
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2.2 Nonequilibrium Green function method

G =


GL GLD GLR

GDL GD GDR

GRL GRD GR

 . (2.3)

Having in mind the definition of the Green function, Eq. (2.1), one can arrive at

the following set of equations

(E −HL)GLD +HLDGD = 0,

H†LDGLD + (E −HD)GD +HDRGRD = I,

H†DRGD + (E −HR)GRD = 0.

(2.4)

After some manipulation one obtains

GD =
(
E −HD − ΣL − ΣR

)−1
, (2.5)

where ΣL = H†LDgLHLD and ΣR = H†RDgRHRD are the effective self-energy terms

appearing in the Green function of the device due to the semi-infinite left and right

leads, and gL/R =
(
E −HL/R

)−1
are their respective Green functions [34]. The self-

energy matrices are not Hermitian, which reflects the fact that stationary states are

absent in the device connected to the leads. This is analogous to the case when the

complex energy of a particle results in a finite life time - there is a nonzero rate of

electrons escaping from the device. The entire coupling between the device and the

leads is contained in the self-energy matrices. A beneficial trait of the self energy

matrices is that they are finite, thanks to the fact that the semi-infinite leads connect

via hopping elements only to the surface sites in the device. Therefore it can be

said that in this procedure the leads are integrated out of the problem, since we are

left with the finite-size Green function of the device itself. In order to obtain these

functions we employ the scheme laid out in Ref. [35]. It is important to point out

that incorporating the influence of the infinite leads through the finite self-energy

matrices is exact, although it may not appear so.

Once these and the broadening matrices ΓL/R = i
(

ΣL/R − Σ†L/R

)
, are obtained,

the transmission probability through the structure can be calculated via the Fisher-

Lee relation [36]

T = Tr
(

ΓLG
†
DΓRGD

)
. (2.6)
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2.3 Graphene nanoribbons

Note that this equation holds for infinitesimal bias (V → 0), and the conductance

is then given by

G =
e2

h
T. (2.7)

This is the Landauer-Büttiker expression, which treats the devise as a scattering re-

gion, in which the waves from different leads are incident or reflected. Therefore, in

quantum transport the conductance is fundamentally related to the transmission co-

efficient of the incoming waves, with the proportionality constant being the quantum

of conductance. Execution of the exposed algorithm can become computationally

intractable, since the process involves matrix inversion which is numerically trou-

blesome. An additional procedure is then taken, known as the recursive algorithm

[37].

Having introduced the NEGF method, one could wonder, how justified is it

to employ it in studying graphene nanodevices? As it turns out, owing to excep-

tional crystal quality, electrons in graphene have phase coherence lengths of several

micrometers [38]. This puts nanoscale graphene structures well into the ballistic

quantum regime of transport, warranting the NEGF approach.

2.3 Graphene nanoribbons

Graphene nanoribbons are one-dimensional quantum wires, in which a finite width

leads to quantization of transverse modes, with freely propagating longitudinal chan-

nels. The two most important types of graphene nanoribbons are classified according

to the orientation of their edges, which can be either zigzag or armchair. These are

depicted in Figs. 2.1(a) and (b), respectively, alongside the corresponding unit cells.

Note that in contrast to armchair nanoribbons, edges of a zigzag nanoribbon are

composed out of atoms of only one sublattice. The edge atoms are considered to

be the ones which have dangling bonds, i.e. that are connected only with 2 carbon

atoms. The dangling bonds are implicitly assumed to be saturated by hydrogen,

thus providing no contribution to the energy dispersion. The two methods of cat-

egorizing the width of the nanoribbons is presented as well. In the case of zigzag

structures one counts the number of zigzag lines, while one counts the number of

atomic dimer pairs along the width in the case of armchair nanoribbons (NZG = 8

and NAC = 14 for the particular structures presented in Fig. 2.1).
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Figure 2.1: Graphene nanoribbons, created by translation of the unit cells depicted in
gray along the x direction. (a) zigzag and (b) armchair nanoribbons. The numeration
system used to denote the width of the structures is displayed on the right-hand side;
in particular NZG = 8 and NAC = 14.

In order to obtain the corresponding band structures, one can again follow the

recipe used in Chapter 1. However, the structures are periodic only along one

direction (x), while they enforce quantum confinement along the other direction (y).

Therefore the band structure is not represented by surfaces, but by lines depending

on the Bloch momentum kx. The number of bands, as in the case of plane graphene,

is equal to the number of atoms in the unit cell.

In Figs. 2.2(a), (b) and (c) we depict the density of states, the band structure

and the conductance, respectively, for a zigzag nanoribbon with NZG = 10, while

the corresponding diagrams for NZG = 40 are shown in Fig. 2.3. The conductance

is calculated using the NEGF approach introduced in the previous section, and the

crystal momentum kx is normalized by the lattice vector of the nanoribbon (in this

case
√

3a). The density of states is obtained as

D (E) =
1

2π

∑
n

∫
BZ

δ (E − En (kx)) dkx (2.8)

=
1

2π

∑
n

∫
BZ

∑
i

δ (kx − kxi)
|E ′n (kx)|

dkx, (2.9)
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Figure 2.2: (a) Density of states, (b) band structure and (c) conductance for a
NZG = 10 nanoribbon.

where En (kx) is the n−th band energy dispersion, and kxi are the roots of the

function E −En (kx). Alternatively, the NEGF formalism also yields the density of

states through the Green function

D (E) =
i

2π
Tr
(
GD −G†D

)
(2.10)

which coincides with the one calculated from the band dispersions.

Therefore, only those bands intersecting a particular energy contribute to the

density of states at that energy. Furthermore, this contribution is inversely propor-

tional to the steepness of the bands at the intersection points. This in turn means

that flat bands provide a major boost to the density of states, as can be witnessed

in Figs. 2.2 and 2.3. In particular note that there are flat bands at the neutrality

point, appearing roughly within 2π/3 ≤ |kx| ≤ π, which is a general trait of zigzag

nanoribbons. Therefore, not only are they metallic, they also exhibit a large density

of states at the Fermi energy. These are the so-called zero-energy or edge modes of

the zigzag nanoribbons, and they are stationary at the edges since their group veloc-

ity is vanishing [39]. This is also manifested in vanishing effective hopping along the

longitudinal (x) direction in the momentum-space Hamiltonian. In fact, at kx = π

the longitudinal hopping is zero, and only the transverse hopping exists ensuring

connection within the atomic dimers. In this case the edge states are completely

localized on the edge atoms, which do not have a dimmer pair and are effectively
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Figure 2.3: (a) Density of states, (b) band structure and (c) conductance for a
NZG = 40 nanoribbon.

isolated, making them incredibly sensitive to local perturbations. This property will

turn out to be quite important, and will be studied in more detail, both in the rest

of this, as well as in the subsequent chapters.

Additionally, note that zigzag nanoribbons preserve the two-valley structure of

bulk graphene. This comes about as a consequence of the transverse quantization,

which being along the y direction, ”samples” both valleys of the band structure of

graphene (shown in Fig. 1.2) along discreet ky values. In other words the bands can

be obtained by projecting cuts of the dispersion (1.14) along particular values of ky,

and for the range of (
√

3a normalized) longitudinal momentum −π ≤ kx < π. This

range is large enough to contain both valleys, albeit ky quantization criteria always

misses the exact K and K ′ points. The line closest to these points represents the

bottom (top) of the conduction (valence) band. Having this in mind, we can deduce

that the valley near kx = −2π/3 (± a multiple of 2π) is a projection of the K valley

onto the E − kx plane. Zone-folding does not capture the flat, gapless part of this

band, since such a feature is not present in bulk graphene.

The two-valley structure reflects on the conductances, shown in panel (c). Since

the structure is translationally invariant, all bands provide a quantum of conduc-

tance, which, given the twofold spin degeneracy and the aforementioned valley degree

of freedom, for low energies means that G jumps in steps of 4e2/h.

On the other hand, armchair nanoribbons reveal different behavior. In Figs. 2.4

and 2.5 we again show D, E (kx) and G, but for armchair nanoribbons of widths

NAC = 10 and NAC = 40, respectively. Unlike for zigzag nanoribbons, zone-folding
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Figure 2.4: (a) Density of states, (b) band structure and (c) conductance for a
NAC = 10 nanoribbon.

captures the entire spectrum of armchair nanoribbons. It can be seen that they are

insulating, with a vanishing density of states at the Dirac point. However, armchair

nanoribbons with NAC + 1 divisible by three are metallic; otherwise their band gap

is inversely proportional to the width [39]. The zero-energy edge states are actually

a generally robust property of all edge orientations, however their density varies

from zero in armchair, to a maximum value in zigzag nanoribbons [40]. Armchair

nanoribbons also do not feature a valley degree of freedom like their zigzag counter-

parts; in fact the two valleys get mixed. The lack of valley flavor is reflected in the

conductances of the two cases. In particular, even though there are equal number

of energy bands for NZG = 10 and NAC = 10 nanoribbons, the conductance in the

former case is double that of the latter case.

2.3.1 Staggered potential and spin-orbit coupling

In Figs. 2.6(a) and (b) we examine the energy dispersion of zigzag graphene nanorib-

bons in the presence of the parameters ∆ and ∆SO introduced in Chapter 1, respec-

tively. While in bulk graphene both terms lead to an insulating state, indistin-

guishable from the band structure point of view, the situation here is drastically

different. In particular, only ∆ preserves the band gap, while a pair of linearly dis-

persing bands crosses what used to be the band gap in bulk for ∆SO, rendering the

nanoribbon conducting. Obviously, the topological nature of the insulating state

dictates this phenomenon; the pair of linearly dispersing bands originates from the
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Figure 2.5: (a) Density of states, (b) band structure and (c) conductance for a
NAC = 40 nanoribbon.

flat bands of ordinary zigzag graphene nanoribbons (Fig. 2.2) due to the aforemen-

tioned bulk-edge correspondence.

The ribbon with SOC is topologically different from the surrounding vacuum,

which is considered to be a trivial insulator with an infinite band gap. This difference

is overcome only after smoothly closing the band gap, which occurs near the edges

and produces the chiral states. The left (upper panel) and right (lower panel) moving

chiral states are shown in real space next to Fig. 2.6(b), with spin up (down) denoted

by red (blue) filled circles, and they correspond to a particular Fermi energy depicted

in Fig. 2.6(b). Spin up (down) propagates to the right mainly along the top (bottom)

edge, while the opposite is true for the left-movers. In other words it is effectively

as if there are two opposite copies of the QHE for the opposite spins.

Note that we have chosen a quite high Fermi energy, for which the chiral states

penetrate deeply toward the opposite edge. The closer the Fermi energy to the

neutrality point, the more localized the states get. This prevents any overlap be-

tween the left and right moving channels located on the opposite sides of the ribbon,

leading to the prevention of backscattering. This in turn results in disipationless

conductance, and gives rise to the quantum spin Hall effect. Note that the effect is

undermined in the presence of time-reversal breaking perturbations, such as localized

magnetic defects. In this case, spins can get flipped, and the counter-propagating

modes on the same edge can get coupled.

In the particular case of zigzag nanoribbons, the penetration depth is propor-

tional to the SOC [41]. Turning on the SOC from zero is an adiabatic process, during
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Figure 2.6: Band structure of a NZG = 10 nanoribbon with nonzero (a) ∆ = 0.5
eV, and (b) ∆SO = 0.5 eV. The panels on the right show the real space weight of left
(top) and right (bottom) moving chiral states marked in (b). Spin up is shown in red
and spin down in blue, while the marker area is proportional to the probability.

which the flat bands get progressively more tilted, and turned into topologically pro-

tected modes. However, in semiconducting armchair nanoribbons such an adiabatic

process can not discontinuously close the gap. This is manifested through the pen-

etration depth which in this case is inversely proportional to the SOC. Hence, for

small SOC, the zero energy modes on each edge hybridize with each other leading to

bonding and anti-bonding bands, which explains the enduring band gap, a feature

often referred to as the finite size effect. Therefore, the quantization of conductance

in armchair nanoribbons appears for higher SOC than in zigzag nanoribbons.

Incidentally, one realization of a quantum valley Hall effect (QVHE) can occur

in systems with inversion symmetry broken by a staggered potential. The lowest

conduction band in Fig. 2.6(a) inherits the localization properties of the state it

is smoothly deformed from, namely those of the flat gapless zigzag bands. Again,

the state at kx = π is the most extreme with all of its weight on the outer atoms,

while the surrounding states display an increasing penetration depth. Therefore, the

application of the potential at the edge will shift the flat bottom of the conduction

band to a varying degree, thus creating dispersing bands. The energy at kx = π gets

bent the most, while outside the region 2π/3 ≤ kx ≤ 4π/3 extended states scarcely

feel the potential, so that there the band remains firmly in place. A sufficiently

strong potential applied to the outermost atoms can lower the band at kx = π into

the valence band. At this point the band represents a left-moving channel in one

valley and a right-moving channel in the other valley. On the other hand, in the
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Figure 2.7: Band structure of a (a) NZG = 10 and (b) NZG = 40 nanoribbon with
∆ = 0.5 eV and a potential applied to the outermost atoms of the ribbon. The panels
on the right show the real space weight of corresponding states depicted in (b). The
markers are colored purple since they correspond to both spins, while the marker area
is proportional to the probability.

valence band the situation is similar, albeit with localization on the opposite edge.

Hence disipationless valley current becomes possible in theory [42].

The situation is depicted in Fig. 2.7. In panel (a) the effect gets spoiled since for

a narrow nanoribbon (in this particular case NZG = 10) the states on opposite edges

overlap, resulting in hybridization and preservation of a gap. For wider nanoribbons

(panel (b)), this is not the case, and the low energy spectrum consists of Dirac cones

for the two valleys. Counter-propagating states on a given edge belong to opposite

valleys, as shown in panels I, II, II and IV. Note that besides the spin-degenerate

band structure, in this scenario there are no spin-distinguishing real space features

either, as opposed to the QSHE case.

2.4 Electron-electron interaction and the Hubbard

model

The most simple way of incorporating the influence of electron-electron interaction

within the tight-binding models is through the Hubbard model

H = −t
∑
〈ij〉β

c†iβcjβ + U
∑
i

ni↑ni↓, (2.11)
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2.4 Electron-electron interaction and the Hubbard model

where the first sum is the standard kinetic part of itinerant electrons describing

jumps between sites on a lattice. The second part is the Hubbard term which

describes the potential energy cost arising due to the Coulomb repulsion energy of

two electrons with opposite spins orbiting the same atom. The operator niβ = c†iβciβ

is the number operator of spin β on site i. In the large U limit, the energetic

penalty of such a repulsion is high, which signals the on-set of strongly correlated

physics. The ground state is forced to avoid this expense by minimizing the double

occupancy. Due to the competition between the kinetic and potential energy, at

half-filling, when the number of electrons equals the number of lattice sites, it can

be more favorable for the entire lattice to consist of singly occupied sites with non-

itinerant electrons. In such a case a Mott insulator is formed, whose nature does

not derive from the band structure, but rather from the interaction between the

particles.

While the kinetic part of the Hamiltonian is quadratic in terms of the number

of creation/annihilation operators, the Hubbard part is quartic, meaning it has four

of them, a general feature of interaction terms. This has some serious implications

regarding the applicability and solvability of the model. The quadratic Hamiltoni-

ans, that we have studied thus far, are easy to diagonalize. Such Hamiltonians can

in general be expressed as H =
∑

ij c
†
ihijcj, with hij being the matrix elements of

the Hermitian matrix h. As such, there will exist a unitary matrix U transforming

h into diagonal form H =
∑

i εia
†
iai, with the rotated bases given by ai =

∑
j Uijcj,

which is true for any single-particle problem.

In the case of many-body problems, to which the Hubbard model belongs,

the Hamiltonian can also be solved by exact diagonalization, albeit in a much

larger generalization of Hilbert space known as Fock space. The Fock space is

a set of Hilbert spaces, each of which describes a given system with a different

number of identical particles. The fact that the total electron number operator,

N =
∑

i ni↑+ni↓, commutes with the Hubbard model is somewhat alleviating, since

it reduces this space to the case of particular filling. To illustrate that this is still

not enough to render the problem numerically tractable let us consider the case of

a simple three-site model at half filling. In such a case the number of electrons

equals the number of sites, N = 3, and the relevant space is spanned by vectors

{| ↓, ↓, ↓〉, | ↑, ↓, ↓〉, |0, ↑↓, ↓〉, |0, ↓, ↑↓〉, . . . , | ↑, ↑, ↑〉}. The size of this space is in gen-

eral easily calculable and amounts to every possible rearrangement of N electrons

on N sites
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2.4 Electron-electron interaction and the Hubbard model

N∑
n↑=0

(
N

n↑

)(
N

N − n↑

)
, (2.12)

which for N = 3 gives 20. Therefore, instead of diagonalizing a 3 × 3 matrix

one is forced to diagonalize a 20 × 20 matrix. This quickly gets out of hand with

increasing system size. Note that since there are no spin-flipping processes, niβ also

commutes with the Hamiltonian, and one might further break down the problem

into subspaces with definite n↑ and n↓, for which the problem is block diagonal.

Still, this does not help resolve the issue in general, since the bottleneck subspace

size for n↓ = n↑ = N/2 is given by
(
N
N/2

)2
, which for N = 30 electrons comes to

about ≈ 2.4× 1016.

Because of the computational obstacles in analyzing even the smallest systems

people usually resort to the so-called mean field approximation (MFA). This approx-

imation allows the transformation of the problem to a quadratic one at the expense

of disregarding the quantum fluctuations, while still retaining some of the essen-

tial physics. The mean field approximation then allows the study of much larger

system sizes, with the drawback of overestimating the stability of the magnetic or-

der. Moreover, the lower the Coulomb repulsion U , the better the fit between exact

diagonalization results and the MFA.

In order to make this transition one starts by expressing the number operators

in Eq. (2.11), as an average plus the deviation from the average niβ = 〈niβ〉 +

(niβ − 〈niβ〉), and then ignoring the product of the two deviations

H = −t
∑
〈ij〉β

c†iβcjβ + U
∑
i

(ni↑〈ni↓〉+ ni↓〈ni↑〉 − 〈ni↑〉〈ni↓〉) . (2.13)

The quartic nature of the interaction is lost, while the resulting quadratic form

captures only an interaction of one spin species with the average occupation of the

other spin species at a given site. Besides the loss of fine details, one other drawback

of this approach is that the problem now has to be solved self-consistently. The

procedure begins with an assumed distribution of spins, expressed trough 〈niβ〉.
At each iteration the Hamiltonian is diagonalized, and until the change of average

occupation is not sufficiently low the next iteration step is started. The method is

suitable for analyzing periodic structures as well [39]. One again needs to perform the

Fourier transformation of the basis, while the occupation is obtained after averaging

over the entire Brillouin zone.
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Figure 2.8: (a) Band structure of Nzg = 10 nanoribbon with (solid) and without
(dashed) interactions. (b) Real space distribution of magnetic moments.

As it turns out, the large density of states at the Fermi energy in zigzag nanorib-

bons discussed previously leads to an instability once the electron-electron interac-

tion is taken into account. This instability is avoided by transitioning into a broken

symmetry state, with the most stable configuration being the antiferromagnetic one.

In this phase, spins of opposite orientation get localized on opposite sublattices. In

Fig. 2.8 we depict the band structure and the real-space distribution of the magnetic

moments, 〈ni↑〉−〈ni↓〉, for a NZG = 10 nanoribbon with U = 1.2t. The gapless band

structure of the non-interacting model (dashed lines) is stabilized by the opening of

an interaction-induced band gap (solid lines). On the other hand, the magnetic mo-

ments are predominantly localized near the edges, where the instability originated.

