
UNIVERSITY OF BELGRADE

FACULTY OF ELECTRICAL ENGINEERING

Yousef H. Abuadlla

Flow-Based Anomaly Intrusion
Detection System Using Two Neural

Network Stages

Doctoral Dissertation

Belgrade, 2014

UNIVERZITET U BEOGRADU

ELEKTROTEHNIČKI FAKULTET

Yousef H. Abuadlla

Sistem za detekciju upada zasnovan na
tokovima sa dve neuralne mreže

doktorska disertacija

Beograd, 2014

Graduation committee:

Chairman:

 Professor Zoran Jovanović

 School of Electrical Engineering, University of Belgrade

Members:

1) Professor Dušan Starčević

 Faculty of Organizational Sciences, University of Belgrade

2) Professor Goran Kvaščev.

 School of Electrical Engineering, University of Belgrade

3) Professor Slavko Gajin.

 School of Electrical Engineering, University of Belgrade

Abstract

i

Abstract

Internet users and computer networks are suffering from rapid increase in number of

attacks. In order to keep them safe, there is a need for effective security monitoring

systems, such as Intrusion Detection Systems. Many researchers concentrate their

efforts on this area using different type of approaches to build reliable intrusion

detection system. Today‟s commercially available intrusion detection systems are

predominantly signature-based intrusion detection systems that are designed to detect

known attacks by utilizing the signatures of those attacks. Such systems require frequent

rule-base updates and signature updates, and are not capable of detecting unknown

attacks. In contrast, anomaly detection systems, a subset of intrusion detection systems,

model the normal system/network behavior which enables them to be extremely

effective in finding and foiling both known as well as unknown attacks. While anomaly

detection systems are attractive conceptually, a host of technological problems need to

be overcome before they can be widely adopted. These problems include: high false

alarm rate, failure to scale to gigabit speeds, etc. Flow-based Anomaly intrusion

detection systems are one of these approaches that rely on aggregated traffic metrics.

Their main advantages are host independence and usability on high speed networks.

The aim of this research is to propose and investigate a neural network based

Intrusion Detection System that can promptly detect and classify attacks, either if they

are known or never seen before. The proposed system makes use of neural network as

analysis method and flow-based network data as data source. A Two Stages Neural

Network intrusion detection system based on flow data is proposed for detecting and

classifying attacks in network traffic. The first stage detects significant changes in the

traffic that could be a potential attack, while the second stage defines if there is a known

attack and in that case classifies the type of attack. The first stage is crucial for selecting

windows where attacks, known or unknown, are more probable. Two different neural

network structures were used, multilayer and radial basis function network, with the

objective to compare performance, memory consumption and the time required for

network training. The experimental results demonstrate that the designed models are

promising in terms of accuracy and computational time, with low probability of false

alarms.

Abstract

ii

резиме

Корисници интернета и рачунарских мрежа суочавају се са брзим пораст напада

на мреже. Да бисмо их учинили безбедним, постоји потреба за ефикасним

системима надзора безбедности, као што су системи за детекцију упада. Многи

истраживачи концентришу своје напоре у овом подручју, користећи различите

врсте приступа како би изградили поуздан систем за детекцију упада. Данашњи

комерцијално расположиви системи за детекцију упада су углавном системи за

детекцију упада на бази потписа, који су дизајнирани да открију познате нападе

коришћењем потписа тих напада. Овакви системи захтевају честа ажурирања

потписа и правила препознавања, а нису у стању да детектују непознате упаде.

Насупрот томе, системи за детекцију засновани на аномалијама, који

представљају подскуп система за детекцију упада, моделују нормално понашање

система/мрежа, које им омогућава да буду изузетно ефикасни у проналажењу како

познатих тако и непознатих напада. Док су системи за детекцију засновани на

аномалијама атрактивни као концепт, многи технолошки проблеми морају да буду

превазиђени пре него што постану широко прихваћени. Ови проблеми обухватају:

високу стопу лажних аларма, неуспех да се скалирају на гигабитне брзине, итд.

Системи за детекцију аномалија засновани на токовима су један од приступа који

се ослањају на агрегираној саобраћајној метрици. Њихове главне предности су

независност од рачунара домаћина и употребљивост на мрежама високих брзина.

Циљ овог истраживања је да предложи и истражи систем за откривање

упада заснован на неуралним мрежама који може брзо да открије и класификује

нападе, било да су у питању познати или никада раније откривени напади.

Предложени систем користи неуралне мреже за анализе и токове скуплљене из

мрежног саобраћаја као извор података. Систем за детекцију упада помоћу

неуралних мрежа у два нивоа заснован на протоку података је предложен за

откривање и класификацију упада у мрежном саобраћају. Прва фаза детектује

значајне промене у саобраћају које би могле бити потенцијални упад, док друга

фаза дефинише да ли постоји познати упад и у том случају класификује врсту

Abstract

iii

упада. Прва фаза је кључна за избор прозора где су упади вероватнији, било да су

познати или не. Две различите структуре неуралне мреже су коришћене,

вишеслојнa и мрежa радијалне функциje, са циљем да се упоредe перформансe,

потрошњa меморије и потребно време за тренирање мреже. Експериментални

резултати показују да су дизајнирани модели обећавајући у погледу тачности и

времена извршавања, уз малу вероватноћу појаве лажних аларма.

Content

iv

Abstract i

Table of Content iv

List of Figures vii

List of Tables viii

Acknowledgements ix

Chapter 1: Introduction 1

1.1 History... 1

1.2 Motivations and Aims... 2

1.3 Organization of the Dissertation... 6

Chapter 2: Background 7

2.1 Network flows... 7

 2.1.1 Flow definition.. 7

 2.1.2 The metering and collection process... 8

 2.1.3 Flow export protocols... 9

 2.1.4 Flow Sampling.. 11

2.2 Intrusion Detection Systems... 11

 2.2.1 Earlier Research on Intrusion Detection... 13

 2.2.2 Current Intrusion Detection Systems.. 14

 2.2.3 Anomaly Intrusion Detection Systems... 16

 2.2.4 Misuse Intrusion Detection Systems... 18

 2.2.5 Hybrid of misuse and anomaly Intrusion Detection System................................. 19

 2.2.6 Misuse versus Anomaly Detection... 19

2.3 Intrusion Prevention System... 20

 2.3.1 How Does Intrusion Prevention Work?.. 21

 2.3.2 Intrusion Prevention System: Strengths & Weaknesses....................................... 21

2.4 Attack methods... 22

 2.4.1 Denial of Service (DoS).. 24

 2.4.2 Trojan Horses.. 26

Content

v

 2.4.3 Viruses and worms.. 26

2.5 What could be better for today‟s system? .. 27

Chapter 3: Neural Networks 30

3.1 Introduction... 30

3.2 Neural Network Operation.. 32

3.3 Neural Network Architectures.. 33

 3.3.1 Multi Layer Perceptron... 35

 3.3.2 Radial Basis Function Network.. 37

 3.3.3 RBF Networks vs. Multilayer Perceptrons... 39

3.4 Neural Network Learning... 40

 3.4.1 Supervised Learning... 43

 3.4.2 Unsupervised learning... 44

 3.4.3 Reinforcement learning... 44

3.5 Back-Propagation Network... 45

3.6 Applications of Neural Network... 47

3.7 Neural Network and Intrusion Detection System... 47

Chapter 4: Proposed Intrusion Detection System 51

4.1 Introduction... 51

4.2 Flow-Based Solutions... 53

 4.2.1 Denial of Service... 53

 4.2.2 Scans... 55

 4.2.3 Worms... 57

4.3 Proposed Approach…………………... 59

 4.3.1 Flow Collector Module... 60

 4.3.2 Feature Preparation Module.. 61

 4.3.3 Anomaly Detection Module.. 61

 4.3.4 Detection and Classification Module…….. 62

 4.3.5 Alert module... 63

4.4 Training Dataset.. 64

Content

vi

 4.4.1 Existing Dataset.. 64

 4.4.2 Flow-Based Dataset.. 65

Chapter 5: Experimental Results 67

5.1 Training and Testing Proposed System.. 67

5.2 Anomaly Detection module test and results... 68

5.3 Detection and Classification Module test and results... 70

5.4 Discussion of Results... 72

5.5 Comparison of Results.. 73

Chapter 6: Conclusions and Future Work 76

6.1 Conclusion.. 76

6.2 Future work... 77

References 78

Biography 86

Appendices 87

List of Figures

vii

Figure 1.1 Trends in incidents and vulnerabilities... 3

Figure 2.1 IP flow exporting and collecting architecture... 8

Figure 2.2 The evolution of attack sophistication.. 23

Figure 2.3 Distributed Denial of Service attack... 25

Figure 2.4 Firewall IDS and Honey Net protecting a LAN..................................... 28

Figure 3.1 Neural Network model... 31

Figure 3.2. Sigmoid Function.. 32

Figure 3.3 Neural network architecture... 34

Figure 3.4 Neural network active nodes.. 35

Figure 3.5 Multi Layer Perceptron... 36

Figure 3.6. Radial basis function network structure... 38

Figure 3.7 Neuron Weight Adjustments.. 40

Figure 3.8 Supervised Learning... 43

Figure 3.9 Unsupervised Learning... 44

Figure 4.1 Example of sketch... 55

Figure 4.2 Categories of scans... 56

Figure 4.3 Example of 2D sketches... 57

Figure 4.4 Host classes and their intersections.. 58

Figure 4.5 Proposed Approach... 59

Figure 4.6 IP Flow exporting and collecting architecture.. 60

Figure 5.1 Detection rate of stage one neural network... 69

Figure 5.2 Performance of the anomaly detection module.. 69

Figure 5.3 Performance of the detection and classification module.................................. 71

Figure 5.4 Detection rate for stage two neural networks... 72

Figure 6.1 Detection Rate on Different Datasets for IDSs... 77

List of Tables

viii

Table 2.1 Cisco NetFlow Flow Record Fields.. 10

Table 2.2 Misuse vs. Anomaly intrusion detection... 20

Table 5.1 Used Data set.. 67

Table 5.2 Results of Anomaly Detection phase.. 68

Table 5.3 Neural Network Classified Categories... 70

Table 5.4 Detection and Classification Procedure... 70

Table 5.5 Results of detection and classification... 71

Table 5.6 The results of classification stage... 72

Table 5.7 Comparison of Intrusion Detection Systems Using NN................................. 75

Acknowledgements

ix

I would like to express my deep gratitude to my supervisors, Professor Zoran Jovanovic

for his patient guidance, enthusiastic encouragement and constructive suggestions

during the planning and development of this research work. I would also like to thank

Dr. Slavko Gajin and Dr. Goran Kvascev for their advice, assistance, and support

throughout this research work. My grateful thanks are also extended to all members of

Electrical Faculty.

I would also like to thank my mother, sisters, and brothers. They were always

supporting me and encouraging me with their best wishes.

Finally, I would like to thank my wife, my sons, and my daughter, who supported me

through the good times and bad. Without their endless love and trust, I would not even

dream of enjoying my little achievement today.

Chapter 1: Introduction

1

1.1 History

Internet has almost become a “new world”, and as in the real world the “new world” has

criminals and vandals. The big threat of vandalism and theft has given users a need for

security components to protect themselves.

 In 1983 the ARPAnet, and every network attached to the ARPAnet, officially adopted

the TCP/IP networking protocol. The TCP/IP networking protocol had been under

development since 1973, and had been tested in an internet .in 1973 [1]. From 1983, all

networks that used TCP/IP were collectively known as the Internet. The standardization

of TCP/IP allows the number of Internet sites and users to grow exponentially [2, 3].

When Internet started to be widely used, the users were so excited about connecting

systems that security was forgotten. Everyone just wanted to use the Internet, and did

not think of the dangers it also brought. The first Internet worm was unleashed on

November 2 1988 by Robert T. Morris Jr [3, 4]. Since then, the number of incidents is

growing rapidly each year. In 2003, the number of incidents was 137529 [5]. In 1989,

Kevin Mitnick was arrested for invading Digital Equipment Corporation‟s computer

system and allegedly stealing software. He had then been breaking into different

computer systems for several years, and is now known to be the first high profile

computer hacker [3]. All information systems and computer networks are threaten by

electronic attacks. Computer systems today have a variety of threats, such as [6]:

• Integrity

• Confidentiality

• Denial of Service

• Authentication

A totally safe system is per today impossible to achieve when we have Internet access.

Surveys show that the threat from computer crime and other information security

breaches continues unabated, and that the financial toll is mounting [7]. Therefore we

have to stay alert for attacks and misuse. Most likely they will happen sooner or later.

We can say that the silver bullet in network security would be to lock the computers in a

bank vault, with no external access at all and armed guards to guard the vault. But still

there would be the threat of inside attacks from for example the guards. It is of course

not possible to have a system like this, because most systems need access to the outside

world. This is why we have to get the security level up close to the same level as

Chapter 1: Introduction

2

locking the computers into a bank vault. Network security can be seen as a chain. It is

said that a chain is not stronger than its weakest link. The same can be said about

network security. Your security levels are not higher than the weakest part in your

security components. And in this occasion a quotation from Babylonian Talmud,

Tractate Baba Metzia [6] is illustrative; “It is not the mouse that is the thief, it is the hole

that lets the mouse in”. A couple of years ago someone who wanted to break into a

computer system had to have very good computer skills. He had to know the security

holes, and how to exploit these. Today, the intrusion threats are bigger than ever.