The spin arrangement along the edges is ferromagnetic, since only a single sublattice

is present there. Recent transport experiments seem to confirm the validity of the

simple MF Hubbard model [43]. Moreover, the data is best fitted by a Coulomb

repulsion parameter U = 3.24 eV, i.e., with U = 1.2t [43].
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Chapter 3

Electronic and optical properties

of circular graphene quantum dots

in a magnetic field

3.1 Introduction

As already mentioned in Chapter 1, the energy spectrum of graphene is linear at

two inequivalent points (K and K ′) in the Brillouin zone, and such a linear behavior

is a characteristic of relativistic massless particles, which can be described by the

Dirac-Weyl equation [44]. Due to the well-known Klein tunneling effect [22], which

prevents carrier confinement, manufacturing graphene based quantum structures

is a big challenge for its future applications in electronic devices. However, the

energy of charge carrier states in graphene can be manipulated either by using

external magnetic fields, which leads to the appearance of Landau levels for an

infinite graphene sheet, or by using finite size graphene quantum dots (GQD’s),

which will be the subject of this chapter [45].

The energy levels of circular graphene dots in the presence of a perpendicular

magnetic field were first investigated analytically in Ref. [46], for the special case of

the infinite mass boundary condition (IMBC). On the other hand, it is well known

that the electron and hole states in graphene nanostructures depend sensitively on

the edge topology. As has been extensively shown and discussed in Chapter 2, in

graphene nanoribbons with zigzag edge termination a band of zero-energy edge-

localized states is found, a feature present in graphene flakes, such as triangular and

hexagonal GQD’s [47, 48]. In fact, except for the case where all the edges of the
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graphene flake have armchair shape, the appearance of the zero energy states seems

to be robust with respect to edge roughness, as demonstrated by the persistent finite

density of these states observed in realistic quasi-circular GQD’s [40].

In the end of previous chapter it has been shown that zigzag nanoribbons with

zero energy edge states are prone to spontaneous magnetic ordering once the electron-

electron interaction is included [49]. This many-particle interaction leads to a small

energy gap. In similar systems, such as zigzag-edge dominated GQD’s, spin polar-

ization is found as well [50]. In the presence of an IMBC, the single-particle energy

spectrum of a GQD already exhibits a gap around zero energy for low magnetic

fields [46]. Thus in this case no magnetic ordering is expected. Therefore, it is

important to determine what notable differences in the energy spectra may arise

from the application of different boundary conditions. Furthermore, because of the

possible applications of the GQD’s for light detection and solar energy conversion

[51], it is interesting to explore how the choice of the boundary condition affects the

absorption spectrum.

In this chapter, we analytically solve the Dirac-Weyl equation for a circular

graphene quantum dot in the presence of a perpendicular magnetic field, for both

infinite-mass and zigzag boundary conditions (ZZBC). A comparison between the

energy spectra and angular current densities obtained for each boundary condition

will be made. In addition to the exact solutions, we also present analytic expressions

where the magnetic field is treated as a perturbation, which agrees well with the

exact solution for small fields. Further, we discuss the effect of a magnetic field on

the optical spectrum of a circular GQD, where we analyze the effect of different

boundary conditions (i.e. ZZBC and IMBC) on the inter-band optical transitions.

Finally, in order to validate the continuum model we will also present the results

obtained within the tight binding model, where there is no ambiguity as far as the

boundary conditions are concerned [52]. The analytical spectra obtained by the

Dirac-Weyl equation will be compared to those obtained by the tight-binding (TB)

model for circular dots. Two kinds of dots will be considered in the TB model:

i) a circular dot cut out from a graphene honeycomb lattice, and ii) a circular

confinement region delimited by an infinite-mass barrier. The former case has an

admixture of zigzag and armchair edges and, due to the zigzag parts, a band of quasi-

zero energy levels is found. In the latter case, no zero energy states are present. It

is critically examined how the continuum model results compare to the TB results,

and which microscopical details in the latter are not captured by the approximations
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made in the former.

3.2 The continuum approach

The Dirac-Weyl Hamiltonian for low-energy electron states in graphene, in the pres-

ence of a perpendicular magnetic field and a mass-related potential, reads

H = vF (p + eA) · σ + V (r)σz. (3.1)

Here A = (0, Bρ/2, 0) is the vector potential in symmetric gauge and σ denotes

the Pauli matrices, which takes into account contributions of two different graphene

sublattices. The polar coordinate system is employed since it better suits the geom-

etry at hand. In this chapter we uphold the convention so that this equation holds

for the K valley states, and σ in this equation should be replaced by its complex

conjugate σ∗ when considering states in the K ′ valley. It is assumed that the carri-

ers are confined in a circular area of radius R, which is modeled by an infinite mass

outside the dot, i.e. V (r) = 0 for r < R, and V (r) → ∞ for r ≥ R, where r is the

radial coordinate of the cylindrical coordinates system. In the case of the adopted

ZZBC, the two Dirac cones are labeled by the quantum number k, which has the

value +1 in the K valley, and −1 in the K ′ valley. For the IMBC, however, we

use the so called valley-isotropic form of the Hamiltonian, with fixed k = +1, and

the valleys are differentiated by another quantum number τ , which appears in the

boundary condition itself1. Furthermore, we introduce the dimensionless variables

ρ = r/R, β = R2/2l2B = eBR2/2~ and ε = E/E0 = ER/~vF , where E is the carrier

energy, vF is the Fermi velocity, and lB =
√

~/eB is the magnetic length. The Dirac

equation (3.1) in these dimensionless units reduces to the form[
0 π−

π+ 0

][
ψ1(ρ, φ)

ψ2(ρ, φ)

]
= ε

[
ψ1(ρ, φ)

ψ2(ρ, φ)

]
, (3.2)

where π± = −ie±ikφ
[
∂ρ ± ik

ρ
∂φ ∓ kβρ

]
. Because of the coupling between the orbital

angular momentum Lz and pseudospin ~σz/2 we define the total momentum Jz =

Lz + ~σz/2. We have [H, Jz] = 0, i.e. the total angular momentum is a conserved

1k is used for ZZBC and τ is used for IMBC which was done in order to simplify our calculations.
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3.2 The continuum approach

quantity, and thus the two-component wave function has the form:

ψ(ρ, φ) = eimφ

(
χ1(ρ)

eikφχ2(ρ)

)
, (3.3)

where m = 0,±1,±2, ... is the total angular momentum quantum number. The

two components of the wave function correspond to different sublattices, say χ1

corresponds to the sublattice A, and χ2 corresponds to the sublattice B.

Equation (3.2) is solved with the boundary condition which expresses that the

outward current at the graphene edge is zero. This leads to the following relation

at the dot edge [53]

tan(φ) = −<
[
ψ∗1(1, φ)ψ2(1, φ)

]
/=
[
ψ∗1(1, φ)ψ2(1, φ)

]
. (3.4)

where <(=) is the real (imaginary) part. The following two boundary conditions

ψ2(1, φ)

ψ1(1, φ)
= iτeiφ → χ2(1)

χ1(1)
= iτ, (3.5a)

ψ1(1, φ) = 0→ χ1(1) = 0, (3.5b)

both satisfy Eq. (3.4). The condition given by Eq. (3.5a) is called the infinite mass

boundary condition [53] and imposes the requirement that the region outside the

dot is forbidden for particles, due to the relationship vF ∝ 1/m, as demonstrated in

Ref. [54]. τ = +1(−1) is used to label the K(K ′) states. The condition Eq. (3.5b)

requires that one of the wave function components is zero at the dot edge, which is

called the zigzag boundary condition (ZZBC) [55]. Note that a graphene quantum

dot with circular geometry in principle includes both armchair and zigzag edges at

the boundary, which will be considered in Section 3.3 within the TBM model. Here,

within the continuum model, we consider for definiteness only ZZBC at the edges.

In the case of armchair edges the boundary condition includes the wave function

spinors corresponding to both K and K ′ points which is given by

ψK1 e
iK.r + ψK

′

1 eiK
′.r = 0, (3.6a)

ψK2 e
iK.r + ψK

′

2 eiK
′.r = 0. (3.6b)

In addition to k and τ , we show below that the states in the analyzed circular

GQD are labeled by the total angular quantum numberm and the principal quantum
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number n. Therefore, it is convenient to denote them by the symbol (m,n). The

symbol n is also identified as the Landau level number. In discussing the various

properties of the spectrum in the continuum model we use the notation εpk,m,n, where

p ∈ e, h denotes electron (hole) eigenvalues, k is the valley index if considering

the ZZBC spectrum, while it is relpaced by τ if considering the IMBC spectrum.

Furthermore n is omitted in zero field discussions.

3.2.1 Zero energy solutions

When ε = 0, the differential equations (3.2) are decoupled,

dχ1(ρ)

dρ
− mk

ρ
χ1(ρ)− kβρχ1(ρ) = 0, (3.7a)

dχ2(ρ)

dρ
+

(mk + 1)

ρ
χ2(ρ) + kβρχ2(ρ) = 0. (3.7b)

which offers straightforward solutions of the form χ1(ρ) = C1ρ
mkekβρ

2/2 and χ2(ρ) =

C2ρ
−(mk+1)e−kβρ

2/2.

These solutions can not simultaneously satisfy the IMBC of Eq. (3.5a) and be

normalizable. Namely, if the normalization condition is imposed, either C1 or C2,

depending on the sign of m, should vanish, which prevents Eq. (3.5a) from being

satisfied. Thus, we conclude that there are no zero energy states in the IMBC

spectrum.

If the ZZBC, Eq. (3.5b) is employed, it is possible to find normalizable zero

energy solutions in both valleys. Those solutions are constructed by assuming

C1 = 0, and C2 6= 0 for both the m < 0 states in the K valley and the m > 0

states in the K ′ valley. Therefore, adopting the ZZBC allows the appearance of a

zero energy band. Those wave function components have the form χ1(ρ) = 0 and

χ2(ρ) = Cρ−(mk+1)e−kβρ
2/2, with mk = −1,−2,−3, . . .. Obviously, these states are

completely pseudo-spin polarized, and reside on the B sublattice sites. The form of

the wave function indicates that all states, except mk = −1, are edge localized, as

is expected for zero energy zigzag states. Furthermore, states with larger |m| are

localized closer to the edge.
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3.2 The continuum approach

3.2.2 Non-zero energy solutions for β = 0

When ε 6= 0 and when the magnetic field is zero, i.e. β = 0, Eqs. (3.2) are coupled.

Substitution of χ2 from the second into the first differential equation leads to the

Bessel differential equation

ρ2d
2χ1(ρ)

dρ2
+ ρ

dχ1(ρ)

dρ
+
(
ε2ρ2 −m2

)
χ1(ρ) = 0, (3.8)

with solution

χ1(ρ) = C1Jm(ερ). (3.9)

From Eq. (3.2), the relation between the first and the second component of the

wave function follows

ψ2(ρ, φ) =
eikφ

ε

(
−i∂ρ +

k

ρ
∂φ + ikβρ

)
ψ1(ρ, φ), (3.10)

and thus

χ2(ρ) = ikC1Jm+k(ερ). (3.11)

The boundary condition (3.5a) leads to the equation τJm(ε) = Jm+1(ε), while the

boundary condition (3.5b) gives Jm(ε) = 0. Recalling that the Bessel functions obey

the properties Jm(ε) = (−1)mJ−m(ε) and Jm(ε) = (−1)mJm(−ε), several interesting

properties of the zero-field energy spectra are derived: i) there is electron-hole sym-

metry in both valleys for ZZBC, which is reflected by the expression εe±1,m = −εh±1,m.

Unlike ZZBC, IMBC is known to break electron-hole symmetry [55], so the former re-

lations do not hold. However there is a similar symmetry property for the IMBC, for

which the expression εe±1,m = −εh±1,−(m+1) holds. ii) Intervalley spectrum symmetry

is present for the ZZBC: εe,h+1,m = εe,h−1,m, whereas for the IMBC εe,h+1,m = εe,h−1,−(m+1).

The latter two properties for IMBC further indicate intervalley electron-hole sym-

metry between states of the same m, i.e. εe±1,m = −εh∓1,m. iii) Finally, we may

deduce that the energy spectrum within each valley is either doubly degenerate (for

m 6= 0, εe,h±1,+m = εe,h±1,−m) or non-degenerate (for m = 0) if ZZBC is adopted where

this is not the case for IMBC.
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3.2.3 Non-zero energy solutions for β 6= 0

For the general case ε 6= 0 and β 6= 0, we obtain the differential equation for χ1(
d2

dρ2
+

1

ρ

d

dρ
− [2β(m+ k) +

m2

ρ2
+ β2ρ2 − ε2]

)
χ1(ρ) = 0, (3.12)

where the symmetric gauge is used for the magnetic field. This equation has the

normalizable solution

ψ1(ρ, φ) =Ceimφρme−βρ
2/2×

1F̃1

(
2m+ k + 1

2
− ε2

4β
,m+ 1, βρ2

)
,

(3.13)

where we used the relation ψ1(ρ, φ) = eimφχ1(ρ), obtained from Eqs. (3.2) and (3.3),

and 1F̃1(a, b, z) is the regularized confluent hypergeometric function. The second

component of the wave function is extracted from Eq. (3.10), and for the K(k = 1)

and K ′(k = −1) valleys read

ψ2(ρ, φ) = ikCei(m+k)φ2ρm+k

ε

[
(1− k)

2
+

(1 + k)

2

ε2

4

]
×

e−βρ
2/2

1F̃1

(
2m+ k + 1

2
− ε2

4β
,m+ k + 1, βρ2

)
.

(3.14)

The IMBC leads to the following eigenvalue equation:

τε

2
1F̃1

(
m+ 1− ε2

4β
,m+ 2, β

)
−

1F̃1

(
m+ 1− ε2

4β
,m+ 1, β

)
= 0,

(3.15)

while for the ZZBC we obtain

1F̃1

(
2m+ k + 1

2
− ε2

4β
,m+ 1, β

)
= 0. (3.16)

From (3.15) and (3.16) we may deduce that for each BC the magnetic field breaks all

but one symmetry property, which were stated in previous section. Thus from Eq.

(3.15) one may notice that the energy levels of the K and K ′ valleys are symmetric

as εe±1,m = −εh∓1,m. On the other hand, when the ZZBC is adopted, Eq. (3.16)

depends on ε2, and consequently the electron and hole states in each valley are

symmetric with respect to each other.
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Figure 3.1: Energy spectrum of a circular graphene quantum dot with R = 70 nm
in a perpendicular magnetic field for: (a) the IMBC, and (b) ZZBC. The energy levels
corresponding to the K and K ′ valleys are shown respectively by the blue solid curves
and red dashed curves. The zigzag zero energy state (ZES) is shown by the black solid
line. The green solid curves display the fitted function to the first energy levels. Only
the six lowest electron and hole energy levels are shown for −4 ≤ m ≤ 4. The inset of
panel (a) shows an enlargement of the energy levels, corresponding to the K valley,
around the region where the quantum dot states merge to form the first LL for both
IMBC (solid curves) and ZZBC (dashed curves).

3.2.4 Energy spectrum

We now analyze the magnetic field dependence of the energy spectra in more detail.

In Fig. 3.1 we show the energy levels of a circular dot with radius R = 70 nm and

−4 ≤ m ≤ 4 for both the (a) IMBC and (b) ZZBC cases. The spectrum at the K

valley is displayed by the solid blue curves, whereas the red dashed curves denote

the energy levels in the K ′ valley. The zero energy localized zigzag state (ZES) is

shown by the horizontal solid black line in Fig. 3.1(b). Notice that IMBC leads to

an energy gap in the spectrum for low magnetic fields, as evident in Fig. 3.1(a). The

lowest non-zero electron energy level in both IMBC and ZZBC initially decreases

linearly with magnetic field (as is similar for semiconductor quantum dots) but

then decreases as a Gaussian at high magnetic fields (which is different from the

1/β behavior found in semiconductor quantum dots). We fitted the energy level

to a Gaussian function ε(β) = a exp(−([β − b]/c)2) (see green solid curves in Fig.

3.1(a,b)) where (a, b, c)IMBC = (3,−3.9, 4.55) and (a, b, c)ZZBC = (4.47,−7.1, 9) are
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the fitting parameters, respectively, for the IMBC and ZZBC. We found a relation

between the parameter c of the different energy levels: ciIMBC ≈ 1.15 ci−1
IMBC and

ciZZBC ≈ ci−1
ZZBC (with i being the eigenstate index) respectively for IMBC and ZZBC

[56].

The magnetic ordering at the dot edge breaks reversal symmetry, and thus the

electron-hole symmetry for each valley is broken, even when an external magnetic

field is absent. Therefore, the energies of the electron and hole states in a given

valley are not mutually related. However, the magnetic ordering cannot break the

intervalley electron-hole symmetry for IMBC which is apparent by the εe±1,m =

−εh∓1,m relationship in Fig. 3.1(a) [46].

Unlike the IMBC, the ZZBC produces the ZES, composed of the m ≤ −1 states

in the K valley, and m ≥ +1 states in the K ′ valley (see Section 3.2.1). Zero-

energy states are a trademark feature of infinite structures with bipartite lattices

which have the property of a global imbalance in the number of sublattice sites.

These states are pseudo-spin polarized, inhabiting exclusively one sublattice, and

are found at exactly zero energy. On the other hand, GQD’s possess local imbalance

in the number of sublattice sites, and should therefore exhibit quasi-zero-energy

states, without pseudo-spin polarization. As a matter of fact, the shift from zero

energy occurs due to the hybridization between close sites with different character

of the imbalance [57]. This means that the zigzag edges in real GQD’s will be host

to quasi-zero energy states, a property captured well with the Dirac-Weyl model,

since we find a band of states at exactly zero energy in the case of zigzag boundary

condition. This issue will be discussed in more detail in Section 3.3, where we use the

TB model when calculating the energy spectrum of a circular GQD. For a different

geometry which includes both zigzag and armchair edges at the boundaries, e.g. a

rectangular graphene flake, the energy spectrum exhibits zero-energy states due to

the presence of the zigzag edge. It was shown in Ref. [58] that for the case of a

rectangular graphene dot the number of degenerate zero energy states depend on

the number of armchair atoms.

With increasing magnetic field, the quantum-dot states merge to form the Lan-

dau levels of graphene. In contrast with semiconductors, the LL’s in graphene are

non-equidistant and exhibit a square-root dependence on the magnetic field [59].

For the IMBC, the first LL (n = 1) is composed out of m ≤ 0 states, and the higher

energy (n > 1) LL’s are formed out of m < n states in both the K and K ′ valleys.

Such a behavior is similar to semiconductor QD’s [59]. This behavior is also true
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for the LL’s in the K valley of the ZZBC, displayed by the solid lines in Fig. 1(b).

The m ≤ 0 states in the K ′ valley spectrum for the adopted ZZBC and the m < 0

states in both valleys for the applied IMBC form the zero energy (n = 0) Landau

level (ZLL). We point out that for both IMBC and ZZBC, only one of the valleys

contribute to the zeroth Landau level in each band, which is known to be the case in

bulk graphene, and is the reason behind the anomalous QHE [44]. For the IMBC,

Eqs. (3.7a) and (3.7b) do not exhibit a physical solution at zero energy, therefore

the quantum dot states which form the ZLL cannot have exactly zero energy in the

employed continuum model.

The asymptotic dependence of the energy levels (except for the n = 0 state) in

both the K and K ′ valleys for the employed IMBC and large β is given by

εe,h±1,m,n(β) = ±
√

4β

(
nρ +

|m|+m

2

)
, (3.17)

where + (−) corresponds to electrons (holes). For the ZZBC,1 this relationship also

holds for the K valley LL’s, whereas the energy level dependence on magnetic field

in the K ′ valley for large β is given by

εe,h−1,m,n(β) = ±
√

2β (2nρ + |m|+m− 2θ(m)]). (3.18)

Here, nρ = 1, 2, 3, ... is the radial quantum number, which labels the solutions of

Eqs. (3.15) and (3.16) and θ(m) is the Heaviside step function. For m = 0 Eq.

(3.18) leads to Eq. (3.17) for IMBC. Note that each expression in parentheses in

Eqs. (3.17) and (3.18) is equal to an integer, and therefore has the meaning of the

Landau level index n, as discussed in Chapter 1. Furthermore, two different regimes

of carrier confinement might be resolved: at low magnetic fields, the confinement

is due to graphene termination (i.e. edge confinement). The influence of the edge

is suppressed when the magnetic field is large, and the confinement becomes domi-

nated by magnetic field. However, in the continuum model, no matter how large the

magnetic field is, it will not suppress the zero energy band. ZES and its degeneracy

will persist throughout the magnetic confinement regime in the ZZBC spectrum,

while its wave function is pushed inwards, toward the center of the dot (see Sec-

1One can also easily calculate the spectrum stemming from ψ2(1, φ) = 0. The differences, as
opposed to the ψ1(1, φ) = 0 spectrum, can be summed up by valley inversion and a shift in angular

momentum quantum number so that ε
ψ2(1,φ)=0
±1,m = ε

ψ1(1,φ)=0
∓1,m±1 . This means that the ZLL is found

only in the K valley, i.e. ε = 0 states exist only for mk = +0,+1,+2, . . ., etc.
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3.2 The continuum approach

tion 3.2.1). For both adopted boundary conditions, the transition between the two

confinement regimes takes place as the magnetic field increases (see Fig. 3.1). We

may define the transition points between the two regimes as the points where the

energies of the states in the quantum dot differ negligibly from the LL energy. These

transitions shift towards larger magnetic field with lower m. We should note that

the observed dependence of the electron and hole energy levels on magnetic field

differ from the one in semiconductor quantum dots, where neither ZES nor n = 0

LL are found, and the Landau levels increase linearly with β. Moreover, energies

of the negative m states obtained from (3.15) have a tendency to undershoot the

positive m energies of the same Landau level, which is not the case for solutions of

Eq. (3.16), as displayed in the inset in Fig. 3.1(a).

Approximate variations of the electron energy levels with magnetic field, as ob-

tained from first order perturbation theory (see Appendix B), are displayed in Fig.

3.2. These energy levels are compared with the exact solutions for the IMBC K

valley. Because the applied magnetic field is considered as a perturbation for the

zero-field states, a good agreement between the approximate and exact energy levels

is found at low magnetic fields. As a matter of fact, the two approaches start to

disagree when the confinement starts to be dominated by the magnetic field. Except

for the ZES, similar agreement between the exact calculations and perturbation the-

ory is found for the states in both valleys when the ZZBC is adopted. Notice that

the approximate model cannot describe the states which form the n = 0 LL.

3.2.5 Angular current

In spite of the major differences in nature of the low-energy quasiparticles, there are

some unexpected similarities between semiconductor and graphene quantum dots.

One such similarity is the magnetic field dependence of the spatial distribution of

the angular current density. The angular current for the K valley states is given by

j = vF
[
ψ†σφψ

]
, (3.19)

where

σφ =

[
0 −ie−iφ

ieiφ 0

]
. (3.20)
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Figure 3.2: Energy levels of a circular graphene dot as function of magnetic field,
β = eBR2/2~ with R = 70 nm. The red dashed curves show the approximated
spectrum in low magnetic fields, while the exact results are shown by the black solid
curves.

For K ′ valley one has to use the complex conjugate of the previous operator. The

final expressions for the angular currents are:

jφK = −2ivFχ1χ2, (3.21a)

jφK′ = 2ivFχ1χ2. (3.21b)

A density plot of the angular current as a function of magnetic field and radial

coordinate is shown in Fig. 3.3. The ZES exhibits a peculiar property of zero

angular current, due to their pseudo-spin polarization. Eq. (3.21b) indeed indicates

that if any of the two wave function components is zero, the current vanishes. The

angular currents for the m = +1, n = 2; m = −4, n = 0; m = −10, n = 1 and

m = −1, n = 1 states are shown in Fig. 3.3. We show results for the positive

m states, the states which form the ZLL, and the m < 0 states which form the

n = 1 LL. The angular currents are shown for the IMBC K valley, but quite similar

contourplots are obtained for IMBC K ′ valley, and both valleys for the ZZBC. The

angular currents for the non-negative m states have the same direction as the current

of classical orbits (see Fig. 3.3(a)). The internal magnetic field (due to the motion

of the electron) is in the opposite direction to the external magnetic field, therefore
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3.2 The continuum approach

Figure 3.3: Contourplot of the angular current density for several states versus the
normalized magnetic field and the radius. (a) The (+1, 2) state, (b) the (−4, 0) state,
(c) the (−10, 1) state, and (d) the (−1, 1) state. The counterclockwise and clockwise
currents are denoted by red and blue colors, respectively.

all non-negative m states exhibit diamagnetic behavior.

Conversely, the state (m,n) = (−4, 0) which forms the ZLL shows weak param-

agnetism (small angular current) at low magnetic fields, which diminishes when the

magnetic field increases, as displayed in Fig. 3.3(b). Such a paramagnetic behavior

might be explained by edge skipping orbits close to the edge of the dot that result

in a clockwise current. However, as the magnetic field increases, the angular current

in the n = 0 states vanishes due to the sublattice polarization, like in the ZES.

Indeed, a closer look at Eqs. (3.10) reveals the reason behind it: since |ψ2| ∼ |ψ1|/ε,
shrinking ε will cause the second sublattice wave function to increase in magnitude

as compared to the first sublattice wave function. Hence, the ZLL state becomes

almost completely localized on the second sublattice with increasing magnetic field,

which results in the reduction of the angular current.

The m < 0 and n > 0 states exhibit a different behavior with increasing mag-

netic field, as demonstrated in Figs. 3.3(c) and (d) for the (−10, 1) and (−1, 1)

states. Both these states converge to the n = 1 Landau level as β increases. As is

depicted, paramagnetic, i.e. clockwise current located mostly close to the edge is the

prominent feature of an uncondensed state (−10, 1) at low β. On the other hand,

the (−1, 1) state is energetically closer to the respective Landau level at β = 0 than

(−10, 1), which accounts for the larger diamagnetic part of the angular current in
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3.2 The continuum approach

Figure 3.4: Contourplot of the sublattice contributions for several states versus the
normalized magnetic field and the radius. (a) m = +1, n = 2 state, (b) m = −4, n = 0,
(c) m = −10, n = 1 state and (d) m = −1, n = 1 state. Red and blue denote electron
weights on sublattices 2 and 1, respectively.

this state. As the magnetic field increases, three effects take place: i) the regions of

clockwise current shift towards the ring center, which might be explained as the dis-

placement of the centers of the electron classical orbits inward, i.e. towards the dot

center. ii) Two concentric regions of oppositely oriented angular currents become

distinct, i.e., increasing field gives rise to a counterclockwise current on the outer

side of the orbits. In fact the latter property is related to the degree of Landau level

condensation of each state, i.e. to the energy difference between the quantum dot

state and the Landau level. The lower this difference is, the more pronounced the

diamagnetic component is. This is made clear in Fig. 3.3(d), for the (−1, 1) state,

which is closer to the first Landau level than (−10, 1), and thus has comparatively

stronger counterclockwise current. iii) The region of the counterclockwise current

shifts inward too, almost parallel to the region of the clockwise current, as shown in

both Figs. 3.3(c) and (d).

In order to describe in more details how the magnetic field affects the electron

localization and the angular currents analyzed above, we show in Fig. 3.4 contour-

plots of |ψ1|2 and |ψ2|2, in the ρ and β plane, for the same states as in Fig. 3.3.

All the states become localized close to the dot center with increasing magnetic

field, with the n = 0 state resisting the most. Notice that the components of the
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wave function of the (+1, 2) state are comparable to each other over the consid-

ered magnetic field range. The latter state has |ψ|2 localized close to the dot edge

when the magnetic field is low. For the (−4, 0) state, when β increases, ψ2 starts to

dominate, as previously explained, and at high magnetic field (β ≈ 10) it becomes

pseudo-spin polarized, as shown in Figs. 3.4(c) and (d). Notice the transition from

a non-polarized to a polarized pseudo-spin state, which also highlights the transition

from the edge dominated to the magnetic field dominated confinement regime. The

eigenfunction representing the n-th Landau level in an infinite monolayer graphene

sheet, considering the Landau gauge for the vector potential, is given by [60]

〈x, y|ψ〉n =
eikxx√

4π

(
±〈y|n− 1〉
〈y|n〉

)
, (3.22)

where kx is the wave vector in the x-direction and |n〉 is the n-th eigenfunction of

the quantum harmonic oscillator in the y-direction. For the ZLL (n = 0), the upper

component is zero and, consequently, this state is fully pseudo-spin polarized for

an infinite graphene sample. In the GQD case, as the magnetic field increases, the

lowest energy states, which are not pseudo-spin polarized in the edge confinement

regime, approach the ZLL and become pseudo-spin polarized, as expected for this

level if no edges are present, i.e. in the regime where the magnetic field confinement

dominates. Figures 3.4(e) and (f) show how the wave function components vary

in the (−10, 1) state. The spatial localization in this state is less affected by the

magnetic field than the localization of the (−1, 1) state, which is displayed in Figs.

3.4(g) and (h). However, |ψ2|2(ρ) of both the (−10, 1) and (−1, 1) states have

two maxima, which is related to the simultaneous presence of paramagnetic and

diamagnetic currents in these states shown in Figs. 3.3(c) and (d).

3.2.6 Optical absorption

Optical absorption, for transition between states i and j, is measured by |Mij|2 =

|〈Ψi|reiφp |Ψj〉|2, where φp is formally the polarization angle, having no impact on

the final result. Having calculated the matrix elements describing the transition

for each possible pair of states, we introduce a Lorentzian-type broadening for the

absorption spectrum, and consider Fermi-Dirac statistics:

Aij(E) =
Γij
ω

(fFD(εi, εF , T )− fFD(εj, εF , T ))Mij

(ε− εij)2 + Γ2
ij

, (3.23)
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3.2 The continuum approach

Figure 3.5: Contourplot of the total absorption spectrum A(ε) for the IMBC, versus
magnetic field and transition energy for different values of temperature. Left and right
panels respectively correspond to temperatures T = 100 K and 300 K. (a) εF = −5,
T = 100 K, (b) εF = −5, T = 300 K, (c) εF = 0, T = 100 K, (d) εF = 0, T = 300 K,
(e) εF = +5, T = 100 K, (f) εF = 5, T = 300 K.

where T is the temperature, and ω corresponds to the energy of the incident photon

(E = ~ω). fFD is the Fermi-Dirac distribution and Γij is the broadening parameter,

which is assumed to be 1 meV in our calculations. The total absorption spectrum

is taken to be the sum of all individual transitions A(E) =
∑

i,j Ai,j(E) for both

valleys.

The integral with respect to φ in the matrix element Mij is non zero only when

mj = mi. Furthermore, no selection rule applies to n, which differs from the case of

massive graphene, where transitions are allowed only between adjacent Landau levels

[61]. Although transitions between states which do not differ by ±1 in the value of n

are allowed in the GQD, we found that their contribution to the overall absorption is

a few orders of magnitude smaller than the contribution of the n→ n±1 transitions.

The matrix elements between the six lowest energy states for m in the range [−4,+4]

are taken into account when computing the absorption spectra, which are displayed

as contour plots in Fig. 3.5 for the applied IMBC and two values of temperature,

T = 100 K and T = 300 K. For each T , the absorption spectra are computed for

(dimensionless) Fermi energies εF = −5, 0, +5. In all cases displayed in Fig. 3.5,

there exist bright spots around εij = 3. They arise from the n = −2 → n = −1

and n = 1 → n = 2 transitions, and are appreciable when the Fermi level is either
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3.2 The continuum approach

Figure 3.6: The same as in Fig. 3.5, but for the ZZBC.

in the conduction or the valence band (Figs. 3.5(a), (b), (e) and (f)). Because of

the peculiar statistical distribution for εF = 0 at temperature as low as T = 100

K, the central bright spot disappears from the absorption spectrum, as Fig. 3.5(c)

indicates. However, when T increases to 300 K, the statistical distribution of the

initial and final states changes, and the bright spot reappears for εF = 0 (see Fig.

3.5(d)).

The absorption spectra for the ZZBC shown in Fig. 3.6 display similar features

as the absorption for the IMBC in Fig. 3.5. In addition to the bright spot, the

absorption spectra for both applied boundary conditions exhibit the bright and

narrow absorption line which traverses all diagrams in Figs. 3.5 and 3.6 nearly

diagonally, and it is stronger for the IMBC. This absorption takes place by means

of the n = −1 → n = 0 and n = 0 → n = 1 transitions in the case of the IMBC.

For this case, the energies of the transitions between the states in the two valleys

are equal, which favors the appearance of this line. On the other hand, for the

adopted ZZBC the energy spectrums of the electron and hole are symmetric within

each valley, whereas intervalley electron-hole symmetry is absent. It leads to a less

pronounced central absorption peak in the spectrum, which is due to transitions

between the ZES and n = ±1 LL in both valleys. The other noteworthy feature for

the ZZBC and εF = 0 is the absorption due to interband transitions between the

n = 0 quantum-dot states in the K ′ valley, whose transition energy tends to zero

when the magnetic field increases [62].
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Figure 3.7: The absorption spectra A(ε) for εF = 0, and two different boundary
conditions. Results are shown for T = 100 K and 300 K which are displayed in the
left and right panels, respectively. (a) The IMBC and T = 100 K, (b) the IMBC and
T = 300 K, (c) the ZZBC and T = 100 K, and (d) the ZZBC and T = 300 K.

The absorption spectra for εF = 0 and three values of the magnetic field, β = 5,

10, and 15, are shown in the left and right panel of Fig. 3.7 for T = 100 K and

T = 300 K, respectively. The strongest absorption line is due to the n = −1→ n = 0

and n = 0→ n = 1 transitions for the IMBC and for transitions between ZES and

n = ±1 LL for the ZZBC. As previously explained, the lack of intervalley electron-

hole symmetry for the ZZBC leads to much smaller absorption than for the IMBC.

Furthermore, the absorption might increase when the magnetic field increases [63].

3.3 The tight-binding analysis of circular graphene

dots

It is clear that the advantage of using the continuum model lies in the fact that

it illuminates the underlying physics with analytical solutions which are easy to

handle. However, the continuum model was derived from the tight-binding model

[18] for an infinite graphene sheet, under the restriction of low-energy charge carriers

around the Dirac cones in K and K ′. Therefore, it is of interest to investigate the

validity range of the continuum model for finite size structures such as GQD’s.

Actual dot structures are normally cut out from a graphene honeycomb lattice,
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3.3 The tight-binding analysis of circular graphene dots

Figure 3.8: Sketch of the two circular graphene dots of radius R considered in our TB
calculations: (a) a circular dot cut out from the graphene honeycomb lattice, where
the red (blue) sites refer to zigzag (armchair) boundaries; (b) a circular region (green)
surrounded by an infinite mass medium, which is obtained by applying a staggered
potential, i.e. a +1 (−1) eV on-site potential for lattice A (B) sites, represented by
red (blue) atoms. In both cases, the dot is made out of all the atomic sites which are
inside a circle of radius R, and which have at least two nearest-neighbors sites inside
the circle. Adapted from [56].

instead of being surrounded by an infinite mass media, and therefore cannot have

only one type of edges, as illustrated in Fig. 3.8. However, we intend to demonstrate

that the simple boundary conditions described in Section 3.2 provide results which

agree somewhat with the TB results. The results in this section are obtained from

the nearest-neighbor tight binding Hamiltonian, which is given by

H =
∑
n

Enc
†
ncn −

∑
nm

teiφnmc†ncm, (3.24)

where En is the on-site energy and ci(c
†
i ) is the annihilation (creation) operator,

t = 2.7 eV is the zero magnetic field hopping term for the C-C distance a0 = 0.142

nm, φnm = e
h

∫ rm
rn
A · dl is the Peierls phase with φ0 = h/e being the magnetic

quantum flux (see Appendix A for a detailed derivation of this factor), andA = Bx ŷ

is the vector potential taken in the Landau gauge for perpendicular magnetic field

B.

Let us first analyze the case of a circular dot cut out from a graphene lattice,
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Figure 3.9: Density plot of the energy spectrum as function of the magnetic field,
obtained from the TB model for (a) the cut-out graphene dot and (b) for confinement
in the quantum dot delimited by the region with massive particles. The dot radius
equals R = 10 nm in both cases. The black curves represent the Landau levels in
graphene. The blue dashed curve in panel (b) shows the function which fits the
dependence of the first energy level from φ/φ0.

which is shown in Fig. 3.8(a). The energy spectrum for R = 10 nm is shown in

Fig. 3.9(a) as a function of the magnetic flux through one carbon hexagon φ =

(3
√

3a2
0/2)B. It looks qualitatively similar to the one shown in Fig. 3.1(b) for a

circular dot with ZZBC computed by the continuum model. In both cases, groups

of states decrease in energy with increasing magnetic field, eventually converging to

the Landau levels, and the zero energy level is observed irrespective of magnetic field.

On the other hand, some details of the energy spectrum at low magnetic field are

not properly described by the continuum model, even at low energy. For instance,

the results of both the continuum and TB models exhibit a decrease of the first non-

zero level with increasing field, whereas the second level starts to increase with field

until it crosses a higher energy level. However, the TB results exhibit anticrossings

immediately above the crossing, which are not observed in the continuum model

with the ZZBC. The IMBC results shown in Fig. 3.1(a) lack such anticrossings.
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3.3 The tight-binding analysis of circular graphene dots

One should note that this feature is observed even in the low energy range, in which

the continuum approximation should be valid. Therefore, it can be said that the

continuum model cannot capture the details of edge physics in this case.

There is also a surprising feature in the energy spectrum obtained by the TB

model: as we zoom in around the zero-energy region, we realize that it is not really a

single E = 0 curve, but rather a band of curves, as Fig. 3.10 shows. We considered

three different ranges of energy and found curves that exhibit a self-similar-like

pattern, which persists except for the lowest energy levels, which are indeed very

close to zero (≈ 10−8 eV).

The results in Figs. 3.9 and 3.10 were obtained for R = 10 nm. As the dot
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Figure 3.10: The energy spectra shown in Fig. 3.9(a) are repeated at three different
energy scales. The red dots are obtained by fitting the several lowest energy states
with the Gaussian functions.
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radius is reduced, similar results are observed but the low energy states appear

further away from the zero level. For example, for R = 2 nm, the lowest level has

the energy E ≈ 0.095 eV, i.e. a 0.19 eV wide energy gap, even though the dot

still exhibits zigzag edge segments. The wave functions of these low energy states

are localized at the zigzag edges of the circular dot (see Fig. 3.11). The lowest

energy states are maximally localized, being confined only to pockets in the vicinity

of zigzag-edge dominated regions (indicated by the red dots in Fig. 3.8(a)). Notice

furthermore that for small B those low energy levels are grouped in threesomes: 1)

the two lowest are degenerate for B = 0 and their wave functions are identical up

to a rotation of 60◦ and 2) the third level has a slightly larger energy with a wave

function exhibiting more pockets at the edge with a higher rotational symmetry

than the previous two. As the magnetic flux increases, the degeneracy of the two

lowest levels becomes lifted in each group and the second state crosses the third

non-degenerate state at some value of the magnetic flux. For even higher flux, all

these states decrease and eventually form the zeroth Landau level.