This is because of the fact that there are applications available on the Internet that gives

people with almost no computer experience the possibility to break into computer

systems. Because of this, attacks against computer systems and networks have increased

significantly in the last years [8]. Today, almost everyone can find tools to use for

attacks. Someone who is interested in this can easily search for such tools at for

example Google [9] and start using them from home. And for someone who for

example just want to attack a small neighborhood firm, their IP address can easily be

hidden by the use of public proxy servers found on the Internet.

As Kelly Schupp from Guarded-Net noted [10], “We don‟t believe there‟s one silver

bullet product, nor will there ever be. However, hopefully with the implementation of

newer solutions, life will become a little more manageable and (at least temporarily)

more secure”. Most of the prevalent Internet attacks today can be stopped or mitigated

proactively with little fear of false attacks. But what about the new and unknown

attacks? Are these attacks not the worst? It is hard to protect yourself against something

you do not know anything about.

1.2 Motivations and Aims

The Internet is a complex system in constant evolution. Nevertheless, it is possible to

make some observations with respect to security. A first observation is that the number

of attacks continues to grow. The Cert Coordination Center [5],one of the most well-

known risks, security threats and incidents response centers, offers summaries of the

yearly security situation of the Internet. The Cert/CC maintains a database of

vulnerabilities, with the aim to categorize them according to their severity level and

Chapter 1: Introduction

3

damaging impact on the systems. Vendors, system administrators and users are

encouraged to submit vulnerabilities.

In a similar way, in the past, Cert/CC asked the Internet community for collaboration in

order to report the incidents the users were subject to. Cert/CC defines an incident as the

act of violating an explicit or implied security policy. This definition, according to the

Cert/CC, covers attempts to gain access to (information on) a system, Denial of Service,

disruptions, unauthorized uses and changes to hardware and software. Since 1995,

Cert/CC published each year the number of catalogued vulnerabilities. In fact, the

reporting of incidents started already in 1988, but ended in 2003. The reason to stop can

easily be understood from Figure 1: the growth of reported incidents is nearly

exponential, while the number of catalogued vulnerabilities shows a slower growth

factor. The Cert/CC gives the following explanation:

“Given the widespread use of automated attack tools, attacks against Internet-connected

systems have become so commonplace that counts of the number of incidents reported

provide little information with regard to assessing the scope and impact of attacks.

Therefore, we stopped providing this statistic at the end of 2003.”

Fig. 1.1: Trends in incidents and vulnerabilities (logarithmic scale).

A second observation is that Internet traffic, as well as line speed, continues to grow.

Nowadays an access speed of 1- 10Gbps is not unusual. A university network, for

Chapter 1: Introduction

4

example, reaches traffic averages in the order of hundreds of Mbps, with high activity

peaks in the order of Gbps. On backbone networks, the throughput will even be higher.

Internet2 [11], for example, publishes weekly reports of the Abilene traffic.

It is clear that Network Intrusion Detection Systems (NIDS) should be able to handle

the growing number of attacks, the growth in Internet traffic as well as the increase in

line speed. Researchers assess the current, payload-based, NIDS processing capability to

lie between 100Mbps and 200Mbps [12], [13]. Well known systems like Snort [14] and

Bro [15], exhibit high resource consumption when confronted with the overwhelming

amount of data found in today‟s high-speed networks [16]. In addition, the spread of

encrypted protocols poses a new challenge to payload-based systems. An example is the

work of Taleb et al. [17], [18], where the authors propose an intrusion detection systems

based on per-packet inspection that rely only on header information in order to identify

misuses in encrypted protocols. Given these problems, flow based approaches seem to

be a promising candidate for Intrusion Detection research. Flows are created by

specialized accounting modules usually placed in network routers. The same modules

are responsible of exporting the flows to external collectors. Flow-based Intrusion

Detection Systems will analyze these flows and detect attacks. Compared to traditional

NIDS, flow-based NIDS have to handle considerable lower amount of data. Flow based

intrusion detection is therefore the logical choice for high-speed networks. However,

there might exist situations in which the benefit of using flows is not so pronounced.

The worst case scenario would be when a flow is created for each packet passing

through the monitoring point, as a consequence of a distributed DoS attack (DDoS), for

example. In this case, the number of flows would increase dramatically and extra load

would be put on the monitoring and analysis systems. To mitigate this problem, or, in

general, to improve the performance of routers and monitoring stations, sampling

techniques or flow aggregations [19] can be applied. Sometimes it is argued that flows

do not carry enough information, compared to payload inspection, for being useful for

intrusion detection. The answer to this question highly depends on the user‟s goals.

Flows, which represent by nature aggregated information, do not carry any payload.

They, therefore, do not provide the detection precision of packet-based inspection,

which allows for example pattern matching in payload content. Flows are limited to

information regarding network interactions. With this information, it is still possible,

Chapter 1: Introduction

5

however, to identify communication patterns between hosts, when communication takes

place and which amounts of packets and bytes have been moved. For many attacks, this

information is sufficient. In any case, it is important to underline that flow-based

intrusion detection is not supposed to substitute the packet-based one, but rather

complements the approach by allowing early detection in environments in which

payload-based inspection is not feasible. As described by Schaffrath et al. [20], in an

ideal world payload-based solutions would always outperform flow-based ones in

accuracy. In high-speed networks, however, the processing capabilities of the NIDS

may be too limited to allow payload-based approaches.

The aim of this research is to find out what needs to be done to make a computer

system safer, without having a system that sends out false alarms that takes up much of

the time of an already busy system administrator. The job for security administrators is

almost impossible today. No matter how many holes the security administrators finds in

their network, and no matter how many bugs they fix to keep intruders out, the intruder

just needs to find one hole to get in.

The combination of growing network load and attack frequency is challenging if we are

aiming to effectively detect intruders. The network monitoring community reacted to

the ever growing amount of data by focusing on network flows, rather than individual

network packets. A flow is defined as a set of packets that have common properties, as,

for example, having the same source and the same destination (see chapter 2, Section

2.1.1). Measuring flows offers an aggregated view of traffic information and drastically

reduces the amount of data to be analyzed. Flows are therefore a possible solution to

cope with scalability issues in IP monitoring. However, from a security perspective, we

do not yet see a definite answer to the problem of intrusion detection in situations, as

high-speed networks, in which the traditional packet-based solutions may no longer be

feasible. Flows therefore appear as a promising approach that may lead to improved

results in the field of intrusion detection in high-speed networks.

The goal for this research is to develop an Intrusion Detection System that is

able to detect both known and unknown attacks without relying on signatures or other

hard coded updates to stay protected against the latest attacks. For this we will examine

neural networks ability to learn user behavior, and we will use this for intrusion

detection.

Chapter 1: Introduction

6

1.3 Organization of the Dissertation

The content of this thesis is divided into six chapters. Chapter one introduces the

history, motivation and aim for the research. Chapter two presents the overview of

security components, and goes deeper into Intrusion Detection Systems. Chapter three

describes the neural networks in details. Chapter four proposes and describes the

methods that are used in this research. Chapter five lists and analyzes the results of the

experiments. Chapter six draws out the conclusions and future work.

Chapter 2: Background

7

2.1 Network flows

In the last decade, flows have become quite popular in IP network monitoring, since

they help to cope with the scalability issues introduced by the increasing network

speeds. Nowadays all major vendors offer flow-enabled devices, such as, for example,

Cisco routers with Netflow [21]. The Internet Engineering Task Force (IETF) is

currently working on an IP flow standard, IP Flow Information eXport (IPFIX).

2.1.1 Flow Definition

In the literature, several flow definitions can be found [22, 30, 29, and 23]. We present

the definition of IP flow as it is described by the IPFIX working group within the IETF

[43, 24]:

 “A flow is defined as a set of IP packets passing an observation

 point in the network during a certain time interval. All packets

 belonging to a particular flow have a set of common properties.”

In the IPFIX terminology, the common properties are called flow keys. An example of

flow keys commonly used for characterizing a flow is:

(Source IP; Destination IP; Source port; Destination port; IP protocol):

Aggregated views on the network traffic can be obtained by choosing coarser grained

flow definitions, according to the need of the network administrator. An overview of

this process is given by Fioreze et al. [30, 29]. It is analogously possible to have more

detailed flow definitions. For example, additional fields can be introduced as extensions

for diverse applications. These additional fields are described in IPFIX and they have

been recently included in Flexible

Netflow [21].

Note: There are important differences between flows and Transmission Control

Protocol (TCP) connections. A TCP connection determines a pair of flows: one from the

initiator of the connection to the destination, and one from the destination to the

initiator. However, a flow should not necessarily be due to the TCP protocol. For

example, stream of User Datagram Protocol (UDP) packets between source host A and

a destination host B will result in a flow.

Chapter 2: Background

8

Moreover, a flow does not have size restrictions: each communication between source

and destination hosts will generate a flow, even if a single packet has been exchanged.

Traditionally, flows are also unidirectional, whereas TCP connections are by definition

bidirectional. However, IETF has recently introduced a definition of bidirectional flows

[44], since bidirectional data can further improve export and collection efficiency.

2.1.2 The Metering and Collection Process

Monitoring flows entails a two-step process: flow exporting and flow collection. These

tasks are respectively performed by two components: the exporter and the collector.

Figure 2.1 presents an overview of the metering and collection process. The flow

exporter, or monitoring point, is usually a router or a different flow enabled device. It is

responsible for the metering process,

 i.e., the creation of flow records from observed traffic.

Figure 2.1: IP flow exporting and collecting architecture

The flow exporter extracts the packet header from each packet passing through the

monitoring interface. Each packet header is marked with the timestamp when the header

was captured. The header is then processed by a sampling-filtering module, where it can

be sampled (see Section 2.1.4) and filtered according to specific administrative

requirements (e.g., a specific protocol or IP range). The final step is the update module.

Each incoming packet header triggers an update to a flow entry in the flow cache. If

there is no flow matching the packet header, a new flow entry is created.

Chapter 2: Background

9

A flow record is exported to the flow collector when it is considered expired. In the case

of Cisco NetFlow [22] and similarly in IPFIX [43, 24], a flow expires when:

 The flow was idle (no packets belonging to the flows have been observed) for a

time interval longer than a given threshold. This threshold is known as inactive

timeout. The default value for the inactive timeout for Cisco Netflow [22] is 15

seconds. However, it can be tuned according to the operators‟ requirements.

GEANT [32] uses an inactive timeout of 60 seconds;

 The flow reaches a maximum allowed lifetime, known as active timeout. For

Cisco Netflow [22], the active timeout is 30 minutes, but our experience showed

that shorter timeouts are also common. SURFnet [45] and GEANT [32] both use

an active timeout of 5 minutes;

 The FIN or RST flags have been seen in a TCP flow, indicating the end of a

TCP connection;

 The flow-cache memory is exhausted. In this case, a subset of the flows in the

cache is marked as expired and exported to the collector. Least Recently Used

algorithms may be used to free the flow-cache memory, as well as heuristic

algorithms.

The aim of the flow collector is to receive the flow records from the flow exporter and

to store them in a form suitable for further monitoring or analysis. Examples of flow

collector and analysis tools are flow-tool [46], nfdump [47], sFlowTrend [34], IsarFlow

[35] and DiCAP [39, 40].

2.1.3 Flow Export Protocols

A flow export protocol defines how expired flows are transferred by the exporter to the

collector. The information exported to the collector is usually referred as flow record.

Note: The terminology flow and flow record usually raises the question about the actual

difference between the two. A flow is the complete unidirectional stream of packets

between a source and destination in a network, while a flow record is the information

stored in the flow exporter cache. A flow can coincide with a flow record, if the flow

duration is shorter than the exporter active timeout. Flows longer than active timeout,

Chapter 2: Background

10

will be split into several flow records. In other words, a flow record is the information

describing (part of) a flow as we obtain it directly from a flow exporter.

Cisco Netflow version 5 [22] is a simple protocol that exports flow records of fixed size

(45 bytes in total). Each export datagram will contain up to 30 flow records. The fields

of a Netflow Version 5 flow record are summarized in Table 2.1.

Table 2.1: Cisco NetFlow Flow Record Fields.

Field Description

Source IP address

Destination IP address

Next hop router IP address

SNMP input and output interfaces indexes

Total number of packets in the flow

Total number of Layer 3 bytes in the flow packets

Start of flow timestamp

End of flow timestamp

Source and destination port number

Cumulative OR of TCP flags

IP protocol (for example, 6 = TCP, 17 = UDP)

IP Type of Service

Source and Destination Autonomous system

Source and destination address prefix mask bits

Cisco Netflow version 9 and IPFIX [43, 24] propose flexible protocols in which flow

record formats can be defined by using templates. These protocols allow also a larger

set of parameters to be exported, such as, for example, sampling rate and algorithm,

source and destination VLAN identifiers, MAC addresses and autonomous system

numbers [23, 42]. An IPFIX packet is logically divided into sections known as sets. A

message can normally consist of three kinds of sets, namely template sets (format

template exchange), data sets (flow records) and options template sets (necessary for the

correct interpretation of a template set). For a more detailed treatment of the IPFIX

message format, we refer to [24]. In Netflow v9 terminology, template sets are referred

as template FlowSet and data sets as data records.