Similar to the results of the continuum model the first energy levels for both

IMBC and ZZBC can be fitted by the Gaussian function, f(Φ) = a exp
(
− ([Φ −

b]/c)2
)
, where (a, b, c)IMBC = (0.16,−0.0006, 0.0007) are the fitting parameters for

the IMBC (see the blue dashed curve in Fig. 3.9(b)) and the fitting parameters

for the first energy level for the ZZBC are (a, b, c)ZZBC = (0.0008,−11, 92) × 10−5

(see the red dotted curve in Fig. 3.10(c)). Note that the upper energy levels (those

decreasing with magnetic field) can also be fitted by the Gaussian function, as shown

by the red curves in Figs. 3.10(a,b) for the ZZBC. The fitting parameters for the

states shown by red lines in Fig. 3.10(a) and Fig. 3.10(b) equal (a, b, c)
(a)
ZZBC =

(0.13,−0.0022, 0.0018) and (a, b, c)
(b)
ZZBC = (0.0053,−0.00018, 0.0009), respectively.

We now analyze the case of a circular dot surrounded by an infinite mass medium,

as illustrated in Fig. 3.8(b). Spatial symmetry breaking in epitaxial graphene, al-

though challenging, is quite achievable, as recent experiments demonstrated [64–67].

As explained in Chapter 1, such a symmetry breaking is translated into a mass term

in the Dirac-Weyl Hamiltonian for graphene. This suggests that a circular graphene

dot embedded in an medium with massive fermions might be experimentally feasible

by means of substrate engineering. Besides, as previously mentioned, the IMBC pro-

vides a good description of the magnetization at the edges of a graphene dot. This

motivated us to study circular GQD surrounded by a staggered potential, which is

illustrated in Fig. 3.8(b). For this case we have applied the magnetic field through-
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3.3 The tight-binding analysis of circular graphene dots

out the entire structure. The results obtained by the TB model for such a system

are indeed comparable to those obtained for the IMBC in the continuum model.

As a matter of fact neither case demonstrates zero energy levels. Furthermore the

anticrossings in the structure displayed in Fig. 3.9(a) are not present in the energy

spectrum for the infinite mass confinement in the TB model.

Finally, we investigate how the size of the graphene dot affects their energy

spectrum and compare the results from the TB and continuum models. The energy

spectrum in the case of the mass confinement, illustrated in Fig. 3.8(b), obtained by

means of the TB model is shown by the solid bullets in Fig. 3.12(a). The Dirac-Weyl

results for the IMBC are shown by red curves, and exhibit very good qualitative and

(a)

(b)

(c)

x

y

Figure 3.11: Electron densities corresponding to the energy levels shown by the red
dots in Fig. 3.10 for φ/φ0 = 0. The black dots are the position of the C-atoms, and
only a small strip in the first quadrant of the circular graphene flake is shown. The
energy of the states are (a) 0.0287 eV, (b) 0.0051 eV and (c) 8.7× 10−9 eV.
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Figure 3.12: Energy spectrum as function of the dot radius, in the absence of
a magnetic field, obtained from the continuum (red curves) and TB (solid bullets)
models, for (a) the infinite-mass confinement in a quantum dot, and (b) the flake cut
out from a graphene layer.

quantitative agreement with the TB results, especially for the low-energy states and

large dots. Some curves in the TB results do not decay monotonically as ∝ 1/R.

Instead, they exhibit a fluctuating behavior, which is more pronounced for smaller

radii. Such fluctuations can be linked to the fact that the GQD’s studied within the

TB model are never perfectly circular, as verified in the sketch of Fig. 3.8(b). In

other words, the microscopical details become important as R decreases, and these

details cannot be described properly by the analytical model for circular GQD’s,

based on the continuum approach. For a larger dot radius, these edge imperfections

are less important, which explains the less pronounced fluctuations in the energy

levels when R increases.

The energy spectrum as function of the radius of the circular dot which is cut

out from the graphene layer is shown in Fig. 3.12(b). When compared with Fig.

3.12(a) it exhibits even larger fluctuations, the energies decrease much faster than
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1/R, and the energy levels are spread out more evenly in the shown energy window.

This is due to the fact that besides the imperfections in the circular shape of the

dot, the variations in the number of zigzag and armchair atoms at the edge of the

dot also plays a role in the energy spectrum when R increases. Also, the increase

of the radius forces the low-energy states to merge into a very dense E = 0 band.

This is not expected to be the case in the continuum approximation, where the

states of zero energy band are perfectly degenerate with zero energy even for small

radius, and higher energy states tend to zero only for R → ∞. Along with the

self-similarity behavior mentioned earlier, this feature is a pure manifestation of a

microscopic character of the GQD’s, which cannot be described by the IMBC nor

ZZBC, or by any analytical model within the continuum approach known to date.

Indeed, the results obtained by the ZZBC in the continuum model (red curves)

do not capture the (somewhat) chaotic energy spectrum, except for the fact that

they predict the 1/R behavior of some states observed in the TB results. The

energy states that decrease much faster than 1/R, can be fitted by an exponential

function, i.e. Ei = Ei
0e
−R/Ri

0 , where Ei
0 and Ri

0 are the fitting parameters and i

denotes the eigenstate index. In Fig. 3.12(b) the five lowest energy levels are

shown by the green solid curves where Ei=1,2,...,5
0 = [33.3, 17.96, 6.24, 3.78, 3.82] eV

and Ri=1,2,...,5
0 = [0.67, 0.87, 1.2, 1.58, 1.84] nm. The parameters Ri

0 can be related to

each other by Ri
0 ≈ 1.3×Ri−1

0 . Given these results, one is led to the conclusion that

the analysis of very small graphene flakes is best done with atomistic methods able

to account for the detailed picture.
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Chapter 4

Antiferromagnetism in hexagonal

graphene structures

4.1 Introduction

Tremendous progress in graphene research is driven by its remarkable properties, e.g.

high crystalline quality, high electron mobility, lack of a band gap, and a minimal

possible thickness, to name a few [8]. The mentioned properties are advantageous

for various emerging applications of graphene, such as piezoelectric devices [68],

supercapacitors [69], photodetectors [70], and field-effect transistors [71, 72]. On

the other hand, magnetic ordering favored by zig-zag edge dominated structures is

potentially advantageous for spintronic applications [73, 74]. This effect is essentially

related to either the global or local imbalance of sublattice atoms in bipartite lattices.

An imbalance might give rise to zero energy states in the electron spectrum. These

states are localized near the zigzag edges or vacancies, and along with the repulsive

electron-electron (e-e) interaction could eventually lead to a spin polarization of the

ground state of the system [73]. Furthermore, the spins on the same sublattice are

found to exhibit ferromagnetic coupling along the graphene edges, whereas the spins

on different sublattices along the graphene edges couple antiferromagnetically.

In theory, magnetic ordering has been demonstrated for graphene flakes [50],

nanoribbons [75], and vacancies in bulk graphene [57]. On the other hand, experi-

mental reports on magnetism in graphene structures have been rare and conflicting.

They range from the detection of ferromagnetic or antiferromagnetic ordering [76–

78] to measurements of defect-induced paramagnetism [79, 80]. Magnetic ordering

was even found to be preserved at room temperature [81, 82]. The essential cause
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4.2 Magnetic ordering in hexagonal rings

of magnetism in graphene is the existence of a peak in the density of nonbonding

edge states near the Fermi energy. However, due to the high reactivity of these

states, magnetism might be strongly suppressed [83]. Several theoretical studies

offered explanations for a diversity of phenomena related to magnetic ordering and

its suppression, which might occur by means of nonmagnetic edge passivation, edge

reconstruction, or vanishing of spin correlations with increasing temperature [83,

84]. Hence, in order to experimentally detect magnetic ordering graphene samples

should be kept under rigorously controlled conditions. In the latest turn of events,

these conditions seem to have been met, as reported in Ref. [43]. This experimen-

tal work is the first to offer convincing evidence of magnetic ordering in graphene

nanoribbons with precisely fabricated edge structure.

The tendency of electrons in graphene to reorganize in response to the Coulomb

interaction served as an inspiration to many proposals for practical applications.

They involve half-metallicity with electrically controlled spin propagation [74], defect

induced spin filtering [85], and spin logic devices [86, 87]. In this chapter we employ

the mean-field Hubbard model to study the formation of local magnetic moments in

hexagonal graphene rings. Our aim is to explore how magnetic ordering is affected

by the ring size and the edge type.

4.2 Magnetic ordering in hexagonal rings

In order to identify different hexagonal rings, we introduce the following notation

which might be visually aiding. We assume that the type of the inner ring edge is

zigzag, and that N unit hexagons are adjacent to this boundary. The outer ring

edge is assumed to be comprised of either M dimers if it is of armchair type, or M

unit hexagons if it is of zigzag type. Therefore, the ring is denoted by M : N . As

an example, consider the ring shown in Fig. 4.1, which is assumed to be formed

out of the hexagonal dot with armchair edge, which contains seven dimers at each

side of the hexagon, as shown in Fig. 4.1(a). The ring is formed when the carbon

atoms around the center of the dot are removed, as depicted in Figs. 4.1(a) and

(b). Potentially these exotic structures could be manufactured via substitutional

doping of boron nitride nanostructures with carbon [88]. Because the edge of the

removed dot has four unit hexagons at each side, the ring is denoted as 7AC : 4ZG.

The distributions of the magnetic moments in the graphene rings will be compared

with the magnetic moment distributions in the hexagonal graphene dots. Those
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4.2 Magnetic ordering in hexagonal rings

dots are assumed to have zigzag edges, and are labeled by NZG, where N has the

same meaning as the symbol M for the rings.

Magnetic ordering of a graphene structure is governed by Lieb’s theorem [89].

It states that the total ground-state spin of a bipartite lattice with repulsive e-e

interaction as described by the Hubbard model equals half of the difference of the

sublattice sites. For symmetrical structures, this rule is related to the arrangement

of the carbon atoms with respect to lines of reflection symmetry in the graphene

plane: if there is a symmetry line which does not intersect any of the carbon atoms

the total ground state spin is zero; otherwise there exists a finite magnetic moment.

All the hexagonal rings analyzed here possess such a symmetry, thus their total

magnetization equals zero, unlike triangular rings which display a ferrimagnetic

phase [90]. However, Lieb’s theorem does not dictate the distribution of the local

magnetic moments or the lack of zero energy states. Furthermore, the number of

zero-energy states in the analyzed ring is an integer multiple of six, which is a

consequence of the C6v symmetry of the ring. In the 9AC : 10ZG ring, six zero

energy states are found, which agrees with graph theory, and which is a topological

property related to the nonperfect matching of the pz orbitals [73].

The Hubbard Hamiltonian

H = H0 +HI , (4.1)

is employed to compute the distribution of magnetic moments. H0 is the noninteract-

ing part, which represents the standard nearest neighbor tight-binding Hamiltonian,

and is given by

H0 = −t
∑

<i,j>,σ

c†iσcjσ, (4.2)

where cjσ and c†jσ are the annihilation and creation operators, respectively, and t

denotes the hopping integral. The interacting part HI describes the e-e interaction

HI = U
∑
i

(ni↑〈ni↓〉+ ni↓〈ni↑〉 − 〈ni↑〉〈ni↓〉) , (4.3)

where niσ = c†iσciσ is the number operator, and U denotes the on-site Coulomb

repulsion energy for each pair of electrons with the opposite spins orbiting the same

atom. As elaborated in Chapter 2, Eq. (4.3) is formulated within the mean-field

approximation, which assumes that the spin-up (spin-down) electrons interact with
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4.2 Magnetic ordering in hexagonal rings

the average density of spin-down (spin-up) electrons on a particular atomic site.

In our calculations, we take t = 2.7 eV and U = 1.2t [73]. We note that there is

no consensus on the actual value of the strength of the Coulomb interaction to be

used in the Hubbard model in graphene. Recent density functional theory (DFT)

calculations came up with a value closer to U = 3.4t [91]. However, having in mind

that the mean-field approximation can overestimate the tendency for magnetic order

for large U [92], we chose the more conservative value of U = 1.2t. The solution is

then obtained by means of a self-consistent procedure which starts from an initial

distribution of the spins, and ends when the maximum change of the electron density

over the atomic sites drops below 10−5. When the self-consistent spin densities are

determined, the magnetic moment per site mi is computed as

mi = 〈szi 〉 = (〈ni↑〉 − 〈ni↓〉) /2. (4.4)

For the antiferromagnetic order parameter we take the staggered magnetization

µzs =
1

N

∑
i

(−1)i〈szi 〉, (4.5)

where (−1)i symbolizes that we sum up the contributions from opposite sublattices

with opposite signs. This is the appropriate order parameter for antiferromagnetism

when examining spin polarization occurring in bipartite lattices. The larger µzs is,

the stronger the antiferromagnetic phase. In addition to µzs, the shift in the electron

and the hole energy spectra which arises from the magnetic order is quantified as

∆E =
(
EHOS + ELUS

)
/2, where EHOS and ELUS are the highest occupied and

lowest unoccupied states in the ground state at half filling, respectively. Note that

in the nonmagnetic state we have ∆E = 0. We will explore how the maximum

magnetic moment mmax varies with the ring width.

The distribution of the local magnetic moments in the 9AC : NZG rings for

several values of N is shown in Fig. 4.1(c). The symmetry of each hexagonal ring

is C6v, whereas the symmetry of the magnetic moment distribution is IC6v, i.e. the

magnetic moments alter sign when rotated over π/3 rad. Therefore, it suffices to

display the distribution of magnetic moments in sectors of π/3 rad, as done in Fig.

4.1(c), which combines the sectors of different N . Orientation and color of triangles

denotes the orientation of the magnetic moments, and the absolute value of mi is

depicted by color intensity.
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4.2 Magnetic ordering in hexagonal rings
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Figure 4.1: (a) The dot (red color) with four atoms at the zigzag edge removed
from the larger dot (black color) which has seven dimers at the dot edge. (b) The
formed ring is labeled by 7AC : 4ZG. (c) The distribution of magnetic moments in
the 9AC : NZG ring shown in a sextant of the ring for N taking the values 3, 4, 5, 9,
10 and 11. The majority spin is labeled by both orientation and color of a triangle
centered at an atomic site. The local magnetic moment value is proportional to the
color intensity.
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Figure 4.2: Density of states in the 9AC : NZG rings for N taking the values 3, 4,
5, 9, 10 and 11 in the noninteracting system (black lines) and the interacting system
(purple lines).
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Figure 4.3: Distribution of magnetic moments in the 13ZG : NZG rings for N ranging
from 6 to 11.

It is evident in Fig. 4.1(c) that both the appearance of staggered magnetization

and the total magnetic moment situated on the inner edge of the ring depend on

the ring width. Furthermore, we observe a phase change from nonmagnetic order

for N ≤ 3 to antiferromagnetic order for N ≥ 4, which is similar to previous

calculations for zigzag hexagonal graphene dots [50, 75]. No magnetic ordering for

zigzag segments shorter than three unit cells is found because of the close proximity

of the opposite sublattice imbalance on the adjacent sides of the ring inner edge.

When this edge is short, the edge states on the different sides of the inner ring

boundary are subject to strong hybridization, and therefore their energy is lifted

from the Dirac point. Hence, spontaneous spin polarization does not occur, which

is similar to the case of nanoribbons [47].

For N ≥ 4, the spatial spin symmetry is broken due to the e-e interaction. When

the ring width decreases, the maximum magnetic moment, which is located near the

middle of the zigzag edge segment increases. Furthermore, nonzero magnetization

is built up on the outer ring edge, and it increases when the ring width decreases.

However, as a consequence of the increasing influence of the outer edge with decreas-

ing ring width, the difference between the distributions of the magnetic moments

on the two edges is not large for N = 10 and N = 11. Similarly, the staggered

magnetization increases when the ring width decreases.

Figure 4.2 shows how the density of states (DOS) of the 9AC : NZG rings (the

cases depicted in Fig. 4.1) varies with N . The density of states for the noninter-

acting (interacting) case is displayed by the black (purple) lines. In order to align
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4.2 Magnetic ordering in hexagonal rings
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Figure 4.4: (a) Staggered magnetization µzs, (b) maximum moment mmax and (c)
energy shift ∆E as they vary with the length of the side of the inner ring edge.

the interacting and noninteracting spectra for easier comparison we subtracted ∆E

for each interacting spectrum. Note that the density of states is spin degenerate,

which is in accordance with Lieb’s theorem. For N = 3, magnetic order is not

present, therefore the energy dependence of the density of states for the interacting

and noninteracting systems coincide (see Fig. 4.2(a)). The interacting and nonin-

teracting electron case exhibit a small difference in the energy dependence of the

DOS for rings with N = 4 and N = 5, which is shown in Figs. 4.2(b) and (c). As

could be inferred from Fig. 4.1(c), the magnetization along the inner ring edge is

rather small for these values of N . For larger N , the discrepancy between the DOS’s

for the interacting and non-interacting systems becomes larger, as demonstrated by

Figs. 4.2(d)-(f) for N = 9, 10, and 11. In all these cases, appreciable DOS for the

noninteracting system is found around zero energy. Such a configuration becomes

unstable in the presence of e-e interactions, which results in the appearance of an

interaction gap.

In order to demonstrate how the shape of the outer boundary affects the distri-

bution of the magnetic moments in the ring, we show in Fig. 4.3 the magnetization

in the 13ZG : NZG rings. It is apparent that the shape of the outer edge has a

large effect on the localization of the magnetic moments on this boundary (compare

Figs. 4.1(c) and 4.3). It is clear that in the case of zigzag outer ring edge, the
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4.3 Suppression of magnetic instabilities via hybridization

magnetization propagates much further into the ring.

Figure 4.4 displays how µzs, mmax, and ∆E vary with the length of the side of the

inner ring edge expressed by the number N . Along with the rings whose magnetic

moment distributions were shown in Figs. 4.1(c) and 4.3, the case of a hexagonal

graphene dot having zigzag edge, is also displayed in Fig. 4.4. Both the staggered

magnetization µzs and the energy shift ∆E increase with N , i.e. with the size of

the inner ring, except for the extremely narrow MZG : NZG rings. Interestingly,

the staggered magnetization in the hexagonal quantum dots does not exceed 0.02,

whereas for the 13ZG : NZG ring it can reach almost up to 0.05. The nearly twofold

enlargement of the staggered magnetization could be accounted for by the double

number of zigzag edges in the MZG : NZG ring as compared to the NZG graphene dot.

On the other hand, most 9AC : NZG rings exhibit larger staggered magnetization

and all show larger maximum magnetic moment than the hexagonal graphene dot.

As a matter of fact, in hexagonal graphene dots the zero-energy orbitals which are

localized along the adjacent zigzag sides of the edge are oriented toward each other,

whereas inner zigzag edges in rings face away from each other. Hence, hybridization

between the states of the two edges is larger in the former case than in the latter

case. This is why 9AC : NZG rings turn magnetic for shorter lengths of zigzag edges

than hexagonal dots (four versus seven, respectively). The decrease of mmax with

N for 13ZG : NZG is due to the more effective hybridization between the quasi-zero-

energy states localized on the inner and outer edges of the ring when the ring width

decreases. Hence, the electron energy shifts from the band of zero energy states,

and therefore magnetic ordering decays, which is manifested by a smaller mmax in

the 13ZG : 11ZG ring than in the 11ZG dot. The shapes of the ∆E(N) curves shown

in Fig. 4.4(c) resemble the µzs(N) and mmax(N) curves in Figs. 4.4(a) and 4.4(b).

4.3 Suppression of magnetic instabilities via hy-

bridization

In order to elucidate the difference between magnetic ordering in rings and dots, one

may also analyze how the local density of states (LDOS) depends on the geometry

of the structure. More specifically, the spatial distribution of the states close to zero

energy determines how the magnetic moments evolve when the dimensions of the

structures varies. In order to enhance the contribution of the low-energy states, we
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Figure 4.5: (a) Contour plot of the WLDOS at several stages of the carving process
forming the 7AC : 7ZG ring and the 7ZG hexagonal dot; the number in the upper
left corner indicates the number of bonds cut. (b) Summed WLDOS in the ring, the
dot, and in the whole structure as well as the zero energy density of states versus
the number of bonds cut. (c) Stacked plot of the density of states; red depicts the
densities of the stages displayed in panel (a).

will compute the weighted LDOS (WLDOS) [57]:

Wi =
∑
j

e−βE
2
j |φji|2. (4.6)

Here, i indexes the lattice sites, j labels the eigenstates, β is the damping coefficient

chosen as 1/
√
β = 0.1 eV, whereas φji is the value of the probability amplitude of

the j-th state at the site i. Such defined WLDOS assumes that the contribution of

the states with |Ej| > 0.1 eV is negligible. The plots of the WLDOS in Fig. 4.5(a)

illustrate how the edge states form when the inner 7ZG hexagonal dot is cleaved out

of the outer 7AC hexagonal dot. The inner dot is separated from the ring by severing

the bonds one by one between the dot and the ring. The number of the severed bonds

between the dot and the ring is explicitly shown in Fig. 4.5(a), and the dot edge is

depicted by the blue line. The local sublattice imbalance accumulates quickly with

the number of severed bonds, but no edge states emerge when the number of cut

bonds is less than four. The edge states, which are depicted by red contours around
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4.3 Suppression of magnetic instabilities via hybridization

the edge, are initially distributed evenly between the ring and the dot, but they

extend more to the ring when the number of cut bonds increases.

To explore this finding in more detail, we show in Fig. 4.5(b) how the total

WLDOS (full purple circles), which is the sum over the atomic sites in the dot (full

blue circles) and the ring (empty red circles), varies with the number of severed

bonds. Also, the DOS at zero energy is shown by the black triangles in Fig. 4.5(b).

Notice that the variation of the WLDOS has a similar shape for each side of the

ring’s inner edge, and that the WLDOS displays step-like features. These steps arise

because the imbalance between the two local sublattices, found at the ring and dot

sides of the newly formed edge, are maximized when the formation of each side of

the rings inner edge is completed. The next side of the rings inner edge contains the

opposite sublattice imbalance, and therefore the states on this side hybridize with

the states on the previous side, which leads to a decrease of WLDOS [57]. Note that

after the first edge has been cut the ring and the dot WLDOSs start deviating from

each other more strongly. This is because the hybridization in the dot is stronger,

as the edge states on adjacent segments hybridize inward and towards each other.

In the ring part the edge states face away from each other and hybridize radially

outward, hence the hybridization is weaker. This is why the WLDOS in the former

case experiences a decline with the beginning of each new edge segment, while in

the latter case the WLDOS keeps growing. The gradual increase of WLDOS for

both cases near the end of each segment is related to the accumulation of the local

sublattice imbalances. This pattern reappears with each new zigzag segment, with

the exception of the last bond, which after being cut results in the separation of the

two structures. By the end, the WLDOS in the ring is much larger than WLDOS

in the dot, which accounts for the fact that the rings exhibit a larger maximum

magnetic moment and staggered magnetization than the dots. Figure 4.5(c) shows

a stacked plot of DOSs for each resulting structure. Plots are stacked from the

bottom up, with each subsequent line corresponding to a structure with one more

bond cut. DOSs for structures depicted in Fig. 4.5(a) are colored red. It shows

that only features near zero energy evolve in a similar fashion as do the WLDOSs

during the separation of the ring and the dot. This justifies the damping of states

higher than 0.1 eV in calculating the WLDOS, as they are not artifacts of the edge

forming between the ring and the dot.

Finally, we examine the influence of the edge deformations on somewhat larger

structures; namely, the 25ZG : 20ZG and 16AC : 20ZG rings and the 20ZG dot. Larger
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Figure 4.6: (a) Perfect edges (black region) are randomly perturbed (red lines) to
produce a random set of defects. (b) Final outlook of the deformed ring. (c) Magnetic
moments distributions in 25ZG : 20ZG ring for several values of fdef . The scale is the
same as in Fig. 3. (d) Staggered magnetization of an ensemble of randomly defected
structures as a function of defect ratio for 25ZG : 20ZG ring (black dots), 16AC : 20ZG
ring (red dots) ring, and 20ZG hexagonal dot (blue dots). The polynomial fitting
curves are added to guide the eye.

structures are considered here because they can be deformed in a larger number of

ways than smaller structures analyzed in the rest of the paper. Defects are induced

by randomly deforming the polygons which outline the perfect structure as shown

in Fig. 4.6(a). The amplitude of this deformation is itself a randomly selected

number out of a specific range and the final structure is made up of all atoms that

are enclosed by the deformed outline,1 which is shown in Fig. 4.6(b). In order

to quantify the amount of defects, the defect ratio fdef is defined as a fraction of

the total number of the defects, which is a sum of the missing and the surplus

sites, and the number of the sites in the original structure. The magnetic moment

distributions in the 25ZG : 20ZG ring for a few values of fdef are shown in Fig.

4.6(c). Also, variation of the staggered magnetization with the defect fraction for

the 16AC : 20ZG and 25ZG : 20ZG rings and the 20ZG dot is displayed in Fig. 4.6(d).

For the 25ZG : 20ZG ring and the 20ZG hexagon, µzs decreases with defect fraction.

1We remove all the dangling atoms which might appear after the edge is deformed. Also, we
ensure that all the deformed structures have equal numbers of the A and B sublattice sites, thus
our calculations always regarded the antiferromagnetic limit.
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4.3 Suppression of magnetic instabilities via hybridization

This is expected, having in mind that the defects can only impair the conditions

for magnetism in zigzag edges. On the other hand, for the 16AC : 20ZG ring, small

random defects are more likely to make the larger outer edge magnetic than to make

the smaller inner edge nonmagnetic. This explains the initial rise in µzs for fdef up

to 0.02 [93].
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Chapter 5

Orbital magnetic moments in

insulating Dirac systems

5.1 Introduction

One of the more intriguing recent developments in the field of graphene research

is the artificial generation of properties that are otherwise vanishing in intrinsic

samples. For instance, carrier mass can be created by sandwiching graphene with

hexagonal boron nitride, in which case a gap arises for sufficiently aligned layers

[66, 67]. The occurrence of the gap is dictated by the interplay of the elastic energy

of the graphene lattice, and the potential energy landscape stemming from hBN

[94]. The energetically preferred commensurate structure, in which a carbon atom

sits on top of a boron atom, will maximize its area at the expense of other stacking

configurations by stretching the graphene layer. This in turn leads to the appearance

of an average gap in the resulting van der Waals heterostructure [67].

On the other hand, it was postulated that spin-orbit coupling in graphene can be

enhanced by hydrogen adsorption, which forces local rehybridization of bonds [95].

Note that quantum spin Hall transport signatures introduced by random adatoms

are well described by models taking into account a renormalized and uniform SOC

[96, 97]. Moreover, the proximity effect caused by an appropriate substrate was

speculated to lead to SOC enhancement as well. Both of these mechanisms were

recently confirmed experimentally, opening new avenues for theoretical research [98,

99].

While in graphene the carrier mass and SOC have to be artificially engineered,

they are ubiquitous in other group IV monolayers such as silicene, germanene, and
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stanene, thanks to their buckled structure and the heavier constituent atoms [100–

102]. Note that at the time of writing of this thesis only stanene remains to be

synthesized in this group; 2012 is the year in which silicene was first detected, while

germanene was reportedly observed in 2014 [103–107]. And, while silicene and

germanene are yet to display it, given their honeycomb lattice, they also belong to

the same class of materials as graphene, with relativistic quasiparticles described by

the Dirac equation. From the theoretical point of view, both of the aforementioned

parameters appear in a similar form in the low-energy continuum picture. They are

captured by staggered potential terms ∆ and ∆SO in the case of mass and SOC,

respectively.1 As explained in Chapter 1, the term ”staggered potential” originates

in the language of the tight-binding method, and it refers to the breaking of the

sublattice symmetry by a traceless potential. Unlike SOC, for which the staggered

potential changes sign depending on the spin and valley of the electron, ∆ opens

up a topologically trivial band gap in the vicinity of the K and K ′ points through

inversion symmetry breaking [10], as was also pointed out in Chapter 1.

At the same time, however, the inversion symmetry breaking leads to a nontrivial

alteration of the semiclassical equations of motion on a honeycomb lattice [108, 109].

The quantum corrections, which reflect the impact of the Berry phase, and are

therefore topological in nature, are twofold. On the one hand, when subjected to an

electric field in the plane, massive Dirac fermions will attain a velocity component

transverse to the field, which is opposite in the two valleys, thus giving rise to the

valley Hall effect. This effect was observed experimentally in a MoS2 device, and

also in graphene-hBN heterostructures [110, 111]. On the other hand, self-rotation

of electron wavepackets near the two valleys will produce valley-contrasting orbital

magnetic moments [109].

It is well established that the valley Hall and intrinsic spin Hall effects share the

same origin, reflecting the Berry curvature properties of the underlying insulating

systems, generated by ∆ and ∆SO terms, respectively. Therefore, the two Hall effects

are fully analogous [112, 113]. On the other hand, valley-contrasting magnetism

was first reported in Ref. [109]. Thus, exploiting the same analogy with the Hall

effects, there must be magnetic moments originating from the band structure of

Dirac systems with nonzero spin-orbit coupling. This type of orbital magnetization

was previously investigated in a more generalized analysis of the family of Hall

1As noted in Chapter 1, ∆SO also gives rise to massive particles, by virtue of opening the gap,
however for brevity, in this and the subsequent chapter we refer only to the ∆ term as mass.
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5.2 Orbital moments in the tight binding picture

effects (and the accompanying set of orbital moments), found in multilayer graphene

systems in Ref. [114]. There, the electron-electron interaction leads to various

broken symmetry phases, denoted by the general term ”pseudospin ferromagnetism”

[115–118], which are captured with a diverse set of mass terms in the low-energy

continuum approximation, in models analogous to the ones studied in this thesis.

This emerging orbital magnetism is a mechanism that effectively alters the Zee-

man energy, and it is the subject of this chapter, particularly the moments associated

with spin-orbit coupling in monolayer Dirac systems. We first show how the intrinsic

SOC in honeycomb monolayers gives rise to orbital magnetic moments coupled to

spin, in the same way in which inversion symmetry breaking gives rise to moments

coupled to the valley degree of freedom. These moments are completely analogous

in nature, and they share exactly the same functional form, apart from coupling

to different degrees of freedom. We derive expressions for the moments using both

tight-binding and continuum theories, and we show their impact on the Landau level

quantization in the presence of a magnetic field.

Finally, we investigate the influence of the moments on the magneto-transport

properties, where we look at the transmission through a barrier with enhanced spin-

orbit coupling in graphene. Such a barrier could be realized by an appropriately

formed van der Waals heterostructure in an otherwise fully ultrarelativistic material

[96–99] as mentioned above. We discuss this case in great detail from the semi-

classical point of view, and we present conclusions that are of practical relevance,

namely how the device conductance is affected by orbital magnetism. In the end of

the chapter, we show that the results are identical whether one uses the continuum

Dirac theory or the tight-binding nonequilibrium Green function method when cal-

culating the transport properties. Remarkably, both approaches yield Zeeman-type

transport signatures while employing the magnetic field only through kinetic terms,

without actually enforcing the coupling of the spin with the magnetic field, which

reflects the orbital nature of the magnetic moments [119].

5.2 Orbital moments in the tight binding picture

We start with the low-energy tight binding Kane-Mele Hamiltonian valid for a whole

set of Dirac materials with prominent intrinsic spin-orbit coupling [10],

H = ~vF [τkxσx + kyσy] + sτ∆SOσz, (5.1)
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5.2 Orbital moments in the tight binding picture

where vF is the Fermi velocity, ∆SO is spin-orbit coupling, σz is a Pauli matrix

operating in the sublattice subspace, s = +1/ − 1 labels the spin ↑ / ↓, and τ =

+1/−1 labels the valley K/K ′. As already mentioned this form of SOC is universal

to all group IV monolayers other than graphene, in which on the other hand it

could be artificially generated. Note that here kx and ky are only parameters, and

not operators. The dispersion relations extracted from Eq. (5.1) are shown by solid

black curves in Fig. 5.1(a).

The Hamiltonian (5.1) describes a two-state, electron-hole symmetric system.

For such systems, the orbital magnetic moment (m) is directly proportional to the

Berry curvature (Ω), m ∼ Ω [109, 114, 120]. On the other hand, the system is

also time-reversal invariant, and since we disregard the staggered potential ∆ at

the moment, inversion symmetry is not broken either. Since for spatial-inversion

and time-reversal symmetric systems Berry curvature vanishes [121, 122], one might

conclude that the orbital moments must vanish as well. However, it is rarely stressed

that this only holds for spinless electrons, which is not the case considered here [123].

In fact, the Hamiltonian (5.1) describes a topological insulator, having a non-zero

and opposite Chern number for opposite spins [10]. This is because the Kane-Mele

model is formed by two opposite copies of the Haldane model [29], thus breaking the

time-reversal symmetry separately in each spin sector. Since the Chern number is

obtained as an integral of Ω over the Brillouin zone, the Berry curvature is nontrivial,

and consequently, the orbital magnetic moments will be nonzero.

The orbital moments are perpendicular to the monolayer, and originate from the

self-rotation of the electron wave packet around its center of mass, and they can be

obtained from the tight binding Bloch eigenfunctions |u (k)〉 [109, 114, 121]

m = −i e
2~
〈∇ku| × [H − E (k)] |∇ku〉, (5.2)

which makes their topological origin much clearer. For the particular Hamiltonian

in Eq. (5.1), we have

|u (k)〉 =

 √
E+sτ∆SO

2E

τ
√

E−sτ∆SO

2E
eiτφ

 , (5.3)

where E is the electron energy, and φ = arctan ky/kx. It is then straightforward to

show that the expression for the magnetic moments that arise from the spin-orbit
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Figure 5.1: The orbital magnetic moments of the spin-up (spin-down) states shown
by thick red (dashed blue) lines, and the corresponding low-energy band structure,
shown in black, for: (a) ∆ = 0 and ∆SO = 30 meV, and (b) ∆ = 30 meV and
∆SO = 0. Note that in (b) the orbital magnetic moments for the two spins are equal,
due to the absence of SOC.

coupling reads

m = −s e~v2
F∆SO

2 (∆2
SO + ~2v2

Fk
2)
. (5.4)

Variations of the orbital moments in the vicinity of the Dirac points are shown for

both spins in Fig. 5.1(a). They are maximum near the band edges, decay away from

the two Dirac points, and are obviously opposite for opposite spins.

One can compare these moments with the valley-contrasting moments, arising

for ∆SO = 0 and ∆ 6= 0 [109, 121]. Their magnitude is given by

m = −τ e~v2
F∆

2 (∆2 + ~2v2
Fk

2)
, (5.5)

and they are depicted in Fig. 5.1(b). It is clear that the two sets of moments

share a similar functional form, except the former couple to spin, while the latter

couple to the valley degree of freedom [114]. The energy region where the moments

are prominent, is termed the Berry curvature hot spot in Ref. [111]. There, it

was unequivocally shown that the gap in well-aligned graphene-hBN van der Waals

heterostructures is accompanied by the introduction of a nontrivial Berry curvature.

Finally, in the case of both nonzero ∆SO and ∆, and in the low energy limit, the
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magnetic moment is given by

m = − e~v2
F

2 (s∆SO + τ∆)
. (5.6)

The orbital magnetic moments are responsible for the optical selection rules of

light absorption in Dirac materials, through the so-called circular dichroism effect

[113, 120, 124]. Note that the orbital moments in Eq. (5.4) can dominate the

Zeeman response of a system, since they can be orders of magnitude stronger than

the free-electron Bohr magneton for realistic SOC strengths found in typical Dirac

materials [109, 114, 118, 121]. In other words, they will lead to a renormalization of

the Landé g factor, which was recently observed for transition metal dichalcogenides

from first-principles calculations [125].

5.3 Landau levels, pseudospin polarization and

orbital moments in the continuum picture

5.3.1 Landau levels

We proceed with the case of an applied perpendicular magnetic field B = Bez which

is included in the Hamiltonian through minimal coupling

H = ~vF
[
τkxσx + (ky +

e

~
Ay)σy

]
+ sτ∆SOσz + ∆σz. (5.7)

This equation could be employed to solve the electron spectrum in the Dirac system

in the presence of ∆SO, ∆, and magnetic field. It will subsequently lead us to resolve

the magnetic moments. Here, the Landau gauge A = (0, Ay) with Ay = Bx is

chosen. In this gauge, ky is a good quantum number and the solutions have the form

Ψ(x, y) = exp(ikyy) (ψA(x), ψB(x))T . Introducing ~vF ε = E, ~vF δ = sτ∆SO + ∆,

one can obtain the LLs in the infinite graphene sheet. In solving the LL spectrum

it is useful to adopt the operators b†τ = −i(lB/
√

2) (τkx + iky + ieAy/~) and bτ ,

where lB =
√

~/eB denotes the magnetic length. b†τ and bτ are the bosonic ladder

operators, and they satisfy
[
bτ , b

†
τ

]
= τ . It could be useful to define these operators

such that they fully correspond to the standard ladder operators of the quantum

harmonic oscillator (QHO) shifted by x0 = kyl
2
B and having the mass m = ~2/l4Bk.