Chapter 2: Background

11

2.1.4 Flow Sampling

In certain situations the network load might be too high to export every flow.

Sampling is a useful technique in such situations since it can significantly reduce CPU

load as well as the amount of exported flows. Sampling is a methodology for selecting

only a predefined subset of all available network flows. Indeed, sampling implies that

many flows are lost and are not exported to the collector. But if network traffic is too

high or the hardware not efficient enough, then sampling might be the only possibility

to counter the high network load.

Cisco devices usually distinguish between deterministic, time based and random

sampling. Deterministic sampling selects every nth network packet. Time based

sampling selects a network packet every n mille-seconds and random sampling

randomly selects one network packet out of n packets. In each case the variable n is

specified by the network operator. Most of the time random sampling is advised.

2.2 Intrusion Detection Systems

The goal of intrusion detection is seemingly simple; to detect intrusions. An Intrusion

Detection System is a program that can detect and inform the Network Administrator

about an attack or misuse. The use of Intrusion Detection Systems is getting more and

more common nowadays. It is important to know that an Intrusion Detection System

alone is not the silver bullet in network security. Using an Intrusion Detection System is

more an addition to other security components, as for example firewalls, to make the

protected system more secure.

Intrusion detection is the process of monitoring computer networks and systems

for violations of security policy. The assumptions of Intrusion Detection Systems are

that the intruder has to behave differently from the normal users.

The components of an Intrusion Detection System are [48]:

• Information Source: data utilized by the Intrusion Detection System.

• Analysis engine: process by which the intrusion detection is made.

• Response: action taken when an intrusion is detected.

Chapter 2: Background

12

Intrusion Detection Systems works by gathering information from the protected system

and network and search for information or patterns that can be an attack or misuse. They

can detect intruders by examining parameters as network traffic, CPU and I/O

utilization, user location and file activity for signs of an attack [25]. Intrusion Detection

System can be used to detect misuse from within the organization and to detect attacks

from the outside world. The major functions for an Intrusion Detection System are [26]:

• Monitoring and analyzing user and system activity.

• Assessing the integrity of critical system and data files.

• Recognizing activity patterns reflecting known attacks.

• Responding automatically to detected activity.

• Reporting the outcome of the detection process.

The main goal of an effective Intrusion Detection System is to provide high rates

of attack detection with very small rates of false alarms [27]. The Intrusion Detection

Systems that are used today are a long way from achieving this goal. There are two

types of errors that are important to know in intrusion detection [26]:

• False positives: Also known as false alarms. These errors occur because the Intrusion

Detection System misinterprets normal traffic or activities as an attack.

• False negatives: These errors occur because an attacker is misclassified as a normal

user by the Intrusion Detection System.

 False positives are those error messages that take much of the system administrator‟s

time. A high rate of these errors will degrade the productivity of the system by invoking

unnecessary countermeasures.

False negatives are those errors that are hard to detect because the system sees the

attacker as an ordinary user. These attacks are also the most dangerous and these errors

can cause big losses for a company.

Intrusion Detection Systems differs from on-line to off-line systems [28].

Offline systems are run periodically and they detect intrusions after-the-fact based on

system logs. On-line systems are designed to detect intrusions while they are happening,

thereby allowing for quicker intervention. Intrusion Detection Systems can also be

classified according to the kind of audit source location they analyze [26]:

• Network-based detection: The Intrusion Detection System analyzes network packets

captured in the network.

Chapter 2: Background

13

• Host-based detection: The Intrusion Detection System analyzes different logs for

traces of an attack.

The host based Intrusion Detection System looks at communication in and out of the

computer, checks the integrity of the system files and suspicious processes. The network

based Intrusion Detection System looks at packets on the network as they pass the

intrusion detection sensor. The best solution will be to have a system that combines

these two systems.

 2.2.1 Earlier Research on Intrusion Detection

The last 20 years there has been conducted much research on intrusion detection,

starting with James P. Andersons whitepaper “Computer Security Threat Monitoring

and Surveillance” in 1980 [50]. Anderson introduced the concept of computer threats

and detection of misuse. This is the same concept that is applied to host based Intrusion

Detection Systems. Dorothy Denning wrote a report in 1987 [51]. This report has

almost become a fundamental stone and has inspired many researchers in the intrusion

detection research field. Almost every research paper on intrusion detection uses this

paper as a reference. Denning introduced the first model for intrusion detection, and

most of her work are still of current interest today.

Most of the newer research on intrusion detection focuses on anomaly detection

[52]. This is because the strength in intrusion detection lies in anomaly detection, where

the system does not need to depend on a signature before it can detect an attack. The use

of neural networks in intrusion detection has been used several times by researches the

last decade. This will be explained further later in the thesis. There has also been

research on other using soft computing techniques in intrusion detection.

 In 2002 S. B. Cho showed in his report [53] that the use of hidden Markov models and

attempts to detect intrusions by noting significant deviations from the model can be

used with success in anomaly Intrusion Detection Systems. In this experiment he used

systems call, process and file access as parameters for the intrusion detection.

Experiments with the use of Self- Organizing Maps in intrusion detection have also

been done [41]. The parameters that were used in this experiment were username, host,

type of connection and time session started.

Chapter 2: Background

14

A report from late 2000 [37] concluded that all the evaluation performed to that date

indicated that Intrusion Detection Systems where only moderately successful at

identifying known intrusions, and quite a bit worse at identifying those that had not

been seen before.

2.2.2 Current Intrusion Detection Systems

Today's IDS is a combination of signature analysis, network traffic monitoring, and

network behavior analysis (also referred to as anomaly detection) technologies. The

heart of most solutions today is signature analysis (i.e. monitoring traffic for known

attack patterns - everything from minor attacks through the latest, high-profile worms).

Typically, a signature-based IDS is configured with thousands of rules that detect

potentially malicious attacks and codes. Positive proof of the effectiveness of IDS

solutions and why they are an important component to a layered network security

strategy is the sheer volume of attacks they are able to detect. Two drawbacks to

signature-based IDS solutions are false-positives and the time lapse to create signatures

for new exploits. False-positives are pattern matches inaccurately identified as attacks.

Historically false-positives have inundated administrators thus causing an even greater

problem - desensitization.

Today's solutions are actively and aggressively trying to solve the issue of false-

positives, including providing elaborate "tuning" mechanisms which effectively disable

signatures that cause false-positives.

Similar to anti-virus software, an attack must be analyzed before a signature is

developed to recognize it. This time lapse can be critical. Recently, the time between a

new vulnerability and its associated exploit has been decreasing, placing more pressure

on IDS manufacturers to rush signatures to the market. The recent attacks benefited

from this time interval, allowing it to become the fastest spreading worm in history.

Timely delivery of signatures is integral to overall IDS effectiveness.

An alternative to signature-based IDS is called behavioral or anomaly-based IDS.

The basic premise of this sub-category of IDS is that normal network traffic generally

behaves within certain patterns. For example, opening network ports in rapid succession

is typically not seen in normal traffic, so a behavioral or anomaly-based IDS may flag

Chapter 2: Background

15

that traffic as abnormal and identify it as a port scan (generally a precursor to an attack).

Large, sustained amounts of fragmented packets are also abnormal patterns and will also

be flagged. These systems have not broken into the mainstream, but seek to provide an

alternative to the drawbacks of signature-based systems.

Monitoring for intrusions is a critical component of any network security policy.

The greatest challenge when working with IDS systems has been sifting through and

utilizing the large volume of data generated. Due to the nature of its design, the roles of

IDS systems have largely been one of postmortem or historical reporting. The critical

question facing IDS solutions is this: Is detecting attacks enough?

 Also several other questions unsolved, and most of them are still not answered

completely today:

• Soundness of approach: Does the approach actually detect intrusions? Is it possible to

distinguish anomalies related to intrusions from those related to other factors?

• Completeness of approach: Does the approach detects most, if not all, intrusions, or

are a significant proportion of intrusions detectable by this method?

• Timeliness of approach: Can we detect most intrusions before significant damage is

done?

• Choice of metrics, statistical models and profiles: Which metrics, models, and profiles

provide the best discriminating power? Which are most cost-effective? What are the

relationships between certain types of anomalies and different methods of intrusion?

• System design: How should a system based on the model be designed and

implemented?

• Feedback: What effect should detection of an intrusion have on the target system?

Should Intrusion Detection Expert System automatically direct the system to take

certain actions?

• Social implications: How will an Intrusion Detection System affect the user

community it monitors? Will it deter intrusions? Will the users feel their data is better

protected? Will it be regarded as a step towards “big brother”? Will its capabilities be

misused to that end?

Chapter 2: Background

16

2.2.3 Anomaly Intrusion Detection Systems

Anomaly detection uses models of the intended behavior of users and applications,

interpreting deviations from the “normal” behavior as a problem [49]. Maxion and Tan

[36] have expanded this definition: “An anomaly is an event (or object) that differs from

some standard or reference event, in excess of some threshold, in accordance with some

similarity or distance metric on the event”.

The task of anomaly intrusion detection is to determine if an activity is unusual

enough to suspect an intrusion. A basic assumption of anomaly detection is that attacks

differ from normal behavior [32]. If an organization implements an anomaly based

Intrusion Detection System, they must first build profiles of normal user and system

behavior to serve as the statistical base for intrusion detection, and then use deviations

from this baseline to detect possible intrusions [25]. Any activity sufficiently deviant

from the baseline will be reported as anomalous and considered as a possible attack.

Anomaly intrusion detection was the originally type of Intrusion Detection Systems. It

was an anomaly Intrusion Detection System Denning proposed in her report [51] from

1987. Her Intrusion Detection Expert System model is based on the assumption that it is

possible to establish profiles to characterize the normal interactions of subjects

(typically users) with objects (typically files or programs). This type of intrusion

detection can detect a variety of abnormal patterns of system usage. Here are some

examples from D. Dennings report [35]:

• Attempted break-in: Someone attempting to break into a system might generate an

abnormally high rate of password failures with respect to a single account or the system

as a whole.

• Masquerading or successful break-in: Someone logging into a system through an

unauthorized account and password might have a different login time, location,

connection type from that of the account‟s legitimate user. In addition, the penetrator‟s

behavior may differ considerably from that of the legitimate user. In particular, he might

spend most of his time browsing through directories, and executing system status

commands, whereas the legitimate user might concentrate on editing or compiling and

linking programs. Many break-ins have been discovered by security officers or other

users on the system who have noticed the alleged user behaving strangely.

Chapter 2: Background

17

• Misuse from legitimate users:

 1. A user attempting to penetrate the security mechanisms in the operating system

might execute different programs or trigger more protection violations from attempts to

access unauthorized files or programs. If his attempt succeeds, he will have access to

commands and files not normally permitted to him.

2. A user trying to leak sensitive documents might log into the system at unusual times

or route data to remote printers not normally used. A user attempting to obtain

unauthorized data from a database through aggregation and inference might retrieve

more records than usual.

• Denial-of-Service attacks: An intruder able to monopolize a resource might have

abnormally high activity with respect to the resource, while activity for all other users is

abnormally low.

The main advantage of anomaly Intrusion Detection Systems is that they can

detect previously unknown attacks. By defining what is normal, they can identify any

violation, whether it is part of the threat model or not. In today‟s system the advantages

of detecting previously unknown attacks is paid for in terms of high false-positive rates

[49, 25]. Disgruntled employees, bribery and coercions make networks vulnerable to

attacks from the inside [31].

Anomaly intrusion detection can detect if any employees differs from their

normal routines to make any attempts to an attack. Disadvantages with anomaly

Intrusion Detection Systems are that they are less effective in dynamic environments,

where employees have erratic hours or switch project resources frequently. Also,

inaccurate or incomplete user and system profiling can lead to false-positives [25]. This

type of intrusion detection also has difficulty with classifying or naming the attacks,

since they just depend on deviations from normal behavior [37]. When new users are

introduced into the target system, two potential problems occur [51].

• Lack of profile information about the user‟s behavior.

• The user is inexperienced with the system.

Both these problems will give a high rate of false positives to the system so it is hard to

know how to deal with these. One way to “solve” those problems is to ignore anomalies

during a short period, or raise the deviation value. Both of these two solutions will give

Chapter 2: Background

18

even more dangerous problems. What if the new users make an intrusion? And what

happens if the system is attacked during this period?

2.2.4 Misuse Intrusion Detection Systems

Misuse detection contains attack descriptions (or “signatures”) and matches them

against the audit data stream, looking for evidence of known attacks [49]. These

signatures are detailed descriptions of the sequence of actions performed by a hacker.

This is a good method to stop known attacks, because known attacks can be

characterized by a sequence of events.

Originally, and still, anomaly Intrusion Detection Systems has limitations

because of the problems with dynamic environment and high rates of false positives.

Because of this, misuse Intrusion Detection Systems was introduced [38]. Misuse

Intrusion Detection System typically monitors parameters such as network traffic; CPU

and I/O use, and file activity for activities that match known patterns or attack profiles

[33].