Then, as shown in Chapter 1, the eigenstates will be given by the standard (obviously
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shifted and rescaled) QHO solutions

〈x|n〉 =
π−1/4

√
2nn!

e−(x/lB+kylB)2/2Hn

(
x

lB
+ kylB

)
, (5.8)

where Hn are Hermite polynomials. The problem can now be solved in terms of

these solutions for the case of the regular two-dimensional (2D) electron gas in a

magnetic field, having in mind that b†1|n〉 =
√
n+ 1|n + 1〉, b1|n〉 =

√
n|n − 1〉 and

b1|0〉 = 0, and that the ladder operators change character in the K ′ valley. The

system of coupled equations with ladder operators is now given by

δψA − i
ωc
vF
bτψB = εψA, (5.9)

i
ωc
vF
b†τψA − δψB = εψB, (5.10)

where ωc =
√

2vF/lB is the cyclotron frequency for Dirac-Weyl electrons. Then for

n ≥ 1 the energies of the LLs are given by

εn,s,τ,± = ±
√
δ2 + nω2

c/v
2
F . (5.11)

The s and τ quantum numbers are contained implicitly in the definition of δ. The

joint spinor for the two valleys can be written as

|n, s, τ,±〉 =

 |n− τ
2
− 1

2
〉

±i
[

ωc
√
n

(ε+τδ)vF

]τ
|n+ τ

2
− 1

2
〉

 . (5.12)

The case of n = 0 needs special attention, since the solution given by Eq. (5.12)

is not valid in this case. Then, the appropriate choice for the solution is

|0, s, τ〉 = (−τ/2 + 1/2, τ/2 + 1/2)T |0〉, (5.13)

while the energies are expressed as [126]

ε0,s,τ = −τδ. (5.14)

It is worth pointing out however, that observation of the conductance plateaus

corresponding to the derived spectrum can depend on the symmetry class of the

disorder present in the samples [127]. Note also that these eigenvectors and eigen-
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(b)

(a)

↑ K ↑ K′ ↓ K ↓ K′

Figure 5.2: Several lowest Landau levels of all spin and valley flavors for (a) ∆SO =
30 meV and ∆ = 0, (b) ∆SO = 0 and ∆ = 30 meV, and (c) ∆SO = ∆ = 30 meV.
The n = 0 Landau level is depicted by the horizontal solid black line. Also shown
are the bulk bands as red (spin up) and blue (spin down) shaded regions, as well as
the sketch of the corresponding orbital moments, with the length of the arrow being
proportional to the intensity.

values reduce to the ones for the massless fermions, under the requirement δ → 0,

collapsing the level (5.14) to zero energy. Nevertheless, massless fermions can also

display quantum Hall signatures, such as a magnetic-field-independent plateau at

zero filling factor, which originate from valley mixing scattering processes [127].

Thus the SOC and mass terms split and shift the zeroth LLs away from zero

energy as depicted in Fig. 5.2, which shows the low-lying Landau levels for (a) only

∆SO 6= 0, (b) only ∆ 6= 0 and (c) ∆SO = ∆ 6= 0 at B = 2 T. We also depict the

bands, as well as the emerging magnetic moments, given by Eqs. (5.4) and (5.5).

The orientation of the moments is related to the position of the n = 0 Landau level,

which is shown by the horizontal solid black lines. Note that the zeroth LLs always

reside on the edges of the appropriate bands. The duality ∆SO ↔ ∆, s↔ τ present

in Eq. (5.14) is evident in Fig. 5.2. In other words, SOC couples the LLs to spin in

the same way that mass couples them to the valley degree of freedom [126, 128, 129].

The state depicted in Fig. 5.2(c) is dubbed spin-valley-polarized metal [130], and

it hosts both a massless (lacking the orbital moments) and a massive relativistic

Landau spectrum. It can appear in silicene subjected to a perpendicular electric
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field, for instance. On the other hand, in transition-metal dichalcogenides, both

parameters are inherently present, with ∆ > ∆SO, and SOC splits only the LLs in

the valence band, yielding a unique set of Hall plateaus [131].

5.3.2 Orbital moments

The underlying explanation for the behavior of the LL spectrum can be sought in the

existence of orbital magnetic moments [109, 132, 133]. In a similar fashion to Ref.

[133], we can obtain the effective Bohr’s magneton in the presence of ∆SO, starting

from the Dirac-Weyl equation, and expanding near the conduction band bottom.

We first point out that near the bottom of the conduction bands, the sublattice

pseudospins get polarized perpendicular to the graphene sheet, with the majority

of the weight concentrated on the A (B) sublattice for δ > 0 (δ < 0). Likewise, at

the top of the valence band, most of the weight is found on the A (B) sublattice for

δ < 0 (δ > 0). This is obvious for the zeroth LLs, and it occurs in the δ = 0 limit

as well [2, 56], but to see it for higher levels it is helpful to derive the expectation

value for the sublattice pseudospin,

〈n, s, τ,±|σz|n, s, τ,±〉 =
δ

ε
, (5.15)

which is exactly the same as in the absence of SOC and magnetic field [134], only

now it is to be used for the discrete energy values corresponding to the Landau

levels. Therefore, perfect pseudospin polarization is achieved in the bottom (top) of

the conduction (valence) band.

On the other hand, decoupling the Dirac equation gives[
k2
x +

(
ky +

x

l2B

)2

± τ

l2B

]
ψA/B =

(
ε2 − δ2

)
ψA/B. (5.16)

Therefore, there is a spatially uniform term proportional to the magnetic field, with

opposite signs on opposite sublattices and opposite valleys. Consider the importance

of this term for states whose sublattice pseudospin mostly lies in the graphene plane,

i.e. for states far away from the band gap, Eq. (5.15). For such states, the two

signs play a tug of war, effectively canceling each other out. However, near the

band gap, sublattice polarization occurs, and the term corresponding to a majority

sublattice starts dominating over the other, giving rise to an effective paramagnetic

moment. For instance, when δ > 0 sublattice A dominates for low electron energies,
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5.4 Manifestation of orbital moments on magneto-transport

and the upper sign starts impacting the electron motion. To fully appreciate this

fact, and to write the equation in a manifestly paramagnetic form, one needs to

perform a low energy expansion for the equation of the majority sublattice. After

reintroducing E, ∆, and ∆SO explicitly, we can write E = ξ + (sτ∆SO + ∆) for

δ > 0, and E = ξ − (sτ∆SO + ∆) for δ < 0. Taking the limit ξ → 0, the following

equation is obtained for the bottom of the conduction band[
p2
x

2meff

+
(py + eAy)

2

2meff

+
e~v2

FB

2 (s∆SO + τ∆)

]
ψ = ξψ, (5.17)

where meff = |sτ∆SO + ∆| /v2
F is the electron effective mass due to the band gap.

This is the form of the Schrödinger equation in the presence of a magnetic field in

which the emerging magnetic moments are obviously manifested. Once again, we

see the duality of the orbital moments of the same nature as mentioned previously

in the case of LLs: the moments are coupled to SOC through spin and to mass

through the valley degree of freedom. Moreover, it is obvious that the expression

for the magnetic moment is equal to the results of the low energy expansion given

in Eq. (5.6). Having in mind that these moments effectively shift the low energy

parabolic bands, one can use the same argument as in Ref. [132] to show that the

separation between the lowest LL and the bottom of each shifted band is for each

spin, valley and band to first order equal to half the separation between this and

the first excited LL. This is in analogy with the LLs in a 2D massive-electron gas,

where the lowest level sits at half the cyclotron frequency [132, 133]. The difference

for higher energy LLs is a consequence of the deviation of the dispersion from the

quadratic form.

5.4 Manifestation of orbital moments on magneto-

transport

We proceed with considering how the emerging magnetic moments affect the trans-

port properties. In particular, we analyze transport through a single 1D barrier

in bulk graphene, extending from x = 0 up to x = W , and along the y direction,

in which the intrinsic SOC is modified. The magnetic field is included only in the
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barrier, so we choose the following vector potential (within the Landau gauge)

Ay =


0 x < 0

Bx 0 ≤ x ≤ W

BW x > W

. (5.18)

The explicit derivation of the transmission coefficient is given in Appendix C.

Since we analyze a barrier made exclusively out of SOC, the valley degree of

freedom plays no role in the electron transmission, which can be concluded from

the theory presented in Sections 5.2 and 5.3. Therefore, the contour plots of the

transmission coefficient T = |t|2, for the two spin flavors, and for the 200-nm wide

barrier as a function of energy and the incident angle of the incoming electron, are

shown in Fig. 5.3. Each horizontal panel in this figure corresponds to a specific value

of the magnetic field, which is 0, 0.1, 0.2 and 0.3 T from top to bottom. Because

of the duality ∆SO ↔ ∆ and s ↔ τ , the results presented below also apply for

transmission through a barrier when ∆ 6= 0 and ∆SO = 0. But for this case the spin

and valley quantum numbers should be interchanged.

For both barrier types, we found that the magnetic field causes cyclotron motion,

whose main feature is the appearance of a transmission window dependent on energy

and incident angle φ [135, 136]. Outside of this window, the waves after the barrier

become evanescent, and therefore no transmission takes place. This occurs when

the longitudinal momentum k′x =
√
ε2 − k′y of each electron state in the region after

the barrier becomes imaginary. The transmission window is given by

ε >
γ

1− sinφ
, (5.19)

where γ = W/l2B. The transmission windows for different B’s are shown by solid

black curves in Fig. 5.3.

When the magnetic field increases, the transmission asymmetry with respect to

the incident angle becomes larger, due to the cyclotron motion, as shown in Fig.

5.3. Besides, whereas transmission coefficients are identical for both spins when no

magnetic field is present, T↑ and T↓ differ when B 6= 0, which is a consequence

of the SOC-induced magnetic moments. In fact, it is clear from Eq. (5.16) that a
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Figure 5.3: Contour plots of the transmission coefficient as function of incident angle
and energy for ∆SO = 30 meV, ∆ = 0 and W = 200 nm. The magnetic field equals
0 T in (a-b), 0.1 T in (c-d), 0.2 T in (e-f), and 0.3 T in (g-h). The results are shown
for both spin orientations. The semiclassical critical boundaries εcr0 and εcrW are
depicted by dash-dotted and dotted lines, respectively.

quasi-classical longitudinal momentum qx

qx (x) =

√
ε2 − δ2 − (ky + x/l2B)

2 − s/l2B (5.20)

can be assigned to the sublattice-polarized states.

In order to understand the effects of the emerging magnetic moments on the

transmission characteristics, it is instructive to investigate how classical turning

points vary with ε and φ. Those turning points are extracted from qx (x) = 0, where

qx is given by Eq. (5.20), and are given by

x1,2 = −εl2B sinφ∓ l2B
√
ε2 − δ2 − µ, (5.21)

where µ = s/l2B is the magnetic moment term which appears in the expression for

the quasi-classical momentum in Eq. (5.20). Given that the barrier extends from 0

to W , the condition that no turning points are found within the barrier is obtained
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by requiring x1 < 0 and x2 > W . The former condition leads to

x1 < 0⇒

ε >
√
δ2+µ

cosφ
, φ < 0

ε >
√
δ2 + µ, φ > 0

, (5.22)

while the latter results in

x2 > W ⇒

ε >
√
δ2 + µ, ε sinφ+ γ < 0

ε >
γ sinφ+

√
γ2+(δ2+µ) cos2 φ

cos2 φ
, ε sinφ+ γ > 0

. (5.23)

On the other hand, both classically forbidden and classically allowed regions will

be present in the barrier if 0 < x1 < x2 < W . The two extreme cases of vanishing

allowed regions occur when the leftmost turning point approaches the right interface

of the barrier

x1 < W ⇒

ε >
γ sinφ+

√
γ2+(δ2+µ) cos2 φ

cos2 φ
, ε sinφ+ γ < 0

ε >
√
δ2 + µ, ε sinφ+ γ > 0

, (5.24)

and when the rightmost turning point approaches the left barrier interface

x2 > 0⇒

ε >
√
δ2 + µ, φ < 0

ε >

√
δ2+µ

cosφ
, φ > 0

. (5.25)

From the angle dependent functions in the last four relations one might define the

critical energies

εcr0 =

√
δ2 + µ

cosφ
, (5.26)

and

εcrW =
γ sinφ+

√
γ2 + (δ2 + µ) cos2 φ

cos2 φ
, (5.27)

for which the classical turning points are located exactly at the two interfaces, i.e.

they are obtained by solving qx (0) = 0 and qx (W ) = 0, respectively. Those critical

boundaries are plotted as dash-dotted and dotted curves in Fig. 5.3.

In order to elucidate the quasi-classical behavior, in Fig. 5.4(a) we plot the zones

corresponding to different configurations of turning points by different colors. The

same set of parameters is used as in Fig. 5.3(e) (∆SO = 30 meV, W = 200 nm,

B = 0.2 T and s = +1). In Fig. 5.4(b) we plot a set of classical trajectories that
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Figure 5.4: (a) The regions with different ranges of turning points for W = 200 nm,
∆SO = 30 meV, ∆ = 0, and B = 0.2 T. Different classically allowed trajectories are
found in differently shaded regions, demarcated by the two critical boundaries. (b) A
family of four different classical trajectories which correspond to the states labeled by
numbered crosses in each region of (a).

correspond to the zones shown in Fig. 5.4(a). As could be inferred from Fig. 5.4,

for ε larger than both εcr0 and εcrW (green colored region in Fig. 5.4(a)), there is

no classically forbidden region inside the barrier. However, if the electron energy

is between the two critical energies (red or blue colored region in Fig. 5.4(a)), a

classically forbidden energy range will appear on either end of the barrier. In other

words, the electron will have to tunnel through a part of the barrier adjacent to

one of its interfaces, whereas propagation is free in the other part. For the most

extreme case displayed as the magenta colored region in Fig. 5.4(a), the electron

has to tunnel through both ends of the barrier.

One may notice that the two critical energies whose variation with φ is depicted

by dash-dotted and dotted lines in Fig. 5.3 are almost identical for the two spins.

Also, by careful inspection of Fig. 5.3 it becomes evident that the quasi-classical

zones we derived explain the observed transmission very well, especially for the spin

up states. For the spin down states, however, transmission is enhanced with respect

to the spin up states in the zones for which the electron waves must tunnel through

a region of the barrier (the red and blue energy zones in Fig. 5.4(a)). This could

be understood if one recalls that the WKB expression for the tunneling coefficient
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is given by

T ≈ e−2Im
∫
qx(x)dx, (5.28)

where the integration is over a classically forbidden region. Having this in mind, it is

obvious that for ∆SOC 6= 0 and B 6= 0 spin-up states decay faster than the spin-down

states in classically forbidden regions, due to the paramagnetic term. This difference

increases at higher magnetic fields, which leads to a growing contrast between the

transmission coefficients for the two spins, as Fig. 5.3 clearly demonstrates. When

the magnetic field is absent, the emerging paramagnetism vanishes, and therefore,

the transmission characteristics for the two spins are identical (see Figs. 5.3(a) and

(b)).

Next, we explore how the presence of the magnetic moments affects the inter-

ference pattern shown in Fig. 5.3. This could be the most important effect from a

practical point of view. In the Fabry-Perot model, the interference pattern depends

on the phase the electron wave function accumulates between the barrier interfaces

and the bounces from the interface(s) and/or turning point(s)

α = αWKB + α1 + α2, (5.29)

where α1 and α2 are the backreflection phases, whereas αWKB is the WKB phase

αWKB = 2

∫ min(W,x2)

max(0,x1)

qx (x) dx. (5.30)

To analyze how the orbital magnetic moments influence the fringe pattern we could

once again invoke Eq. (5.20) and the associated diagram in Fig. 5.4. It follows

that Fabry-Perot resonances have different character in the different zones. When-

ever B 6= 0, the WKB phase is accumulated throughout the entire barrier for

ε > max (εcr0, εcrW ), but only in region [x1,W ] for εcr0 > ε > εcrW (the red-shaded

region in Fig. 5.4(a)). Consequently, in the latter case the transmission maxima

(depicted by the red color in Fig. 5.3) are almost linear functions of φ, whereas in

the former case their dependence on φ is nonlinear.

The crucial point, however, is that the phase accumulated during the prop-

agation differs for the different spin orientations. This occurs because magnetic

moments associated with opposite spins contribute to αWKB in opposite ways (see

Eq. (5.20)). To see this clearly, and to provide experimentally verifiable predictions

it is important to consider the conductivity of the entire studied structure, given as
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Figure 5.5: The derivative of the conductance versus incident energy, for (a) 0.1 T,
(b) 0.2 T, and (c) 0.3 T. All other parameters are the same as in Fig. 5.3. Insets show
the variation of the conductance with incident energy for the corresponding magnetic
field.

[137],

G (ε) = G0

∫ π/2

−π/2
T (ε, φ) ε cosφdφ, (5.31)

where G0 = e2L/2~π2, with L denoting the lateral width of the entire structure in

the y direction.

Since the effects of magnetic moments are most vividly manifested in the de-

pendence of dG/dE on energy, we display this quantity in Fig. 5.5, for the same

set of parameters as in Fig. 5.3. Alongside with dG/dE, the corresponding con-

ductance is shown in the insets for each case. As can be seen from these insets, G

only depicts the fact that the spin-down conductance is increased with respect to

the spin-up conductance, due to the enhanced transmission through the classically

forbidden regions, as already discussed. On the other hand, the first derivative of

the conductance with respect to energy conveys the information of the interference

pattern, where the effects of the orbital moments are more transparent. Two issues

are of importance here: (i) The difference between the two spins is clearly more pro-

nounced at higher magnetic fields. This happens because in such a case the orbital

moments have a larger impact on the electron dynamics, as pointed out before. (ii)
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Figure 5.6: Transmission curves calculated using (a) the continuum and (b) the TB
NEGF method. The parameters are W = 200 nm, B = 0.3 T, and E = 100 meV.

The distinction between the two spins is more prominent at lower energies. This

is a consequence of the larger emerging orbital magnetic moments of the electrons

whose energies are close to the band edges than of more energetic electrons, as Eq.

(5.4) and Fig. 5.1(a) demonstrate.

Finally, we would like to point out that the manifestation of orbital moments

in transport properties can be captured by the tight-binding nonequilibrium Green

function formalism as well. To show this, in Fig. 5.6(a) we plot a set of transmission

curves obtained using the derived transmission amplitude, while in Fig. 5.6(b) we

plot the results of our numerical transport simulations within the TB NEGF method,

for the same barrier parameters. The phenomenological model used to describe

graphene in this case is the Kane-Mele tight-binding model discussed in detail in

Chapter 1:

H = −t
∑
〈i,j〉,α

eiϕijc†iαcjα + iλSO
∑

〈〈i,j〉〉,α,β

νije
iϕijc†iαs

z
αβcjβ. (5.32)

The first term describes the usual hopping between nearest neighbor pz orbitals

in graphene, which extends beyond the barrier. The second term describes the in-

trinsic spin-orbit interaction found in the barrier, through the next-nearest-neighbor

hopping amplitude λSO (∆SO = 3
√

3λSO). Note that νij determines the sign of the

hopping; it is positive (negative) if an electron makes a right (left) turn at the in-

termediate atom in hopping from site j to site i. The Peierls term ϕij = e
~

∫ rj
ri

A · dl
accounts for the phase the electron acquires while traveling in the presence of the

magnetic field. The details of the NEGF procedure were laid out in Chapter 2.
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5.4 Manifestation of orbital moments on magneto-transport

In order to compare the results with the continuum theory, we need the numerical

simulations within the NEGF formalism to provide us with the angular dependence

of the transmission through a structure infinite in the y-direction. To achieve this, we

resort to the recipe described in Ref. [138]. In short, we take the narrowest possible

zigzag nanoribbon, placed along the x-direction, where the semi-infinite left and

right leads surround the barrier region in which SOC NNN hopping is nonzero. The

structure is then taken to be periodic along the y-direction, prompting the use of

the Bloch theorem in this direction. This means that the phase factor will enter all

hopping terms along the y axis, which is none other than the transverse momentum

ky. In this way, ky appears as a parameter, and since the incident energy E is a

parameter as well, one is then able to reconstruct the angle of propagation using

~vFky = E sinφ. Note that in our case, besides the Peierls phase factor, we must

also add the vector potential, Eq. (5.18), to ky, in order to properly model the

influence of the magnetic field. Finally, one needs to connect the Fermi velocity vF

entering the Dirac equation, with the nearest-neighbor hopping t, as vF = 3ta/2~,

where a = 0.142 nm is the carbon-carbon distance, and the hopping is as usual set

to t = 2.7 eV.

Although the continuum and the TB NEGF schemes differ substantially as far

as the formalism and implementation are concerned, they give practically indistin-

guishable results. This is not surprising, having in mind that the continuum Dirac

picture is the effective theory corresponding to the low energy tight-binding method.

Therefore, both approaches display these Zeeman-type effects, even though we use

only minimal coupling and the Peierls substitution, to account for the influence of the

magnetic field. Since strain in honeycomb lattices effectively induces time-reversal

invariant pseudomagnetic fields [139], stretching of insulating Dirac monolayers will

inevitable galvanize orbital moments as well [136].

Finally, note that the TB NEGF method could prove handy for studying the

effects of disorder and imperfections on the manifestation of the spin-contrasting or-

bital moments. However, unlike the orbital moments coupled to the spin, the valley-

contrasting orbital moments can not be distinguished by the TB NEGF transport

simulations, since the contributions from the two valleys are inherently summed

together, and cannot be separated. In this case, only the continuum calculations,

where the valley degree of freedom is explicit, can elucidate the underlying physics.
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Chapter 6

Spin-valley filtering in strained

graphene heterostructures

6.1 Introduction

Graphene is considered a promising material for future spintronic applications, in

part due to its long spin relaxation length [140–142]. Furthermore, owing to its

band structure with two inequivalent valleys, K and K ′, it has revived the field

of valleytronics [18, 143]. The low energy excitations in the two valleys behave

as Dirac-Weyl particles, which is most famously manifested in the presence of a

magnetic field, in which Landau levels scale as
√
B, with a unique level at zero

energy [18, 56]. Besides, it is known that straining graphene causes time-reversal

invariant gauge fields to appear, i.e. an effective magnetic field with opposite signs in

opposite valleys, providing a tool for manipulating the valley degree of freedom [18].

Recent experiments demonstrated large values of this pseudomagnetic field, which

could hardly be matched in practical applications by real magnetic fields [144].

In this chapter we study the transmission through a thin 1D graphene barrier

with artificially induced mass and spin-orbit coupling, in the presence of pseudo-

magnetic field using the continuum approach. The motivation for studying such a

structure is twofold. In part it is due to a shift to a new paradigm in 2D materials

research, whereby their properties are custom tailored according to specific needs

by stacking different 2D crystals on top of each other. These are the so called van

der Waals heterostructures, also discussed in the previous chapter [145]. More im-

portantly, and in the light of this paradigm, recent theoretical and experimental

work shows that mass and SOC, which are vanishing in intrinsic graphene, could
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6.2 Pseudomagnetic field in strained honeycomb lattices

be induced with appropriate substrates and/or adatom deposition [66, 95, 98, 99,

146–152]. We will show that the studied device behaves as a spin-valley filter, thus

laying in the intersection of the fields of spintronics and valleytronics.

6.2 Pseudomagnetic field in strained honeycomb

lattices

First we derive the low energy Hamiltonian of strained graphene starting from tight

binding picture. The simplest such procedure takes into account the variation of the

hopping integral as a function of the stretching of the bonds. When a deformation of

the nearest neighbor bonds from equilibrium occurs, the hopping amplitude changes

according to te−β∆un , where β ≈ 3 is a material parameter, ∆un = |δ′| /a − 1 is a

relative distance change and |δ′| is the non-equilibrium NN distance [153–155].

On the other hand, any distortion of the lattice can be captured by the displace-

ment or deformation field u = (ux, uy), connecting the deformed lattice coordinates

r′i with the undeformed ones ri, through r′i (ri) = ri + u (ri). In the case of homoge-

nous strain, which is considered here for simplicity, there can only be three distinct

hopping amplitudes, corresponding to the three neighbors surrounding a given atom.

Referring back to Chapter 1 and Fig. 1.1, the three different undeformed NN vectors

pointing from an A atom to a B atom are

δ0 = a (0, 1) , (6.1)

δ1 = a

(
−
√

3

2
,−1

2

)
, (6.2)

δ2 = a

(
+

√
3

2
,−1

2

)
. (6.3)

Then, up to linear terms, the non-equilibrium NN vectors read

δ′n (r) ≈ δn + (δn · ∇) u (r) . (6.4)

The magnitude of δn is then

|δ′n| = a

√
1 +

2δ2
nxuxx + 2δ2

nyuyy + 4δnxδnyuxy

a2
, (6.5)

where uij = 1
2

(∂iuj + ∂jui) are the components of the strain tensor. Expanding the
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6.2 Pseudomagnetic field in strained honeycomb lattices

root up to the linear terms yields the relative distance change

∆un ≈
δ2
nxuxx + δ2

nyuyy + 2δnxδnyuxy

a2
. (6.6)

Having established this, we can go on to Fourier transforming the TB Hamiltonian,

as in Chapter 1. However, in this procedure we shall use the equilibrium lattice sites

and, thus, the effects of strain will only be incorporated through the modification of

the hopping amplitude. Also, in the spirit of the entire derivation, the modification

of the hopping amplitude will only enter the Hamiltonian up to first order. Then,

the matrix element γ (k) defined in Chapter 1 reads

γ (k) = −t
[
1− β∆u0 + (1− β∆u1) e−ik·a1 + (1− β∆u2) e−ik·a2

]
. (6.7)

Finally, expanding the Hamiltonian around the Kτ =
(
τ 4π

3
√

3a
, 0
)

points, and

keeping only the terms linear in either real space or momentum space displacement,

one obtains the effective low-energy description

H = vF [τ (px + eAx)σx + (py + eAy)σy] , (6.8)

where

Ax = −τ ~β
2ea

(uxx − uyy) , Ay = τ
~β
ea
uxy. (6.9)

It is clear from this that small strains in graphene manifest themselves through

vector potentials in the Dirac-Weyl equation [156, 157]. Moreover, the resulting

pseudomagnetic fields are opposite in opposite valleys, as can be seen in Eq. (6.9),

therefore preserving the time-reversal symmetry of the system.

A few comments are in order, before we explore the possible applications of

this phenomenon in the subsequent section. Besides the appearance of the pseu-

domagnetic field, higher order expansions uncover the renormalization of the Fermi

velocity, which becomes position-dependent [158]. On the other hand, including the

actual positions of the displaced atomic sites in the calculations does not have an

impact on the pseudomagnetic field [159–161]. It does, however, induce other terms,

which we will ignore for simplicity.
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6.3 Spin-valley filtering

6.3 Spin-valley filtering

In the continuum approach the carrier mass is captured by a staggered potential

term ∆, while SOC is captured by a mass-like term ∆SO. The presence of both

will result in a competition to open topologically distinct gaps [9]. This competition

reflects on the bulk band gap given by 2 |sτ∆SO + ∆|, where s = +1/− 1 labels the

spin ↑ / ↓ and τ = +1/− 1 labels the valley K/K ′ degrees of freedom [162]. Thus,

for different spin-valleys different gaps can arise. In order to get some insight into

the problem, we will first study transmission through a barrier with a real magnetic

field. As can be expected, regardless of the magnetic field, whenever ∆SO 6= 0 and

∆ 6= 0, there is an energy range where sτ = +1 states are suppressed, while sτ = −1

states are not. In other words only one spin from one valley, and the opposite spin

from the opposite valley are transmitted. The main effect of the magnetic field is to

impose restrictions on incident angles over which the transmission can occur. This

is caused by the cyclotron orbits, which are the same for all spins and valleys.

We subsequently apply the pseudomagnetic field, which leads to the reversal

of the effective field, and the effective cyclotron orbits in one of the valleys. This

provides the benefit of spatially separating the transmitted states according to their

valley degree of freedom, and accordingly their spin degree of freedom as well. Thus

a combined spin-valley filter can be obtained. Furthermore, we show that chemical

potential and strain can act as a switch, rendering control over the filtering behavior.

Filtering behavior in graphene devices was studied before [163–171], however the

mechanism proposed in this chapter is novel, and previously unexplored. Practical

implications are discussed at the end of the chapter.

Our starting point is the Dirac-Weyl equation, in the presence of mass, SOC, and

a magnetic field perpendicular to the sheet, Bz. In this case we choose the Landau

gauge A = (0, Ay), and the Dirac-Weyl Hamiltonian reads

H = ~vF
[
τkxσx + (ky +

e

~
Ay)σy

]
+ sτ∆SOσz + ∆σz, (6.10)

where vF is the Fermi velocity, and σz is a Pauli matrix operating in the sublattice

subspace.

We use the parameter τB, such that Bz = τBB, to capture the valley-dependent

nature of the pseudomagnetic field. Setting τB = +1 models the influence of the real

magnetic field, while τB = ±τ models the two types of the pseudomagnetic field.

Including the (pseudo)magnetic field only in the barrier of width W means that the
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6.3 Spin-valley filtering

magnetic vector potential is given by

Ay =


0, x < 0

τBBx, 0 ≤ x ≤ W

τBBW, x > W

. (6.11)

In the chosen Landau gauge ky is a good quantum number and the solutions

have the form Ψ(x, y) = exp(ikyy) (ψA(x), ψB(x))T . Introducing ~vF ε = E, and

~vF δ = sτ∆SO + ∆, and decoupling the system, in the barrier one obtains[
∂2
x ∓ ττB

1

l2B
− (ky + τB

x

l2B
)2 + ε2 − δ2

]
ψA/B = 0, (6.12)

where lB =
√

~/eB. Using the transformation z =
√

2 (kylB + τBx/lB), the solu-

tions are expressed in terms of the parabolic cylinder functions Dν(z) (see Appendix

C for a detailed derivation), and read

ψII = C1

(
DνA(z)

gDνB(z)

)
+ C2

(
DνA(−z)

−gDνB(−z)

)
, (6.13)

where νA/B = (ε2 − δ2) l2B/2∓ ττB/2− 1/2, and

g = i

[ √
2

(ε+ ττBδ) lB

]ττB
. (6.14)

On the other hand, the incident wave function is

ψI = eikxx

(
1

τeiτφ

)
+ re−ikxx

(
1

τeiτ(π−φ)

)
, (6.15)

while the solution in the third region reads

ψIII = t

√
kx
k′x
eik

′
xx

(
1

τeiτθ

)
. (6.16)

Here, φ = arctan ky/kx and θ = arctan k′y/k
′
x denote the energy propagation

directions before and after the barrier, where ky = qy (0) and k′y = qy (W ), while

qy (x) = ε sinφ + eA (x) /~ is the effective transverse momentum. The longitudinal

momenta before and after the barrier are given by kx = ε cosφ and k′x = ε cos θ.

Note that all these expressions are valid for the valence band as well. Matching the

wave functions at the interfaces gives a system of equations, whose solution yields
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6.3 Spin-valley filtering

the transmission amplitude t

t =
2gτ cosφ

(
G+
AG
−
B +G−AG

+
B

)
eik′xWf

√
k′x
kx
, (6.17)

where

f = g2
(
F+
BG

−
B − F−BG+

B

)
+ eiτ(θ−φ)

(
F+
AG

−
A − F−AG+

A

)
+gτeiτθ

(
F−BG

+
A + F+

BG
−
A

)
+ gτe−iτφ

(
F+
AG

−
B + F−AG

+
B

)
.

(6.18)

Here the coefficients F± and G± are given by

F±A/B = DνA/B

[
±
√

2kylB

]
, (6.19)

G±A/B = DνA/B

[
±
√

2

(
kylB + τB

W

lB

)]
. (6.20)

In Fig. 6.1 we look at the behavior of transmission coefficients (T = |t|2) in

detail for a real magnetic field (τB = +1). Here we show contour plots of, from top

to bottom, T↑K , T↑K′ , T↓K and T↓K′ , as a function of incident energy and angle. We

adopt a set of parameters that illustrates our main points clearly: ∆SO = 30 meV,

W = 100 nm and B = 0.2 T, whereas ∆ varies from 0 in (a), to ∆ = 15 meV in (b)

and ∆ = 30 meV in (c).

A common feature of all the cases depicted in Fig. 6.1 is that transmission is

forbidden outside the transmission window delineated by the solid black line, akin

to the scenario of the previous chapter. This is because the magnetic field enforces

cyclotron motion, resulting in asymmetric transmission curves with respect to the

incidence angle [135, 172]. This boundary is obtained by requiring that the longitu-

dinal momentum after the barrier becomes imaginary, so that only evanescent waves

can exit, and therefore no transmission can occur. The longitudinal momentum in

the third region is given by k′2x = ε2 − qy (W )2. Hence, this window is determined

by a critical energy, below (above) which the transmission is not possible

ε
c/v
cr1 =

±γ
1∓ τB sinφ

, (6.21)

where γ = W/l2B, and c (v) denotes conduction (valence) band. This window de-

pends solely on W,B and φ, i.e. it is not a function of ∆SO,∆, s or τ at all, as can

be observed in Fig. 6.1. However, the transmission within this window obviously

depends on ∆SO,∆, s and τ .
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As already mentioned, in the presence of mass and SOC, the bulk band gap is

given by 2 |sτ∆SO + ∆|. Therefore, when both parameters are present, the sτ = +1

states experience a larger gap than the sτ = −1 states. To see how this might

reflect on the transmission through a barrier we need to examine the behavior of the

quasiclassical momentum within the barrier qx (x) =
√
ε2 − δ2 − qy (x)2. Therefore,

through the appearance of δ, the quasiclassical momentum depends on ∆SO,∆, s

and τ . More specifically, when both ∆ and ∆SO are nonzero, whether classically

forbidden regions inside the barrier will appear depends crucially on the product

sτ , which is a clear manifestation of the bulk band gap. The existence of forbidden

regions in the barrier does not necessarily imply that the momentum after the barrier

is imaginary. To see this, one can express the critical energy below (above) which

the former happens

ε
c/v
cr2 = ±max

(
±τBγ sinφ+

√
γ2 + δ2 cos2 φ

cos2 φ
,
|δ|

cosφ

)
. (6.22)

This critical boundary is drawn in dashed black lines in Fig 6.1, and it coincides

with the transmission window (Eq. (6.21)) only when the bulk band gap is closed.

Therefore, in between εccr1 and εccr2 the transmission is possible, but only by tunneling

through forbidden region (regions) in the barrier, and thus perfect transmission

cannot occur. Above εccr2 boundary, however, there is no attenuation within the

barrier, and the resulting transmission is determined by the interference of electron

waves. It is important to point out that below the minimum of εccr2, which coincides

with the bottom of the conduction band, the transmission is strongly suppressed.

One issue requires clarification. For the case ∆ = 0, shown in column (a), εccr2

is the same for all spin and valley flavors. However, the transmissions for spin up

and spin down are obviously different. This discrepancy arises numerically due to

the factor g, appearing in the transmission amplitude, Eq. (6.17). This factor is in

turn just a reflection of the form of the Landau level eigenstates (see Appendix C).

In fact one can easily show that the solution given by Eq. (6.13) reduces to the LL

eigenstates once the incident energy is equal to a particular LL.

The true reason for this discrepancy however lies in the orbital magnetic moments

which arise for massive Dirac fermions. It is known that inversion symmetry breaking

can lead to the appearance of magnetic moments coupled with the valley degree of

freedom, which in turn influence the LLs [109]. Analogous moments arise when

SOC is present as well, albeit coupled with the spin degree of freedom. These spin-
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Figure 6.1: Contour plots of transmission coefficient versus energy and incident
angle, for all spin and valley flavors. ∆SO equals 30 meV, while ∆ varies: in (a)
∆ = 0, (b) ∆ = 15 meV and (c) ∆ = 30 meV. The width of the barrier is taken to be
W = 100 nm, and B = 0.2 T.

contrasting magnetic moments were thoroughly studied in Chapter 5. It is these

moments that cause spin-distinguished transmission found in Fig. 6.1(a). A similar

behavior occurs when only ∆ is nonzero, but with valley differentiation instead. In

fact, we have found that all of the contour plots obey the symmetry ∆SO ↔ ∆,

s ↔ τ . This stems from the fact that the band gap and the magnetic moments

display the same symmetry as well (see Chapter 5). We stress however that this

behavior has little to no impact on the effect we describe here.

Introducing ∆ will cause shrinking/enlarging of the evanescent region for sτ =

−1/ + 1, column (b). This will lead to the appearance of an energy range where

only sτ = −1 states are not suppressed. Furthermore note that these states also

experience lower fringe contrast. This is because the effective gap in the barrier is

now reduced for these states. Finally, for the case ∆SO = ∆, depicted in column

(c), sτ = +1 states are even further suppressed. On the other hand, for sτ = −1

the band gap in the barrier becomes zero, and the effective dispersion returns to

a Dirac cone. These states are transmitted as if there was only a magnetic field

barrier in bulk graphene [135, 172], which can also be inferred from the fact that
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Figure 6.2: Polar plots of the transmission coefficient versus the incident angle
for various strains and energies. In (a) τB = ±τ , E = ±20 meV give the same
transmission, while in (b) τB = ∓τ , E = ±20 meV give the same transmission. All
other parameters are the same as in Fig. 6.1(c). The electric control of the spin-valley
filtering is clearly seen in (c), where the contour plot of T↑ − T↓ is shown.

now ε
c/v
cr1 = ε

c/v
cr2. This means that they experience no reflection at the walls of the

barrier and as a consequence there are no resonances.

Therefore, as long as ∆SO 6= 0 and ∆ 6= 0, in a particular energy range only spin

up states from the K valley and spin down states from the K ′ valley are transmitted.

Introducing pseudomagnetic field, by for instance setting τB = +τ , means that the

effective magnetic field in K ′ valley flips. This in turn flips the transmission window

in this valley to εccr1K′ = γ/ (1 + sinφ). Thus, spatial separation of the states from

each valley will occur, which is an obvious consequence of their opposite cyclotron

trajectories. Furthermore, since spin is coupled to the valley degree of freedom in

the transmitted states, this will inevitably lead to spin separation as well.

Additionally, it follows from Eq. (6.17) that the transmission coefficient for

−φ, −s, −τ equals the one for φ, s, τ , which is a manifestation of time reversal

symmetry.1 In other words, the transmission for spins in the valley where the

effective magnetic field is reversed, will just be a mirror image of the transmission

from the opposite valley and opposite spin, for which the effective magnetic field

stayed the same. This is displayed in Fig. 6.2(a), for the same set of parameters as

in Fig. 6.1(c), and E = 20 meV, where the spin-valley filtering behavior is apparent.

On the other hand, by choosing the opposite strain, τB = −τ , the effective magnetic

field will be flipped in both valleys. This will lead to flipping of the filtered spin

and valley, as depicted in Fig. 6.2(b), since both transmission windows flip (see Eq.

1It can easily be established that T (θ) = T (−φ), allowing a straightforward interpretation of
Fig. 6.2 in terms of the exiting angle as well.
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6.3 Spin-valley filtering

(6.21)). In other words strain could act as a switch.1

Furthermore, the switching can also be achieved by controlling the chemical

potential instead of strain. To see this, note that the transmission window for a given

spin and valley in the valence band εvcr1 is a mirror reverse of the one in the conduction

band εccr1, Eq. (6.21). This is a consequence of different cyclotron trajectories for

electrons and holes, and the same symmetry is obeyed by the semiclassical critical

boundary, given in Eq. (6.22). Moreover, since T (ε, τB = +τ) = T (−ε, τB = −τ)

holds, Figs. 6.2(a) and (b) also correspond to τB = −τ , E = −20 meV and τB = τ ,

E = −20 meV, respectively. The effect of controlling the chemical potential on spin

filtering is depicted in Fig. 6.2(c), where the outlines of the transmission windows

can be clearly seen. Note that the same plot holds for TK′−TK , albeit with opposite

filtering in the overlap region of both transmission windows. Therefore, the control of

the transmitted spin-valley outside of the transmissionless gap [−γ/2, γ/2] could be

established by means of electrical gating. Additionally, there exist optimal energy

ranges for filtering in the valence and conduction band, [−γ,−γ/2] and [γ/2, γ],

respectively, where the transmitted states do not overlap.