The main advantage of misuse Intrusion Detection Systems is that they focus

analysis on the audit data and typically produce few false-positives [25]. Since they rely

on signatures, the system knows what kind of attack it is when it occurs. This way the

system can easily assign names to the attacks when they occur, and the system

administrator can see what kind of attack the system is under. The problem with these

systems is that it is script based and only recognize known scripts (“signatures”), but are

unable to detect truly novel attacks [10, 37]. Since misuse Intrusion Detection Systems

have no capability of autonomous learning they require frequent updates. As new

attacks are discovered, developers must model and add them to the signature database.

A report from 1999 [31] showed that misuse Intrusion Detection Systems can be very

effective in reducing false alarms if they are implemented properly. The problem is that

there can also be small changes in the attack methods and to detect the changes new

signatures has to be written. There are often written many variations of one signature

and over time this will slow down the system because the signature database grows so

big.

Chapter 2: Background

19

Today, nearly all Intrusion Detection Systems are signature based. The performance of

these systems is limited by the signature database they work from. Many known attacks

can be easily modified to present many different signatures. If the database does not

contain all the different variations, even known attacks may be missed [38]. Attackers

can also bypass the signatures by encrypting the code so that the packets do not match

any known attack signatures [31].

2.2.5 Hybrid of Misuse and Anomaly Intrusion Detection System

There are systems out now that combines the two types of Intrusion Detection Systems.

Hybrid systems can use a rules base to check for known attacks against a system, and an

anomaly algorithm to protect against new types of attacks [25]. This type of Intrusion

Detection System takes the advantages from both systems, but unfortunately it also

takes some of the disadvantages. Misuse detection could be used in combination with

anomaly detection to name the attacks. This will shorten the response time the system

administrator needs as he can see what type of attack the system are under.

2.2.6 Misuse versus Anomaly Detection

Despite the fact that there has been done a lot of research on intrusion detection it is

pretty clear that anomaly intrusion detection has more potential because of its ability to

catch novel attacks. If for example there is an anonymous FTP connection attempts

from an outside IP address this may not cause the system to be suspicious at all. But if

the FTP connection attempt is within a set period of time after a scan from the same IP,

it should become more suspicious. This can be done with the use of anomaly systems.

An anomaly intrusion detection system will not grow “big and slow” over time, because

it learns the pattern of the users over time. Table 2-2 contains the advantages and

disadvantages of misuse and anomaly intrusion detection as they are today.

Chapter 2: Background

20

Table 2.2 Misuse vs. Anomaly intrusion detection

 Advantages Disadvantages

Misuse

IDS

- Can name attacks

- System administrators can write their

own signatures

- Easy to implement

- Properly implemented, it does not

give many false alarms.

- The signature database tends

to get big and clustered after a

while. This can slow down the

system

- Cannot completely detect

novel attacks

- Needs to be updated with

new signatures to catch newly

discovered attacks

- Unprotected against new

attacks during the time it

takes to write new signatures

Anomaly

IDS

- Can easily detect attacks from the

inside

- Hard for an intruder to know how he

should behave to not raise an alarm

since

profiles can be on individual users

- Can detect previously unknown

attacks

- Can use more sophisticated rules

- Complex to implement

- High rate of false alarms

- Still not satisfying enough in

a dynamic environment

- Cannot name attacks.

2.3 Intrusion Prevention System

While Intrusion Detection Systems automatically handle intrusion detection, the system

administrator usually manages intrusion recovery. Intrusion Prevention Systems was

introduced because it was not accomplishing enough with just passive monitoring of

system as today‟s Intrusion Detection System do. Intrusion Prevention Systems work by

offering active threat handling capabilities that stop intruders and attackers before they

can enter a computer system. The difference between Intrusion Detection Systems and

Intrusion Prevention Systems is that when an Intrusion Detection Systems detects a

problem, Intrusion Prevention Systems blocks it. Just like Intrusion Detection Systems,

some of the Intrusion Prevention Systems are host based, and some are network based.

Chapter 2: Background

21

There are split meanings on whether Intrusion Prevention System is a new technology,

or if it just is a “new way of thinking” where several security components are combined

to collaborate with each other [33].

Newer Intrusion Prevention Systems are beginning to rely on software based

heuristic approaches. But here, as in anomaly Intrusion Detection Systems, there are

problems with dynamic environment and with defining accurate user profiles.

2.3.1 How Does Intrusion Prevention Work?

 Intrusion Prevention is an advanced intelligent way of scanning the different layers for

vulnerabilities. It consists of many techniques to ensure the optimal and most advanced

security level. This includes:

 Database updated multiple times daily for the latest signature definitions.

 Traffic abnormalities are being identified and if consisting of dangerous content

will be blocked.

 When a port scan is being performed, an attack will most likely follow in a

matter of minutes afterwards.

 Denial of Service (DOS) attacks protection, because a successful DOS attack

can cause your system to crash or be permanently damaged.

 Protection for known buffer overflow attacks and or other exploits being

launched.

 Zero Day Protection, which is a module that protects for known and unknown

Zero Day Vulnerabilities

 Wide protection for webmail, ftp, Windows, Linux, BSD, UNIX, Routers,

Firewalls, Databases such as DB2, Oracle, MySQL, MS SQL, PostgreSQL.

2.3.2 Intrusion Prevention System: Strengths & Weaknesses

 Intrusion Prevention System was a leap forward from their predecessors,

intrusion detection systems. At first, these new systems were spotty, and

network security professionals were wary of using them. They were slow and

drained valuable bandwidth, and often times blocked the wrong traffic.

http://www.snort.org/

Chapter 2: Background

22

Nowadays, the intrusion prevention industry has matured and the top

competitors have been able to lower or eliminate the bandwidth utilized and

ensure customized settings for blocking threats while still letting in the 'good

guys.' Major strengths of intrusion prevention systems are:

 Reduces Time Spent Reviewing Log Files to Identify Threats.

 Reduces Need for Manpower to Monitor Threats.

 Enhances Network Security Architecture.

 Automatically Identifies and Blocks Threats.

While Intrusion Prevention System provide a baseline for network security, it is no

longer enough. While improved, these systems were created for the static networks of

yesteryear. Wireless devices, virtualization, cloud environments, and PDA devices

(personal digital assistant) have all made today's networks more dynamic. The threats to

these networks have adapted to take advantage of these changes, but the majority of

intrusion prevention systems have not.

Weaknesses of many current intrusion prevention systems are:

 Lack of Network Visibility

 Lack of User Visibility

 Inability to Adapt to Network Changes in Real-Time

2.4 Attack Methods

There are numerous attack methods to use against a computer system, and several

different types of each method. A good security administrator should keep himself

updated with attack methods by visiting security websites where new attack methods are

shown. There are several different attack types, and these will be explained further in

this chapter. The attacks can mainly be sorted into three categories [61]:

• Attacks that deny someone else access to some services or resources a system

provides.

• Attacks that allow an intruder to operate on a system with unauthorized privileges.

• Attempts to probe a system to find potential weaknesses.

Chapter 2: Background

23

All these and other attacks have been increasing in sophistication and power to harm.

Attack tool developers are using more advanced techniques. It is more difficult to write

signatures for signature-based systems such as antivirus software and misuse based

Intrusion Detection Systems. We have seen tools like Code Red and Nimda propagate

themselves to a point of global saturation in less than 18 hours [62].

As Figure 2.2 [65] shows, the sophistication of the attacks and attack tools has

grown very much in complexity. And these attack tools has also been automated, so the

skill needed to use these attack tools and to launch attacks has been reduced.

Figure 2.2 the evolution of attack sophistication

As an example of the difficulties posed by sophisticated attack tools, many common

tools use protocols like IRC or HTTP to send data or commands from the intruder to

compromised hosts [62]. As a result, it has become increasingly difficult to distinguish

attack signatures from normal, legitimate network traffic.

The level of sophistication and knowledge required to carry out an attack has

been decreasing. This is because there are very many know-how‟s available on Web

sites all over the world. Hackers constantly invent new attacks and disseminate them

over the Internet [61, 31]. Young and inexperienced hackers can use these tools with

almost the same power as experienced hackers can. Some of the newer attack methods

Chapter 2: Background

24

also use encrypted signals. This keeps the signals from being recognized by Intrusion

Detection Systems that scans for bit strings from known commands. The malicious code

writers also works with an open source model in which they freely share successive

code improvements, thereby making their attacks more sophisticated.

2.4.1 Denial of Service (DoS)

Denial of Service attacks is attacks where the attacker is not interested in any

information from the network. He just wants to crash the system so that other users

can‟t reach the targeted system [54]. In general, denial of service attacks does little harm

besides wasting people‟s time and bandwidth [63].

The attacker just wants to deny the legitimate users to use the services provided

by the attacked server. In the first versions of Denial of Service attacks [64], hackers

usually tried to block access to a Web site by using a single computer to send millions

of phony requests, thereby overloading the site so it could not respond to legitimate

queries, or even causing the host to crash altogether. But it was pretty easy to stop these

attacks. All requests from the attacking computer were simply blocked, and the attack

was stopped.

A newer version of the Denial of Service attack, also called Distributed Denial

of Service attack or DDoS, has evolved. These types of attacks are done by using other

computers on the Internet to attack a system. In most attacks, the source address is faked

[63]. This means that the attacker uses other people‟s computers to run the attack. The

users who are used in such attack normally do not know that they have been used in an

attack. The development of automation in attack tools enables a single attacker to install

their tools and control tens of thousands of compromised systems for use in attacks [62].

Figure 2-3 shows how Distributed Denial of Service attacks are done against a single

victim. The attacker uses remotely controlled computers to generate more request than

the victims server can handle. Before the attack is launched, the attacker has installed a

program on each of the remotely controlled computers, often called zombies. These

zombies can be normal Internet users with ADSL or broadband connection, but often

University networks are used because of their high speed networks.

Chapter 2: Background

25

Figure 2.3 Distributed Denial of Service attack

The first known large scale Distributed Denial of Service attack was seen in August

1999 [64, 58]. This attack used 227 hosts to bring down the network of University of

Minnesota in USA for three days. In February 2000 some of the major Internet players

as Yahoo!, Amazon, eBay and other dot-coms were attacked with denial of service

attacks that lasted for three days [63, 64, and 58]. These attacks slowed down the

servers to make them unusable for normal users. And the attacks did actually affect the

whole Internet. The attacks pumped out so much traffic, and so many people browsed

the Web for information about the incidents that the entire Internet slowed down. On the

last day of the attacks, the Internet‟s performance was 26, 8% worse than the week

before [58].

In October 2002 nine of the 13 root-servers around the world were attacked by a

Denial of Service attack. The attacks used commandeered computers to flood the root

servers with Internet control message protocol requests [54].

Distributed Denial of Service attacks are seen as one of the biggest threats for

businesses on the Internet. “Distributed Denial of Service attacks constitute one of the

single greatest threats facing businesses involved in electronic commerce because an

attack can completely shut down a Web site”, said Morgan Wright from REACT [58].

Others are even more pessimistic about these attacks. Charles Palmer from IBM [52]

had this to say about Distributed Denial of Service attacks: “You‟re not going to be able

to stop denial of service. The best thing you can do is reduce its impact”.

ATTACKE

R

Handler Handler

Zomb

ie

Zomb

ie

Zomb

ie

Zomb

ie

Zomb

ie

Zomb

ie

VICTIM

Chapter 2: Background

26

In today‟s e-commerce environment, users have a low tolerance for web site delay or

failure. They will simply click their way to another site if the first is unavailable. There

has been conducted a research where they tried to develop a new and efficient technique

for the detection and alleviation of Denial of Service attacks [59]. Their technique is

similar to an Intrusion Detection System, using anomaly based methods with data

mining to detect attacks.

2.4.2 Trojan Horses

A Trojan horse is an illegal computer program disguised as legal, or hidden as part of a

legal program. It can be described as a secret defect (or trap) that is intentionally

inserted into legal software [60]. The Trojan horse can attack almost all programs, from

basic systems software to users‟ application software. When the Trojan horse is installed

on the victim‟s computer, it is often used to [6]:

• Propagate a virus or a worm

• Install a backdoor

• Destroy data

When it is installed, the Trojan horse gives the intruder access to the data stored on the

victim‟s computer. It can also give the attacker access to other computers if the victim‟s

computer is in a local network.

2.4.3 Viruses and Worms

Even though a virus is not actually an attack method, it causes much damage and is

expensive and time consuming so it should be mentioned. Viruses and worms are

malicious codes made to do some damage on the infected system. 85% of the

respondents in the FBI/CSI survey [7] reported virus and worm outbreaks. Computer

Economics estimated that the worldwide impact of Code Red was $2.62 billion and the

worldwide impact of Nimda was $635million in 2002 [7].

Viruses and worms exploit vulnerabilities in the system, and large numbers of

systems can be infected within a matter of hours. The Code Red worm infected more

than 250.000 systems in just 9 hours on 19 July 2001 [65].

Computer Viruses started to spread through floppy disks on Apple computers as early as

in 1981 [65]. They started to appear in large number in 1987, apparently starting in

Chapter 2: Background

27

Pakistan, Israel and Germany, and later appearing through the whole world. This caused

thousands of computers to become unusable for short periods of time, hundreds of

thousands computers to display spurious messages, tens of thousands of users to

experience denial of services and several international networks to experience denial of

service for a short period of time [57].

A decade ago, viruses were relatively easy to find and fix, and they spread

slowly, generally by floppy disks or LANs. Now, however, increasingly creative

authors are exploiting the Internet, open-source software, peer-to-peer technology, and

other developments to write viruses and worms that invade computer systems in new

ways, propagate around the world quickly, and wreak havoc to victims [55].

During a virus‟ lifetime, it normally goes through 4 stages [6]. These stages are:

• Dormant phase: The virus is idle, waiting to be activated.

• Propagation phase: Replicating itself to programs or disk.

• Triggering phase: The virus is activated to do its tasks by some event such as time,

date, number of replications.

• Execution phase: The function in the virus is performed.

The detection of new viruses has become very difficult. Virus writing has gone to a new

level where the viruses are polymorphic, uses changing encryption and decryption, and

can infect both Windows and Linux platforms [56]. They infect machines not only by

using their own code, but also by linking to and accessing malicious codes from

newsgroups and Web sites. New software from different vendors is out now that

requires users to define which actions they will and will not allow on a computer or

network. Joe Hartman from Trend Micro [57] said: “If a machine suddenly starts to send

hundreds of e-mails, the software will know that something is wrong and notify the user

or system administrator”.

2.5 What could be better for today’s system?

The use of several security components can make a network more secure because

misconfigurations or weaknesses in one component can be equalized by another

component. Both firewalls and Intrusion Detection Systems deliver functionality that

the other component cannot deliver. An Intrusion Detection System complements a

Chapter 2: Background

28

firewall by detecting what is going on in the network. A firewall is only a kind of fence,

so it will not detect what‟s happening on the inside. Also, the Intrusion Detection

System can catch attempts against the network that fails. This is important because it

shows how big the threats from the outside are. Even more important, an Intrusion

Detection System can catch attacks that pass the firewall, like for example Denial of

Service attacks.

Figure 2.4 Firewall, IDS and Honey Net protecting a LAN

 The idea with several security components is to establish a network perimeter and to

identify all possible points of entry to the network. It is also recommended to protect

sensitive servers with intrusion detection sensors on every server. The square boxes

with magnifying glasses in them illustrate intrusion detection sensors. The Intrusion

Detection Systems‟ sensors should be both host based and network based. Host based

sensors are more useful for protecting critical servers, and network sensors are more

useful for detecting abnormal traffic on the local network. The Central Manager

receives reports from both the host based sensors and network based sensors, and

process and correlates these reports to detect intrusions. The firewall protects the

internal network from unwanted and unauthorized traffic from the outside. Sensors for

the Intrusion Detection System should be placed on strategic places around the network.

The first sensor is there to identify attack on servers in the demilitarized zone and

attacks that are directed on the company‟s network. The second sensor is placed right

after the firewall. This sensor serves to confirm secure configuration and operation of

Chapter 2: Background

29

the firewall, and it can also identify attacks that pass the firewall. The third sensor

identifies any attacks from the inside against the local servers. The fourth and fifth

sensors are sensors that protect single servers. These sensors can protect the servers

against attacks from outside and has passed the firewall and the other sensors and

against attacks from inside. All the sensors should be configured to report to one central

Intrusion Detection System console. In addition to these security components, the use of

Honeynets can also be very useful for a larger system. Here the system administrator

could analyze the Honeynet and adjust their security components after gaining

knowledge how the attackers behave during an intrusion.

Chapter 3: Neural Network

30

3.1 Introduction

The work on neural networks was inspired by the human brain. The human brain

consists of neural networks. As a person learns new things, paths between different

parts of the brain are created. If a person does not refresh his mind from time to time,

these paths will eventually vanish.

The earliest work in neural computing goes back to the 1940's when McCulloch

and Pitts introduced the first neural network computing model. In the 1950's,

Rosenblatt's work resulted in a two-layer network, the perception, which was capable of

learning certain classifications by adjusting connection weights. Although the

perception was successful in classifying certain patterns, it had a number of limitations.

The perception was not able to solve the classic XOR (exclusive or) problem. Such

limitations led to the decline of the field of neural networks. However, the perception

had laid foundations for later work in neural computing. In the early 1980's, researchers

showed renewed interest in neural networks.

A neural network is a powerful data modeling tool that is able to capture and

represent complex input/output relationships. This tool can acquire knowledge through

learning of input data. Neural networks are essentially a network of computational units

that jointly implement complex mapping functions [66]. It consists of a collection of

processing elements that are highly interconnected and transforms a set of inputs to a set

of desired outputs. Here are some of the characteristics of a neural network:

• The handling of data is done by many simple connected elements, called neurons.

• There is an interconnection between the connected neurons.

• A weight factor is associated to each connection in the network. This factor weights

the signal that is sent from one neuron to another.

• Each neuron has its own task, and does some calculations.

The neural network consists of interconnected neurons. By modifying the connections

between these nodes the network is able to adapt to the desired outputs [67]. Each

neuron can be looked at as being a separate computer running its own program. The

neuron computes the weighted sum of the inputs it gets from other neurons and gives an

output as a single number to another neuron that performs the same task. The result of

Chapter 3: Neural Network

31

the transformation is determined by the characteristics of the neurons and the weights

associated with the interconnections among them.

The neurons in a neural network are organized into layers. This is showed in

Figure 3-1. The layers is divided into an input layer, hidden layer (there can be several

hidden layers) and output layer. The inputs to the input layer are set by the environment.

This layer does not play any significant role to the computing of the result. It only feeds

information into the neural network. The hidden layers have no external connections;

they only have connections with other layers in the network. The interaction between

the hidden layers continues until some condition is satisfied. The outputs from the

output layer are returned to the environment.

Figure 3.1: Neural Network model

Neural networks can be used to learn an anomaly Intrusion Detection System normal

behavior. Initially, the neural network is trained with normal system behavior traces.

Observed event streams are then fed into the network, and the neural network conducts

an analysis of the information and provides a probability estimate that the data matches

with the characteristics that is has been trained to recognize.

Traditional neural networks are unable to improve its analysis of new data until

it is taken off-line and retrained using representative data that includes the new

information. Today, neural networks are widely used in both software and hardware

products around the world.

3.2 Neural Network Operation

Chapter 3: Neural Network

32

The output of each neuron is a function of its inputs. In particular, the output of the jth

neuron in any layer is described by two sets of equations:

𝑈𝑗 = (𝑋𝑖. 𝑤𝑖𝑗) [Eqn 1]

𝑌𝑗 = 𝐹𝑡ℎ(𝑈𝑗 + 𝑡𝑗) [Eqn 2]

For every neuron, j, in a layer, each of the i inputs, Xi, to that layer is multiplied by a

previously established weight, wij. These are all summed together, resulting in the

internal value of this operation, Uj. This value is then biased by a previously established

threshold value, tj, and sent through an activation function, Fth. This activation function

has an input to output mapping as shown in Figure 3.2. The resulting output, Yj, is an

input to the next layer or it is a response of the neural network if it is the last layer.

Neuralyst allows other threshold functions to be used in place of the sigmoid described

here.

Figure 3.2: Sigmoid Function

In essence, Equation 1 implements the combination operation of the neuron and

Equation 2 implements the firing of the neuron. From these equations, a predetermined

set of weights, a predetermined set of threshold values and a description of the network

Chapter 3: Neural Network

33

structure (that is the number of layers and the number of neurons in each layer), it is

possible to compute the response of the neural network to any set of inputs. And this is

just how Neuralyst goes about producing the response. But how does it learn?

 3.3 Neural Network Architectures

Humans and other animals process information with neural networks. These are formed

from trillions of neurons (nerve cells) exchanging brief electrical pulses called action

potentials. Computer algorithms that mimic these biological structures are formally

called artificial neural networks to distinguish them from the squishy things inside of

animals. However, most scientists and engineers are not using this formal and use the

term neural network to include both biological and nonbiological systems.

Neural network research is motivated by two desires: to obtain a better understanding of

the human brain and to develop computers that can deal with abstract and poorly

defined problems. For example, conventional computers have trouble understanding

speech and recognizing people's faces. In comparison, humans do extremely well at

these tasks.

Many different neural network structures have been tried, some based on

imitating what a biologist sees under the microscope, some based on a more

mathematical analysis of the problem. The most commonly used structure is shown in

Fig. 3.3. This neural network is formed in three layers, called the input layer, hidden

layer, and output layer. Each layer consists of one or more nodes, represented in this

diagram by the small circles. The lines between the nodes indicate the flow of

information from one node to the next. In this particular type of neural network, the

information flows only from the input to the output (that is, from left-to-right). Other

types of neural networks have more intricate connections, such as feedback paths.

The nodes of the input layer are passive, meaning they do not modify the data. They

receive a single value on their input, and duplicate the value to their multiple outputs.

Chapter 3: Neural Network

34

Figure 3.3: Neural network architecture

In comparison, the nodes of the hidden and output layer are active. This means they

modify the data as shown in Fig. 3.4. The variables: X11,X12…X115 hold the data to be

evaluated (see Fig. 3.3). For example, they may be pixel values from an image, samples

from an audio signal, stock market prices on successive days, etc. They may also be the

output of some other algorithm, such as the classifiers in our cancer detection example:

diameter, brightness, edge sharpness, etc.

Each value from the input layer is duplicated and sent to all of the hidden nodes.

This is called a fully interconnected structure. As shown in Fig. 3.4, the values entering

a hidden node are multiplied by weights, a set of predetermined numbers stored in the

program. The weighted inputs are then added to produce a single number. This is shown

in the diagram by the symbol, ∑. Before leaving the node, this number is passed through

a nonlinear mathematical function called a sigmoid.

Chapter 3: Neural Network

35

Figure 3.4 Neural network active nodes

This is an "s" shaped curve that limits the node's output. That is, the input to the sigmoid

is a value between -∞ and +∞, while its output can only be between 0 and 1.

The outputs from the hidden layer are represented in the flow diagram (Fig 3.3) by the

variables: X21,X22,X23 and X24. Just as before, each of these values is duplicated and

applied to the next layer. The active nodes of the output layer combine and modify the

data to produce the two output values of this network, X31 and X32.

Neural networks can have any number of layers, and any number of nodes per

layer. Most applications use the three layer structure with a maximum of a few hundred

input nodes. The hidden layer is usually about 10% the size of the input layer. In the

case of target detection, the output layer only needs a single node. The output of this

node is thresholded to provide a positive or negative indication of the target's presence

or absence in the input data.

3.3.1 Multi Layer Perceptron

A multilayer perceptron (MLP) is a feedforward artificial neural network model that

maps sets of input data onto a set of appropriate output. An MLP consists of multiple

layers of nodes in a directed graph, with each layer fully connected to the next one as

shown in figure 3.5. Except for the input nodes, each node is a neuron (or processing

element) with a nonlinear activation function. MLP utilizes a supervised learning

technique called backpropagation for training the network [68, 69]. MLP is a

Chapter 3: Neural Network

36

modification of the standard linear perceptron and can distinguish data that is not

linearly separable [70].

Figure 3.5: Multi Layer Perceptron, m – inputs (xj), l – neurons in hidden layer (zq),

 n – outputs (yi), with different activation functions f for hidden and output layer

The training algorithm rule repetitively calculates an error function for each input and

backpropagates the error from one layer to the previous one. The weights for a

particular node (wij) are adjusted in direct proportion to the error in the units to which it

is connected.

Let Ep - error function for pattern p

dpj - target (desired) output for pattern p on node j

ypj - actual output for pattern p on node j

wij - weight from node i to node j

The error function is defined to be proportional to the square of the difference of desired

and actual output

𝐸𝑝 =
1

2
 𝑑𝑝𝑗 − 𝑦𝑝𝑗

2

𝑗

Chapter 3: Neural Network

37

The output from each unit j is determined by the non-linear transfer sigmoid function fj

𝑓 𝑛𝑒𝑡 =
1

1 + e−k−net

𝑦𝑝𝑗 = 𝑓𝑗 𝑛𝑒𝑡𝑝𝑗

where net is activation of each unit j, for pattern p

𝑛𝑒𝑡𝑝𝑗 = 𝑊𝑗𝑖𝑌𝑝𝑖
i

and ypi are outputs of previous layer.

The backpropagation algorithm implements weight changes that follow the path of

steepest descent on a surface in weight space. The height of any point on this surface is

equal to the error measure Ep. This can be shown by showing that the derivative of the

error measure with respect to each weight is proportional to the weight change dictated

by the delta rule, with a negative constant of proportionality, i.e.,

∆𝑤𝑦 = −ƞ
∂𝐸𝑃

∂𝑤𝑝𝑗

The most used training algorithm is back propagation algorithm gradient descent (GDA)

with disadvantage of slow training. In other hand Levenberg-Marquardt [71], [72] is one

of the accurate algorithms and faster than GDA, but consumes more memory space.