Finally, let us conclude with some practical considerations. First note that only

minor straining would be required for inducing pseudomagnetic field of 0.2 T in a

100 nm wide barrier, given the strain pattern described in [173]. Since ∆SO and ∆

equal zero in graphene, these two parameters would have to be induced artificially in

the barrier, a feat possible because bulk electrons are fully exposed on the graphene

surface. Hexagonal Boron Nitride has an intrinsically broken inversion symmetry,

and forms a generally higher quality electronic heterostructure with graphene as op-

posed to other substrates [65], manifested in reduced charge impurity, ultra-flatness,

and high electron mobility. It also has a minuscule lattice mismatch with respect to

graphene [146], which causes a moiré pattern, resulting in Hofstadter fractal spec-

trum [174, 175]. While the emerging superlattice potential was suggested to induce

insulating puddles with opposing masses [147, 176], it was also argued that an av-

erage gap will be opened nevertheless [148]. As already mentioned in the previous

chapter, a gap of about 30 meV in a graphene/hBN composite, consistent with in-

version symmetry breaking was detected recently [66, 67]. The average gap appears

because the area of the favored commensurate stacking expands by stretching of the

graphene lattice, once the two layers are well aligned [67, 94, 149]. This strain can

1Note that the symmetry τB = +τ, φ → τB = −τ,−φ does not hold in general, due to the
aforementioned interplay with the orbital magnetic moments, although it effectively appears so for
the parameter window of interest.
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6.3 Spin-valley filtering

also produce pseudmagnetic field patterns in graphene [177].

On the other hand, it was suggested that engineering SOC in graphene can be

achieved by adatoms or substrates [95, 150–152]. This was indeed experimentally

verified recently, where SOC as high as 17 meV was observed [98, 99]. Since SOC

in Eq. (6.10) commutes with out-of-plane spin, increasing it will not affect scatter-

ing of this spin component. However, inversion symmetry breaking will cause new

extrinsic spin relaxation mechanisms [140, 178]. The use of hBN as a substrate

would prove beneficial here, since it was shown that the resulting heterostructure

supports very long spin relaxation lengths [142]. Moreover, we argue that scattering

processes could also be reasonably reduced by manipulating barrier length and/or

strain patterns.
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Chapter 7

Conclusion

In this thesis a range of graphene structures with varying geometries were studied.

In particular, phenomena related to the manifestation of magnetism were analyzed,

either due to the response to an external (pseudo)magnetic field, magnetic moments

emerging from the e-e interaction or the band structure, or both. After laying

out the basic theory in two introductory chapters, in Chapter 3 the electron and

hole states in a monolayer graphene circular quantum dot were modeled using the

Dirac-Weyl equation. Two distinct types of boundary conditions were employed,

namely the infinite-mass and the zigzag boundary conditions. An energy gap was

found only for the case of infinite-mass boundary condition, whereas the peculiar

zero energy state, which is pseudo-spin polarized and localized close to the zigzag

boundary, exists when the zigzag boundary condition is imposed. Increase of the

magnetic field diminishes the influence of the edge on the electron confinement,

and the states merge into Landau levels. The obtained spectra exhibit different

symmetries between the electron and hole spectra, and also different intervalley

symmetries. However, the variation of the angular current density with magnetic

field is quite similar for the two adopted boundary conditions.

The states which collapse into n = 0 Landau level (for B → ∞) are found

to exhibit paramagnetic behavior due to the influence of the edge, and become

pseudo-spin polarized when the magnetic field increases. Negative m states are

found to exhibit both clockwise and counterclockwise currents when the magnetic

field increases. Furthermore, the boundary conditions and the intervalley symmetry

are found to influence the absorption spectra. Equal transition energies in the

two valleys lead to the most intense absorption line for the adopted infinite mass

boundary condition. On the other hand, different transition energies in the two
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valleys lead to much smaller absorption oscillator strength if the zigzag boundary

condition is used.

It is also found that many features of the more realistic tight-binding model of

graphene quantum dots can be described by a simplified continuum approach to

circular quantum dots. Namely, the energy states in the continuum and TB models

converge to the Landau levels at high magnetic field in a similar way. However,

due to their inevitable zigzag edges, circular graphene quantum dots cut out from

a graphene lattice exhibit a dense quasi-zero energy band, formed by groups of

states which exhibit self-similarity. This is a manifestation of the microscopic char-

acter of these dots, which cannot be properly described by any continuum-based

model. Nevertheless, for circular dots based on mass confinement, the tight-binding

results and the analytical infinite mass boundary condition results agree very well

for low energies and large dot radius. Thus, another conclusion is extracted from

this comparison: the infinite mass boundary condition for the Dirac-Weyl equation,

frequently used to simulate electron states in graphene nanostructures, can describe

only quantum dots created by mass-related confinement, whereas the dots cut out

from a graphene layer obtained in recent experiments [179] have a much more com-

plex spectrum which, at least in the absence of possible additional potential terms

(due to e.g. edge reconstruction, magnetization, etc.), cannot be described by either

infinite mass or zigzag boundary condition in the continuum model.

Subsequently, in Chapter 4 we predicted an antiferromagnetic phase in hexagonal

graphene quantum rings with zigzag inner edge described by the mean-field Hubbard

model. The distribution of magnetic moments was found to strongly depend on the

type of the outer edge, and larger antiferromagnetic order was found in rings than

in hexagonal dots. Peculiar hybridization between the states of adjacent sides of

the inner ring edge is the reason behind the increase of magnetization of rings with

respect to dots. Also, the staggered magnetization and the maximum magnetic

moment are found to be strongly influenced by the size and the shape of the rings.

For wide rings, the maximum magnetic moment is largest when both the inner and

outer edges are zigzag. But, as a consequence of the hybridization between the

states of the two edges, the maximum magnetic moment in a ring with armchair

outer edge exceeds the one for the zigzag outer edge when the ring width decreases.

The staggered magnetization in both the hexagonal dots and the rings with zigzag

outer edge is found to decrease faster than in the rings with armchair outer edge

when the number of the edge defects increases.
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In Chapter 5, we addressed the orbital magnetic moments emerging from the

band topology of insulating Dirac systems, as well as their manifestation on trans-

port characteristics. In particular, we closely examined the moments coupled to the

spin degree of freedom, arising due to strong spin-orbit coupling, and thus leading to

the renormalization of the g-factor. Their duality with the valley-contrasting orbital

moments found in honeycomb lattices with broken spatial symmetry was demon-

strated, alongside with the duality of the Landau spectrum, particularly manifested

in the behavior of the zeroth Landau level.

After establishing that magnetic properties couple with ∆SO and the spin quan-

tum number on the one hand, and ∆ and the valley quantum number on the other

hand in an analogous fashion, we explored the influence of the orbital magnetic

moments on the transport properties. In particular, we focused on the transmis-

sion through a single 1D barrier made of artificially enhanced spin-orbit coupling in

graphene. We have shown that certain Zeeman-like magneto-transport signatures

are a clear manifestation of the induced moments. The conductance G through

the device for the two spins start deviating from each other with increasing mag-

netic field. The effects of the moments on the fringe pattern of the transmission

coefficients are most clearly observed in the energy dependence of the derivative of

the conductance with respect to the electron energy dG/dE. This quantity reflects

the increasing shifts in the interference maxima of opposite spins with increasing

magnetic field; they are largest near the band edges, and they decrease for larger

energies due to the decrease of the orbital magnetic moments themselves.

Because of the analogy between the mass and the SOC terms and the orbital

moments they induce, the presented results are also valid for valley transmission

through a barrier with only ∆ 6= 0. This, however, cannot be captured by numerical

techniques such as the TB NEGF method, which is only able to account for the spin

degree of freedom, and the associated orbital moments. Nevertheless, this behavior

should be present in real devices, even in the absence of a clearly observable transport

gap, since the Berry curvature hot spot can extend over a wide energy range.

In the end, in Chapter 6 we proposed a device which enables spatial separation

of opposite spin-valley pairs. The proposed spin-valley filter consists of a strained

barrier with artificially engineered electron mass and SOC. The pseudomagnetic field

enforces opposite cyclotron trajectories for the two gapless spin-valleys. Nanoribbon

geometry could provide the practical testing ground for this effect, with the barrier

formed perpendicular to the ribbon. If ∆ > ∆SO, the device would be in the
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topologically trivial phase, and the polarized current could in principle be detected

by leads attached to the edges of the ribbon. On the other hand, if ∆SO > ∆, edge

states could become a nuisance. However the device could still operate in the domain

of electron optics. In other words, the effect would be observable for a sufficiently

collimated beam injected far from the edges. Collimation could also be achieved by

means of a smooth Klein barrier in front of the studied device [180].
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Appendix A

Bloch theorem and Peierls

substitution

The Hamiltonian is given by

H =
p2

2m
+ U (r) , (A.1)

where U (r) =
∑

R Vc (r−RA) + Vc (r−RB), is the potential landscape due to

the honeycomb crystal lattice. The Bloch theorem asserts that the solution to the

problem

HΨk = E (k) Ψk, (A.2)

is to be sought in the Bloch sum form

Ψk = cAΨkA + cBΨkB. (A.3)

where

Ψkα =
1√
N

∑
R

eik·Rφ (r−Rα) . (A.4)

The corresponding eigenvalues E (k), which form bands depending on the crystal

momentum k, are obtained by calculating the matrix elements 〈Ψkα|H|Ψk〉. For

instance, multiplying Eq. (A.2) with A component of the Bloch sum results in
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cA
N

∑
RR′

eik(R′−R)

∫
drφ∗ (r−RA)Hφ (r−R′A) +

cB
N

∑
RR′

eik(R′−R)

∫
drφ∗ (r−RA)Hφ (r−R′B) .

(A.5)

Note that the matrix element depends only on the difference R′ −R, which allows

summation over the unit cells in the lattice, canceling the N factor in the denomina-

tor. In the light of the tight binding approximation, which refers to strong ties of a

valence electron to its parent atom, one can neglect overlap of orbitals on neighboring

atoms. Additionally, employing the two-center approximation, which disregards any

matrix elements where orbitals and the potential are located on three different sites,

allows further simplification. This means that the first part reduces to the on-site en-

ergy εA, without any phase factors. On the other hand, the second part collects phase

factors corresponding to hopping from three nearest neighbor atoms of an atom A,

multiplied by the hopping integral −t =
∫
drφ∗ (r−RA)Vc (r−RA)φ (r−RB).

Setting εα = 0 gives the kernel of the Hamiltonian in Eq. (1.13).

In the presence of the magnetic field the Hamiltonian changes to

H =
(p− qA)2

2m
+ U (r) , (A.6)

where q is the charge of the particle. In the thesis the convention q = −e for electrons

is used (i.e. e > 0). The additional term introduces complications, and the original

Bloch sum becomes inadequate. As it turns out, simply adding a phase term

Ψkα =
1√
N

∑
R

ei(k·R+ e
~GR)φ (r−Rα) , (A.7)

where

GR =

∫ r

R

A · dl, (A.8)

resolves the issue. The hopping matrix elements now read
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HAB =
1

N

∑
RR′

eik(R′−R)

∫
dre−i

q
~GRφ∗ (r−RA)

[
(p− qA)2

2m
+ U (r)

]
ei

q
~GR′φ (r−R′B)

=
1

N

∑
RR′

eik(R′−R)ei
q
~
∫R
R′ A·dl

×
∫
drei

q
~Φ(r)φ∗ (r−RA)

[
(p− qA + q∇GR′)2

2m
+ U (r)

]
φ (r−R′B)

=
1

N

∑
RR′

eik(R′−R)ei
q
~
∫R
R′ A·dl

∫
drφ∗ (r−RA)

[
p2

2m
+ U (r)

]
φ (r−R′B) . (A.9)

The relation ∇GR′ = A holds for the tight binding condition and in the case when

the magnetic field is invariant at the scale of the crystal lattice [181]. On the other

hand, the flux Φ (r) =
∮
R′→r→R

A · dl is larger when the integrand r is further from

the two vectors R and R′, where the atomic orbitals are effectively zero, while the

flux is vanishing where the hopping integral is nonzero. Having these two things in

mind helps explain the transition from the second to the third line.

Now it becomes obvious that the matrix elements are the same as in the case

without magnetic field, apart from the phase factor picked up, which is denoted

the Peierls phase [182]. This is tremendously convenient, since then we get to

use the same material parameters regardless of the magnetic field value, and the

corresponding phase is computationally trivial to take into account. For electrons it

amounts to replacing the hopping term tij with tije
i e~

∫ j
i A·dl. Finally, let us note that

a beautiful and elucidating explanation for this phase can be found in Feynman’s

Lectures (Vol. III, Chapter 21) [183].

108



Appendix B

Energy levels for low magnetic

fields

We start from Eq. (7) for zero magnetic field which can be rewritten as,

D(0)|χ(0)
1i 〉 = λ

(0)
i |χ(0)

1i 〉, (B.1)

where the operator D(0) = −[ d
2

dρ2
+ 1

ρ
d
dρ
− m2

ρ2
], λ

(0)
i = (ε

e,h,(0)
±1,m,n)2 (with i being the

eigenvalue index) and |χ0
1i(ρ)〉 is given by Eq. (3.9). For the case of non-zero

magnetic field we have

(D(0) + βD
(1)
1 + β2D

(1)
2 )|χ(1)

1i 〉 = λ
(1)
i |χ(1)

1i 〉, (B.2)

where D
(1)
1 = 2(m + 1) and D

(1)
2 = ρ2. We assume that |χ(1)

1i 〉 = |χ(0)
1i 〉 for small

magnetic fields. Multiplying 〈χ(0)
1i | on both sides of the above equation we have,

λ
(1)
i = λ

(0)
i + 2β(m+ 1) + β2 〈χ(0)

1i |ρ2|χ(0)
1i 〉

〈χ(0)
1i |χ(0)

1i 〉
(B.3)

and finally we obtain,

ε
e,h,(1)
±1,m,n(β) =

√
(ε
e,h,(0)
±1,m,n)2 + 2β(m+ 1) + β2A(m), (B.4)
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where

A(m) =

∫ 1

0
ρ3J2

m(ε
e,h,(0)
±1,m,nρ)dρ∫ 1

0
ρJ2

m(ε
e,h,(0)
±1,m,nρ)dρ

=

m+ 1

m+ 2

2F̃3(m+ 1
2
,m+ 2;m+ 1,m+ 3, 2m+ 1;−ε2(0)

n,m)

2F̃3(m+ 1
2
,m+ 1;m+ 1,m+ 2, 2m+ 1;−ε2(0)

n,m)

(B.5)
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Appendix C

Transmission through a barrier in

bulk graphene

The studied structure and the chosen gauge for the vector potential [Eqs. (5.18) and

(6.11)] ensure translational invariance along the y direction, so ky is a good quantum

number and the solutions have the form Ψ(x, y) = exp(ikyy) (ψA(x), ψB(x))T . The

following coupled system of differential equations, for the amplitudes on the two

sublattices can then be obtained:(
τkx ∓ iky ∓ i

e

~
Ay

)
ψB/A ± δψA/B = εψA/B. (C.1)

Reducing the coupled system to a set of two independent second order differential

equations leads to[
∂2
x ∓ τ

e

~
(∂xAy)−

(
ky +

e

~
Ay

)2

+ ε2 − δ2

]
ψA/B = 0. (C.2)

Bearing in mind the form of the vector potential of the pseudomagnetic field [Eq.

(6.11)], the differential equation in the barrier becomes[
∂2
x ∓

ττB
l2B
−
(
ky + τB

x

l2B

)2

+ ε2 − δ2

]
ψA/B = 0. (C.3)

The solutions for real magnetic field can be restored in the limit τB = 1. By using

the transformation z =
√

2 (kylB + τBx/lB) the following equation is obtained[
∂2
z + 1/2− 1/2∓ ττB

1

2
+
(
ε2 − δ2

) l2B
2
− z2

4

]
ψA/B = 0, (C.4)
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which is of the form of the parabolic cylinder (Webers) differential equation

y′′ +

(
ν +

1

2
− z2

4

)
y = 0, (C.5)

whose solutions are given in terms of parabolic cylinder functions

y = C1Dν(z) + C2Dν(−z). (C.6)

Finally the solution for the first sublattice is given by

ψA =C1DνA

[√
2 (kylB + τBx/lB)

]
+C2DνA

[
−
√

2 (kylB + τBx/lB)
]
,

(C.7)

where νA = (ε2 − δ2) l2B/2 − ττB/2 − 1/2. For the other sublattice after employing

the recurrence relations

∂Dν(z)

∂z
=

1

2
zDν(z)−Dν+1(z), (C.8)

∂Dν(z)

∂z
= νDν−1(z)− 1

2
zDν(z), (C.9)

for ττB = +1 and ττB = −1 respectively, and the relationship (C.1), one obtains

the following expression

ψB =C1gDνB

[√
2 (kylB + τBx/lB)

]
−C2gDνB

[
−
√

2 (kylB + τBx/lB)
]
,

(C.10)

where νB = (ε2 − δ2) l2B/2 + ττB/2− 1/2, and

g = i

[ √
2

(ε+ ττBδ) lB

]τ
. (C.11)

If the relation

Dν (z) = 2−ν/2e−z
2/4Hν

(
z√
2

)
(C.12)

is employed, the spinor multiplied by C1 in Eqs. (C.7) and (C.10) reduces to the

solution (5.12), once the incident energy is equal to a particular Landau level, as

could be expected.

The incident wave function is given by
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ψI = eikxx

(
1

τeiτφ

)
+ re−ikxx

(
1

τeiτ(π−φ)

)
, (C.13)

where φ = arctan ky/kx.

Finally, in the third region the vector potential is a non-zero constant, and

employing the standard plane wave ansatz, the solution is given by

ψIII = t

√
kx
k′x
eik

′
xx

(
1

τeiτθ

)
, (C.14)

with the energy of the plane wave given by ε = α
√
k′2x + k′2y , k′x = ε cos θ, the effective

transverse momentum after the barrier k′y = ε sin θ = ky + τBW/l
2
B and θ being the

angle of energy propagation, with respect to the direction transverse to the barrier.

The additional factor under the square root follows from current conservation [23].

Again by replacing the expression for the momenta before and after the barrier, one

obtains the effective law of refraction for a barrier of thickness W with nonzero ∆,

∆SO and B as

ε sin θ = ε sinφ+ τBW/l
2
B. (C.15)

The expressions for the wave functions in different regions, (C.13), (C.7), (C.10),

and (C.14) are then matched at the interfaces x = 0 and x = W , which gives a

system of equations, whose solution yields the transmission amplitude t

t =
2gτ cos(τφ)

(
G+
AG
−
B +G−AG

+
B

)
eik′xWf

√
k′x
kx
, (C.16)

where

f = g2
(
F+
BG

−
B − F−BG+

B

)
+ eiτ(θ−φ)

(
F+
AG

−
A − F−AG+

A

)
+gτeiτθ

(
F−BG

+
A + F+

BG
−
A

)
+ gτe−iτφ

(
F+
AG

−
B + F−AG

+
B

)
.

(C.17)

Here the coefficients F± and G± are given by

F±A/B = DνA/B

[
±
√

2kylB

]
, (C.18)

G±A/B = DνA/B

[
±
√

2(kylB + τB
W

lB
)

]
. (C.19)
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