3.3.2 Radial Basis Function Network

The radial basis function network (RBFN) [71] has the architecture of the instar-outstar

model (Figure 3.6) and uses the hybrid unsupervised and supervised learning scheme,

unsupervised learning in the input layer and supervised learning in the output layer.

Chapter 3: Neural Network

38

1y iy ny

1x jx
mx

2z1z
qz

lz
qw1 nqw

Figure 3.6: Radial basis function network structure with m inputs,

L nodes in hidden layer, and n outputs

The purpose of the RBFN is to pave the input space with overlapping receptive fields.

For an input vector x lying somewhere in the input space, the receptive fields with

centres close to it will be appreciably activated. The output of the RBFN is then the

weighted sum of the activations of these receptive fields.

The RBFN is designed to perform input-output mapping trained by examples,

pairs of inputs and outputs (x, y). The hidden nodes in the RBFN have normalized

Gaussian activation function

2

2

2

2

exp
2

exp
2

q

q
q

q q

k kk

k
k

R
z g

R

x m

x
x

x x m

where x is the input vector and zq output of hidden layer. mq and σq are the mean (an m-

dimensional vector) and variance of the q-th Gaussian function in hidden layer.

The output of the RBFN is simply the weighted sum of the hidden node output:

1

l

i i iq q i

q

y a w z

where ai (.) is the output activation function, generally linear function, and θi is the

threshold value.

Chapter 3: Neural Network

39

The weights in the output layer can be updated simply by using the delta learning rule

(supervised learning). The unsupervised part of the learning involves the determination

of the receptive field centres mq and widths σq, q = 1, 2, ..., l. The proper centres mq can

be found by unsupervised learning rules such as the vector quantization approach,

competitive learning rules, or simply the Kohonen learning rule.

Another learning rule for the RBFN with node-growing capability is based on the

orthogonal least squares learning algorithm [72]. This procedure chooses the centres of

radial basis functions one by one in a rational way until an adequate network has been

constructed, or maximal number of nodes is reached.

The RBFN offers a viable alternative to the two-layer neural network in many

applications of signal processing, decision making algorithms, pattern recognition,

control, and function approximation. It has been shown that the RBFN can fit an

arbitrary function with just one hidden layer [73], but they cannot quite achieve the

accuracy of the back-propagation network. Although, RBFN can be trained several

orders of magnitude faster than the back-propagation network, and this is very important

advantage in real or semi real time applications

3.3.3 RBF Networks vs. Multilayer Perceptrons

 Similarities

 The RBF Networks as well as the Multilayer Perceptrons are layered

feedforward networks that produce nonlinear function mappings;

 They are both proven to be universal approximators;

 Differences

 An RBF network has only one hidden layer, while MLP networks have one or

more hidden layers depending on the application task;

 The nodes in the hidden and output layers of MLP use the same activation

function, while RBF uses different activation functions at each node (Gaussians

parameterized by different centers and variances);

 The hidden and output layers of MLP are both nonlinear, while only the hidden

layer of RBF is nonlinear (the output layer is linear);

 The activation functions in the RBF nodes compute the Euclidean

distance between the input examples and the centers, while the activation

Chapter 3: Neural Network

40

functions of MLP compute inner products from the input examples and the

incoming weights;

 MLP constructs global approximations while RBF construct local

approximations.

3.4 Neural Network Learning

Learning in a neural network is called training. Like training in athletics, training in a

neural network requires a coach, someone that describes to the neural network what it

should have produced as a response. From the difference between the desired response

and the actual response, the error is determined and a portion of it is propagated

backward through the network. At each neuron in the network the error is used to adjust

the weights and threshold values of the neuron, so that the next time, the error in the

network response will be less for the same inputs.

Figure 3.7: Neuron Weight Adjustments

This corrective procedure is called backpropagation (hence the name of the neural

network) and it is applied continuously and repetitively for each set of inputs and

corresponding set of outputs produced in response to the inputs. This procedure

continues so long as the individual or total errors in the responses exceed a specified

level or until there are no measurable errors. At this point, the neural network has

learned the training material and you can stop the training process. Backpropagation

starts at the output layer with the following equations:

Chapter 3: Neural Network

41

𝑊𝑖𝑗 = 𝑊 𝑖𝑗 + 𝐿𝑅. 𝑒𝑗. 𝑋𝑖 [Eqn 3] and

𝑒𝑗 = 𝑌𝑗. 1 − 𝑌𝑗 . (𝑑𝑗 − 𝑌𝑗) [Eqn 4]

For the ith input of the jth neuron in the output layer, the weight wij is adjusted by

adding to the previous weight value, w'ij, a term determined by the product of a learning

rate, LR, an error term, ej, and the value of the ith input, Xi. The error term, ej, for the

jth neuron is determined by the product of the actual output, Yj, its complement, 1 - Yj,

and the difference between the desired output, dj, and the actual output.

Once the error terms are computed and weights are adjusted for the output layer, the

values are recorded and the next layer back is adjusted. The same weight adjustment

process, determined by Equation 3, is followed, but the error term is generated by a

slightly modified version of Equation 4. This modification is:

ej = 𝑌𝑗. 1 − 𝑌𝑗 . (𝑒𝑘. 𝑤 𝑗𝑘) [Eqn 5]

In this version, the difference between the desired output and the actual output is

replaced by the sum of the error terms for each neuron, k, in the layer immediately

succeeding the layer being processed (remember, we are going backwards through the

layers so these terms have already been computed) times the respective pre-adjustment

weights.

The learning rate, LR, applies a greater or lesser portion of the respective adjustment to

the old weight. If the factor is set to a large value, then the neural network may learn

more quickly, but if there is a large variability in the input set then the network may not

learn very well or at all. In real terms, setting the learning rate to a large value is

analogous to giving a child a spanking, but that is inappropriate and counter-productive

to learning if the offense is so simple as forgetting to tie their shoelaces. Usually, it is

better to set the factor to a small value and edge it upward if the learning rate seems

slow. In many cases, it is useful to use a revised weight adjustment process. This is

described by the equation:

𝑤𝑖𝑗 = 𝑤 𝑖𝑗 + 1 − 𝑀 . 𝐿𝑅. 𝑒𝑗. 𝑋𝑗 + 𝑀. (𝑤 𝑖𝑗 − 𝑤 𝑖𝑗) [Eqn 6]

Chapter 3: Neural Network

42

This is similar to Equation 3, with a momentum factor, M, the previous weight, w'ij, and

the next to previous weight, w''ij, included in the last term. This extra term allows for

momentum in weight adjustment. Momentum basically allows a change to the weights

to persist for a number of adjustment cycles. The magnitude of the persistence is

controlled by the momentum factor. If the momentum factor is set to 0, then the

equation reduces to that of Equation 3. If the momentum factor is increased from 0, then

increasingly greater persistence of previous adjustments is allowed in modifying the

current adjustment. This can improve the learning rate in some situations, by helping to

smooth out unusual conditions in the training set.

As you train the network, the total error, that is the sum of the errors over all the

training sets, will become smaller and smaller. Once the network reduces the total error

to the limit set, training may stop. You may then apply the network, using the weights

and thresholds as trained.

It is a good idea to set aside some subset of all the inputs available and reserve

them for testing the trained network. By comparing the output of a trained network on

these test sets to the outputs you know to be correct, you can gain greater confidence in

the validity of the training. If you are satisfied at this point, then the neural network is

ready for running. Usually, no backpropagation takes place in this running mode as was

done in the training mode. This is because there is often no way to be immediately

certain of the desired response. If there were, there would be no need for the processing

capabilities of the neural network! Instead, as the validity of the neural network outputs

or predictions are verified or contradicted over time, you will either be satisfied with the

existing performance or determine a need for new training. In this case, the additional

input sets collected since the last training session may be used to extend and improve

the training data.

The learning methods in neural networks are classified into three basic types:

o Supervised Learning,

o Unsupervised Learning and

o Reinforced Learning

Chapter 3: Neural Network

43

 3.4.1 Supervised Learning

Supervised learning is a machine learning technique that sets parameters of an artificial

neural network from training data. The task of the learning artificial neural network is to

set the value of its parameters for any valid input value after having seen output value.

The training data consist of pairs of input and desired output values that are traditionally

represented in data vectors. Supervised learning can also be referred as classification,

where we have a wide range of classifiers, each with its strengths and weaknesses.

Choosing a suitable classifier (Multilayer perceptron, Support Vector Machines, k-

nearest neighbor algorithm, Gaussian mixture model, Gaussian, naive Bayes, decision

tree, radial basis function classifiers,…) for a given problem is however still more an art

than a science.

Figure 3.8: Supervised Learning

In order to solve a given problem of supervised learning various steps has to be

considered. In the first step we have to determine the type of training examples. In the

second step we need to gather a training data set that satisfactory describe a given

problem. In the third step we need to describe gathered training data set in form

understandable to a chosen artificial neural network. In the fourth step we do the

learning and after the learning we can test the performance of learned artificial neural

Chapter 3: Neural Network

44

network with the test (validation) data set. Test data set consist of data that has not been

introduced to artificial neural network while learning.

3.4.2 Unsupervised learning

Unsupervised learning is a machine learning technique that sets parameters of an

artificial neural network based on given data and a cost function which is to be

minimized. Cost function can be any function and it is determined by the task

formulation. Unsupervised learning is mostly used in applications that fall within the

domain of estimation problems such as statistical modeling, compression, filtering,

blind source separation and clustering. In unsupervised learning we seek

Figure 3.9: Unsupervised Learning

to determine how the data is organized. It differs from supervised learning and

reinforcement learning in that the artificial neural network is given only unlabeled

examples. One common form of unsupervised learning is clustering where we try to

categorize data in different clusters by their similarity. Among above described artificial

neural network models, the Self-organizing maps are the ones that the most commonly

use unsupervised learning algorithms.

3.4.3 Reinforcement learning

Reinforcement learning is a machine learning technique that sets parameters of an

artificial neural network, where data is usually not given, but generated by interactions

with the environment. Reinforcement learning is concerned with how an artificial neural

Chapter 3: Neural Network

45

network ought to take actions in an environment so as to maximize some notion of long-

term reward. Reinforcement learning is frequently used as a part of artificial neural

network‟s overall learning algorithm. After return function that needs to be maximized

is defined, reinforcement learning uses several algorithms to find the policy which

produces the maximum return. Naive brute force algorithm in first step calculates return

function for each possible policy and chooses the policy with the largest return. Obvious

weakness of this algorithm is in case of extremely large or even infinite number of

possible policies. This weakness can be overcome by value function approaches or

direct policy estimation. Value function approaches attempt to find a policy that

maximizes the return by maintaining a set of estimates of expected returns for one

policy; usually either the current or the optimal estimates. These methods converge to

the correct estimates for a fixed policy and can also be used to find the optimal policy.

Similar as value function approaches the direct policy estimation can also find

the optimal policy. It can find it by searching it directly in policy space what greatly

increases the computational cost. Reinforcement learning is particularly suited to

problems which include a long-term versus short-term reward trade-off. It has been

applied successfully to various problems, including robot control, telecommunications,

and games such as chess and other sequential decision making tasks.

3.5 Back-Propagation Network

The most used learning rule algorithm in Neural Network, so what‟s BPN?

 • A single-layer neural network has many restrictions. This network can accomplish

very limited classes of tasks.

Minsky and Papert (1969) showed that a two layer feed-forward network can overcome

many restrictions, but they did not present a solution to the problem as "how to adjust

the weights from input to hidden layer”?

• An answer to this question was presented by Rumelhart, Hinton and Williams in 1986.

The central idea behind this solution is that the errors for the units of the hidden layer

are determined by back-propagating the errors of the units of the output layer. This

method is often called the Back-propagation learning rule.

Chapter 3: Neural Network

46

Back-propagation can also be considered as a generalization of the delta rule for non-

linear activation functions and multi-layer networks.

• Back-propagation is a systematic method of training multi-layer artificial neural

networks.

Real world is faced with situations where data is incomplete or noisy. To make

reasonable predictions about what is missing from the information available is a

difficult task when there is no a good theory available that may to help reconstruct the

missing data. It is in such situations the Back-propagation (Back-Prop) networks may

provide some answers.

• A Back Propagation network consists of at least three layers of units:

o An input layer,

o At least one intermediate hidden layer, and

o An output layer.

• Typically, units are connected in a feed-forward fashion with input units fully

connected to units in the hidden layer and hidden units fully connected to units in the

output layer.

• When a BackPropagation network is cycled, an input pattern is propagated forward to

the output units through the intervening input-to-hidden and hidden-to-output weights.

• The output of a BackPropagation network is interpreted as a classification decision.

• With BackPropagation networks, learning occurs during a training phase.

The steps followed during learning are:

 Each input pattern in a training set is applied to the input units and then

propagated forward.

 The pattern of activation arriving at the output layer is compared with the

correct (associated) output pattern to calculate an error signal.

 The error signal for each such target output pattern is then back-propagated

from the outputs to the inputs in order to appropriately adjust the weights in

each layer of the network.

 After a BackPropagation network has learned the correct classification for a

set of inputs, it can be tested on a second set of inputs to see how well it

classifies untrained patterns.

Chapter 3: Neural Network

47

• An important consideration in applying BackPropagation learning is how well the

network generalizes.

 3.6 Applications of Neural Network

Neural Network Applications can be grouped in following categories:

■ Clustering:

A clustering algorithm explores the similarity between patterns and places similar

patterns in a cluster. Best known applications include data compression and data

mining.

■ Classification/Pattern recognition:

The task of pattern recognition is to assign an input pattern (like handwritten symbol) to

one of many classes. This category includes algorithmic implementations such as

associative memory.

■ Function approximation:

The tasks of function approximation are to find an estimate of the unknown function

subject to noise. Various engineering and scientific disciplines require function

approximation.

■ Prediction Systems:

The task is to forecast some future values of a time-sequenced data. Prediction has a

significant impact on decision support systems.

Prediction differs from function approximation by considering time factor. System may

be dynamic and may produce different results for the same input data based on system

state (time).

3.8 Neural Network and Intrusion Detection System

The computational changes in the last several decades have brought growth to new

technologies. One of these technologies is artificial neural networks (ANNs). Over the

years, ANNs have given various solutions to the industry. Designing and implementing

intelligent systems have become an important activity for the innovation and

development of better products for human life. Examples might include the case of the

Chapter 3: Neural Network

48

Implementation of artificial life and giving solution to interrogatives, that linear systems

are not able to resolve [74].

A neural network (NN) is an information processing system that is inspired by the way

biological nervous systems, such as the brain, process information. It is composed of a

large number of highly interconnected processing elements (PEs) working with each

other to solve specific problems. Each processing element (or neuron) is basically a

summing element followed by an activation function. The output of each PE (after

applying the weight parameter associated with the connection) is fed as the input to all

of the PEs in the next layer. The learning process is essentially an optimization process

in which the parameters of the best set of connection coefficients (weights) for solving a

problem are found and includes the following basic steps (Theodorios and

Koutroumbas, 1999):- Present the neural network with a number of inputs (vectors each

representing a pattern).

 Check how closely the actual output generated for a specific input matches the

desired output.

 Change the neural network parameters (weights) to better approximate the

outputs.

One of the projects dealing with the approach results in the system is called Hyperview

Debar et al., [75]. It is a system that is built on two components. An ordinary expert

system component has a task to monitor logs and, according to the defined policy,

search the intrusions. It is a signature based IDS. Second component is a neural network

that can observe the behavior of a user and send the alarm if the observed behavior is

violated. This work shows how neural network can be used in combination with expert

systems and improves intrusion detection qualities. In Ghosh and Schwartzbard [76], it

is shown how neural networks can be employed for the anomaly and misuse detection.

The works present an application of neural network to learn previous behavior since it

can be utilized to detection of the future intrusions against systems. Experimental results

indicate that neural networks are „„suited to perform intrusion state of art detection and

can generalize from previously observed behavior‟‟ according to the authors.

Horeis [77] describes and concludes that the combination of RBF and SOM is

convenient to use as an intrusion detection model. They conclude that the „„evaluation

of human integration‟‟ is necessary to reduce the classification error. Experimental

Chapter 3: Neural Network

49

results are promising and show that RBF–SOM achieves, compared to RBF, similar or

even better results. Lin et al. [78] design a new intrusion detection system based on the

neural network NNID (neural network intrusion detector) and back-propagation

algorithm. The experimental results show that NNID can be used and can identify users

by what commands they use and how often. In Charron et al. [79], the work in using

neural networks for detecting misuse of programs is described. The authors conclude

that their work gives two distributions to the community. First one is a demonstration of

how misuse of programs can be detected with help of neural networks and the second is

that the result of their work shows „„the benefit of applying anomaly detection to the

process level such that an abnormal process behavior can be detected irrespective of

individual users‟ behavior‟‟. Heywood et al. [80], describe an approach to dynamic

intrusion detection using SOM. The authors estimate that „„hierarchically built

unsupervised neural network approach is able to produce encouraging results‟‟. Binh

Viet [81] presents a machine learning approach that can be used for the anomaly

detection problem. SOM is, according to the authors, a powerful mechanism for

modeling the network traffic. Ryan et al. [82] described an offline anomaly detection

system (NNID) which utilized a back-propagation MLP neural network. The MLP was

trained to identify users‟ profile and at the end of each log session, the MLP evaluated

the users‟ commands for possible intrusions (offline). The authors described their

research in a small computer network with 10 users. Each feature vector described the

connections of a single user during a whole day. One hundred most important

commands are used to describe a user‟s behavior. They used a three layer MLP (two

hidden layers). The MLP identified the user correctly in 22 cases out of 24. Cannady

[83] used a three layer neural network for offline classification of connection records in

normal and misuse classes. The system designed in this study was intended to work as a

standalone system (not as a preliminary classifier whose result may be used in a rule-

based system). The feature vector used was composed of nine features all describing the

current connection and the commands used in it. A data set of 10,000 connection

records including 1000 simulated attacks was used. The training set included 30% of the

data. The final result is a two class classifier that succeeded in classification of normal

and attack records in 89–91% of the cases. In yet another study Mukkamala, [84] the

authors used three and four layer neural networks and reported results of about 99.25%

Chapter 3: Neural Network

50

correct classification for their two class (normal and attack) problem. Cunningham and

Lippmann [85] used NNs in misuse detection. They used an MLP to detect Unix-host

attacks by searching for attack specific keywords in the network traffic. Mehdi Moradi

and Mohammad Zulkernine [86] present a NN approach to intrusion detection. A multi-

layer perceptron is used for intrusion detection based on an offline analysis approach

and applying the early stopping validation method on the proposed NN. Rachid

Beghdad [87] aimed to determine which of the NN classifies well the attacks and leads

to a higher detection rate of each attack. The paper focused on two classification types

of records: a single class (normal, or attack), and a multiclass, where the category of

attack is also detected by the NN. Five different types of NNs were tested: Multi-Layer

Perceptron (MLP), Generalized Feed Forward (GFF), Radial Basis Function (RBF),

Self- Organizing Feature Map (SOFM), and Principal Component Analysis (PCA) NN.

Yuehui Chen et al., [88] proposed an IDS model based on a general and enhanced

Flexible Neural Tree (FNT). Based on the predefined instruction/operator sets, the

framework allows input variables selection. Over layer connections and different

activation functions for the various nodes involved. Different groups used self-

organizing maps (SOM) for intrusion detection, such as [89], [90], [91] and [92]. These

works use SOM (Self Organizing Maps) and some variations to store data from the

neural network training. The main idea of the artificial neural network approach for

intrusion detection is the provision of an unsupervised classification method, which is

fast and efficient for a large amount of data with many variables (source IP, destination

IP, source port, destination port, size of packets, protocol, etc). One problem present in

the artificial neural network approach is the time for training these networks, which is

usually performed off-line. However, once trained, the time for analysis is considerably

low. Works involving neural networks to detect intrusions show promising results, such

as decrease in the false positive rates and improve in the detection rate compared to

other anomaly based IDSs. However, IDSs that use neural networks face the difficulty

of training with real traffic and real attacks. Samples of real traffic, may have some kind

of malicious traffic (noise) not identified. The application of malicious traffic in the

neural network training period (for normal traffic) can affect the value of weights of the

neurons, causing errors in the process of detection (depending on the learning rate).

Chapter 4: Proposed Intrusion Detection System

51

4.1 Introduction

Attacks on our networks and server infrastructures are a growing source of concerns for

network operators and users. They may be generated by both inexperienced and

professional hackers, but in any case, attacks create unwanted traffic that can affect the

performance and dependability of existing services. Therefore operators employ

intrusion detection systems to identify and possibly filter suspicious traffic.

The constant increase in network traffic and the fast introduction of high speed (tens of

Gbps) network equipment [11] make it hard to still employ traditional packet based

intrusion detection systems. Such systems rely on deep packet payload inspection,

which does not scale well. In high speed environments, approaches that rely on

aggregated traffic metrics, such as flow-based approaches, show a better scalability and

therefore seem more promising. The advantage of flow-based approaches is that only a

fraction of the total amount of data needs to be analyzed.

A flow is defined as a unidirectional stream of packets that share common

characteristics, such as source and destination addresses, ports and protocol type. In

additional flow includes aggregated information about the number of packets and bytes

belonging to the stream, as well as its duration. Flows are often used for network

monitoring, permitting to obtain a real time overview of the network status; common

tools for this purpose are Nfsen [93] and Flow scan [94], while the de facto standard

technology in this field is Cisco Netflow, particularly its versions 5 and 9 [95,96]. The

IETF IPFIX working group [97] is currently working on a standard for IP flow

exporting, based on Netflow version 9.

Large networks, when creating flows, often apply packet sampling in order to

make the approach even more scalable. In this case, only a percentage of the total

number of packets passing through the monitoring point is considered in the flows.

Statistical studies have been performed about correctness and precision of sampling

strategies for Internet traffic [34] and high speed environments [98], as well as

estimation of traffic flow characteristics from real sampled data [99]. These studies

show that, despite the reduced amount of information, it is still possible to offer a

correct statistical overview of the network status [34]. Packet sampling in flow creation

is vastly deployed [96, 100]. In particular, NetFlow relies on systematic sampling,

where only 1 out of every n packet is considered for the accounting (1: n).

Chapter 4: Proposed Intrusion Detection System

52

In the last years there has been an increasing interest in the application of flow-

based techniques for anomaly and intrusion detection. The works of [101,102,103],

which applies principal component analysis to traffic time series, and [104], which

proposes a framework for network anemography, are examples of contributions in this

field. Another example is provided by [105], which aims to detect worm spread in high

speed network on a connection basis. In a similar environment, [106] addresses the

problem of detecting DoS attacks and scans. In this case, the authors particularly focus

on aggregated header information, as they can be exported by NetFlow (TCP flags). In

addition, the presented approach is interesting because it explicitly addresses the

problem of measure variation over time (with the use of value forecasting). In [107], the

role of timely analysis of flow data is central. The author proposes a general purpose

platform for parallel time-based analysis of flow information for attack detection,

focusing in particular on DoS attacks (SYN-flood and web server overloading). From a

network monitoring point of view, time series on flows, packets, and bytes are

considered to be a useful tool: they permit to have a dynamic and real time overview of

the network on the basis of the stream of information coming from the exporter [91, 90].

 It is not surprising that intrusion detection (ID) has become an important

research area in the last decade. A large number of ID techniques have been proposed

and many of them have been implemented as prototypes or in commercial products.

Moreover, the research community has recently focused on flow-based approaches.

When proposing a new intrusion detection system (IDS), researchers usually evaluate it

by testing it on labeled (or annotated) traffic traces, i.e., traffic traces with known and

marked anomalies and incidents [108]. Labeled traces are important to compare the

performance of diverse detection methods, to measure parameter effectiveness and to

fine-tune the systems. Ideally, a labeled traffic trace should have the following

properties:

It should be realistic (opposed to “artificial”), completely labeled, containing the

attack types of interest and, not less importantly, publicly available. Despite the

importance of labeled traces, research on IDS generally suffers of a lack of shared data

sets for benchmarking and evaluation. Moreover, we have no knowledge of any publicly

available flow-based traffic trace that satisfies all these criteria.

Chapter 4: Proposed Intrusion Detection System

53

Several difficulties prevent the research community to create and publish such

traces, in first place the problem of balancing between privacy and realism. It is natural

that the most realistic traces are those collected “in the wild”, for example at Internet

service providers or in corporate networks. Unfortunately, these traces would reveal

privacy sensitive information about the involved entities and hence are rarely published.

On the other hand, artificial traces, i.e., traces that have not been collected but

artificially generated, can avoid the problem of privacy but they usually require higher

effort and deeper domain knowledge to achieve a realistic result. Moreover, labeling is a

time consuming process: it could easily be achieved on short traces, but these traces

could present only a limited amount of security events. Therefore, most publications use

non-public traffic traces for evaluation purposes. The only notable exception is the well-

known DARPA traces [109,110], which still are, despite their age, the only publicly

available labeled datasets specifically created for intrusion detection systems evaluation.

4.2 Flow-Based Solutions

This section presents the state of art solution for each category of attack that can be

detected using flows. In particular, our survey of Flow-Based Solutions shows that most

of the researches focus on detecting Denial of Service attacks, Scans, and Worms.

4.2.1 Denial of Service

In a denial-of-service (DoS) attack, an attacker attempts to prevent legitimate users from

accessing information or services. By targeting your computer and its network

connection, or the computers and network of the sites you are trying to use, an attacker

may be able to prevent you from accessing email, websites, online accounts (banking,

etc.), or other services that rely on the affected computer.

The most common and obvious type of DoS attack occurs when an attacker "floods" a

network with information. When you type a URL for a particular website into your

browser, you are sending a request to that site's computer server to view the page. The

server can only process a certain number of requests at once, so if an attacker overloads

Chapter 4: Proposed Intrusion Detection System

54

the server with requests, it can't process your request. This is a "denial of service"

because you can't access that site.

An attacker can use spam email messages to launch a similar attack on your email

account. Whether you have an email account supplied by your employer or one

available through a free service such as Yahoo or Hotmail, you are assigned a specific

quota, which limits the amount of data you can have in your account at any given time.

By sending many, or large, email messages to the account, an attacker can consume

your quota, preventing you from receiving legitimate messages.

 In a distributed denial-of-service (DDoS) attack, an attacker may use your

computer to attack another computer. By taking advantage of security vulnerabilities or

weaknesses, an attacker could take control of your computer. He or she could then force

your computer to send huge amounts of data to a website or send spam to particular

email addresses. The attack is "distributed" because the attacker is using multiple

computers, including yours, to launch the denial-of-service attack.

The work of Gao.et al. [106] approach the problem of Denial of Service

detection by means of aggregate flow measures accounted in appropriate data structures;

named sketches (figure 4.1). A sketch is originally a one-dimensional hash table suitable

for fast storage of information [111]: it counts occurrences of an event. Sketches permit

to statistically characterize how the traffic varies over time. An anomaly-based engine

triggers alarms based on a statistical forecast of the values the sketches are storing: a

sharp variation from the expected forecast values is flagged as an anomaly. Gao et al.

developed a prototype that receives exported flows from a netflow enabled router in real

time. A similar approach is proposed by Zhao et al.[112], in this approach a data

streaming algorithm is used to filter part of the traffic and identify IP addresses that

show an abnormal number of connections. The authors consider both the case in which

a host is the source of an abnormal number of outgoing connections, as well as the case

in which a host is the destination of an unusual number of connection attempts. The first

case it is to match a scanning host, while the second is used for detecting DoS victims.

The method is based on 2D hash tables, clearly resembling the contributions of Gao et

al. [106] and Li et al. [113]. Zhao et al. apply a flow sampling algorithm. Sampling

reduces the amount of data to be processed and significantly raises the processing speed.

Chapter 4: Proposed Intrusion Detection System

55

Figure 4.1: Example of sketch.

Kim et al. [114] describe several different types of DoS attacks in terms of traffic

patterns. A traffic pattern is an attack signature expressed in terms of the number of

flows and packets, the flow and packet sizes, as well as the total bandwidth used during

the attack. The authors present as example the pattern differences between instances in

the class of “flooding attacks”: SYN Flooding (exploiting the resource exhaustion in old

TCP stack implementation in presence of half open TCP connections), ICMP flooding

(provoking ICMP replies from an unaware network towards the victim) and UDP

flooding (a stream of UDP packets aiming to exhaust the resource on the victim and

possibly also the connection bandwidth towards the victim). The attack pattern

produced by a SYN Flooding attack is characterized by a large flow count; yet small

packet counts, as well as small flow and packet sizes and no constraints on the

bandwidth and the total amount of packets. The pattern is significantly different from

the one generated by an ICMP or UDP flooding attack, in which we observe large

bandwidth consumption and intensive packet transfer. Kim et al. clearly identify the

metrics they are interested in and formalize them into detection functions, which give

the likelihood of an observed traffic sequence to be malicious. In the context of DoS

monitoring and detection, it is important to cite also the work of Munz et al. [107], who

propose a general platform for DoS detection. Attention must also be given to the work

of Lakhina et al. [115, 116, 103, and 102].

4.2.2 Scans

Port Scanning is one of the most popular reconnaissance techniques attackers use to

discover services they can break into. All machines connected to a Local Area Network

(LAN) or Internet run many services that listen at well-known and not so well known

ports. A port scan helps the attacker find which ports are available (i.e., what service

might be listing to a port). Essentially, a port scan consists of sending a message to each

Chapter 4: Proposed Intrusion Detection System

56

port, one at a time. The kind of response received indicates whether the port is used and

can therefore be probed further for weakness.

Due to their nature, scans can easily create a large number of flows, since the attacker

may contact sever a different destination hosts using many source or destination ports.

There are three categories of scans:

 Horizontal scan: a host scanning a specific port on many destination hosts.

 Vertical scan: a host scanning several ports on a single destination host.

 Block scan: a combination of both.

 Figure 4.2 shows the possible scan categories, displaying on the x-axis the IP addresses

and on the y-axis the victim destination ports. Scans have generally been investigated by

considering their most evident characteristic; the scanning source shows an unnaturally

high number of outgoing connections, Zhao et al. [112]. Looking at host behavior from

an incoming/outgoing connections perspective allows addressing DoS and scan attacks

as different faces of the same problem: hosts with a suspicious and unusual fan-in/out.

Figure 4.2: Categories of scans [117].

In the same manner, Kim et al. [114] describe a scan in terms of traffic patterns, the

authors differentiate between network (horizontal) scans and host (vertical) scans. Li et

al. [113] extend the approach of Gao [106], he is introducing 2D sketches (figure 4.3), a

more powerful extension of the original ones.

Chapter 4: Proposed Intrusion Detection System

57

 Figure 4.3: Example of 2D sketch, as in [113].

2D sketches are suitable not only for DoS detection, but also for scan detection. The

authors hash a different key for each dimension of the sketch, improving in this way the

overall detection capabilities of the system. Wagner et al. [118] propose to use the

probabilistic measure of entropy to disclose regularity in connection-based traffic

(flows). Entropy has been introduced in Information Theory in 1948 [119].

Entropy is related to loss-less data compression: the theoretical limit of the

compression rate of a sequence of bits is the entropy of the sequence. Starting from this

well-known result, Wagner et al. created an efficient analysis procedure based on

compression of sequences of network measurements. They observe that, in the case of a

scanning host, the overall entropy in a specific time window will change. In particular,

the presence of many flows with the same source IPs (the scanning host) will lead to an

abrupt decrease of the entropy in the distribution of the source IP addresses. At the same

time, the scanning host will attempt to contact many different destinations IPs on

different ports, generating an increase in these entropy measurements. The combined

observation of multiple entropy variations helps in validating the presence of an attack.

4.2.3 Worms

A worm is a computer program that has the ability to copy itself from machine to

machine. Worms use up computer processing time and network bandwidth when they

replicate, and often carry payloads that do considerable damage. Worm behavior is

usually divided into a target discovery phase (the worm explores the network in order to

find vulnerable systems) and a transfer phase (the actual code transfer takes place) [120,

121]. Code Red [122] and Sapphire/Slammer [123] are examples of this mechanism.

Chapter 4: Proposed Intrusion Detection System

58

Flow-based detection systems usually focus on the target discovery phase, since the

transfer of malicious code cannot easily be detected without analyzing the payload. In

many cases, worm detection can be similar to scan detection, and many researchers use

the same approach for both threats. The approach adopted by Wagner et al. [118], for

example, can naturally be extended to worms, as well as the ones of Gao et al. [106] and

Zhao et al. [112]. Dubendorfer et al. [105] and Wagner et al. [124] attempt to

characterize the host behavior on the basis of incoming and outgoing connections. The

proposed algorithm assigns the hosts of a network to a set of predefined classes: the

traffic class, the connector class and the responder class. The traffic class includes hosts

that send more traffic than what they receive. Hosts that show an unusual high number

of outgoing connections are part of the connector class. Finally, hosts involved in many

bidirectional connections belong to the responder class. The definition of these classes is

such that only suspicious hosts will belong to them. In the proposed model, a host can

also belong to one or more classes. Figure 4.4 describes the three classes (sets) and their

possible intersections. The method periodically checks the status of the hosts of an

entire network. Massive changes in the cardinality of one or more classes are an

indication of a worm outbreak. The authors validate their approach on fast spreading

worms such as Witty and Blaster.

Figure 4.4: Host classes and their intersections.

A different approach is taken by Dressler et al. [125]. The authors exploit the correlation

between flows and honeypots logs. In this case, the need for a ground truth, i.e., a

Chapter 4: Proposed Intrusion Detection System

59

trusted source of information for the system validation, made the authors rely on a

honeypot. In this way, deploying at the same time a honeypot, a flow monitor and a data

collection database, it is possible to carefully identify worm flow-signatures, i.e., a

sequence of connections and flow related information about the scanning and

transmitting behavior of a worm.

4.3 Proposed Approach

We approach the problem of traffic characterization by mean of flow based traffic.

Since flows carry no payload, a single flow will in general not provide enough

information to prove that an attack is ongoing. We believe, however, that attacks, or

more generically, anomalies can be characterized looking at the evolution of flow traffic

over time, as presented in flow-based traffic. Flows offer diverse metrics for building

IDS. Some are directly derived from the definition of flow, such as the number of

different accessed ports in a time bin. We concentrate on the number of flows,

packets and bytes per time bin. A time bin can have duration from a millisecond to

several minutes. The main key point for all researchers is to develop an effective

intrusion detection system that has ability to detect known and unknown attacks with

few false alarms.

For our work on intrusion detection we have used a two stages backpropagation

(BP) neural network. And we have used the NetFlow data set for training and testing the

neural network. Our research approach is shown in Figure 4.5:

Feature

preparation

Alert module

NN

Stage One

Exporters

NN

Stage Two

Labeled

Training

Dataset

Anomaly

Attack

type

Normal

Normal

Normal

Collector

12-features

Figure 4.5 Proposed approaches

Chapter 4: Proposed Intrusion Detection System

60

Our proposed approach for intrusion detection and classification (Figure 4.6) consists of

the following five main modules:

1. Flow collector module,

2. Feature preparation module,

3. Anomaly detection module (NN stage one),

4. Detection and classification module (NN stage two),

5. Alert module.

NetFlow enabled routers are considered as external devices which permanently monitor

network traffic, account statistics, and export flow-data to our system according to

Cisco NetFlow [19] or similar protocols.

4.3.1 Flow Collector Module

The main operation of this module is to collect flow-data exported from one or several

exporters. The received data need to be recognized by protocol and version (for instance

NetFlow version 5 or 9, J-flow or IPFIX) and transform into an internal format. The

flows are periodically extracted and collected to NetFlow collector server. The

collecting period can be configured according to the flow time-out in order to aggregate

flow information during a predetermined time. A typical value is in the range of

minutes. Figure 4.6 shows this exporting/collecting process. These data are constantly

being sent to the Feature preparation module.

Fig. 4.6: IP Flow exporting and collecting architecture [21, 24]

Chapter 4: Proposed Intrusion Detection System

61

4.3.2 Feature Preparation Module

In order to train the neural network, we must first try to find the most features that can

help for detecting intrusions attacks networks. Our proposed methodology is to have

two stages neural network which give more reliability on detecting and classifying

attacks, therefore the training features are different from one stage to another. The

Feature preparation module receives and processes flow-data sent from the Flow

collection module. The main function is to prepare the features that are important for

anomaly intrusion detection and classification modules. The features are combined in

two groups: 7-tuples and 12-tuples that are passed to stage one and stage two detection

modules respectively. Section 4.3.3 gives a more detailed explanation of the stage one

features and section 4.3.4 demonstrate the added features for stage two modules. The

selected features for both stages are suitable only for the selected attack in our study,

and many other attacks have deviations of these features. Preprocessing must be done

on all selected features before passing them to the detection modules; this phase

involves normalizing all features by mapping all the different values for each feature to

[0, 1] range.

 4.3.3 Anomaly Detection Module

The reason for having two stage neural networks is to have fast and accurate detection

system, the purpose of stage one is to provide information about the existence or not of

an anomaly at low cost anomaly detection mechanism. The selected features for stage

one is:

1. Average Flow Size: it provides a useful hint for anomalous events, such as port

scan, and it is typically very small in order to increase the efficiency of attacks.

2. Average Packet Size: another factor is the size of each packet in the flow; low

average size can be a sign of anomaly. For example, in TCP flooding attacks,

packets of 120 bytes are typically sent.

3. Average Packet Number: one of the main features of DoS attacks is the source

IP spoofing, which makes the task of tracing the attacker‟s true source very

difficult. A side effect is the generation of flows with a small number of packets,

Chapter 4: Proposed Intrusion Detection System

62

i.e. about 3 packets per flow. This differs from normal traffic that usually

involves a higher number of packets per flow.

4. Number of different flows to the same Destination IP: This feature counts the

number of flows to the same destination IP address. A high number of flows

could mean a flood attack or a port scan attack.

5. Number of flows to different Destination Ports: also it has influence on detecting

attacks. An abnormally large number of different destination ports means that

the system is probably under attack (port scan attack).

6. Land: this feature is responsible for checking whether there is a land attack in

the network or not.(i.e.SrcIP=DestIP,SrcPort=DestPort)

7. SYN - SYN/ACK: this feature was used by many researchers to detect DoS

Attack, by comparing the numbers of SYN and SYN/ACK packets that a host

receives and returns respectively. Under normal conditions, the two numbers

should be balanced since every SYN packet is answered by a SYN/ACK packet.

Consequently, a high number of unanswered SYN packed is an indication of

ongoing SYN flood.

Multilayer percptron with resilient backpropogation was used for training the stage one

neural network which is the most used and reliable neural network algorithm. The

number of hidden layers, and the number of nodes in the hidden layers, was also

determined based on the process of trial and error. The Neural Network was trained with

the labeled training data which contains attack records, and nonattack records. Once the

training was over, the weight value is stored to be used in recall stage.

4.3.4 Detection and Classification Module

The presence of second stage neural network is to ensure whether the captured anomaly

traffic is a real attack or not and also trying to classify the type of attack hitting the

network. More features were used in stage two in order to allow correct and accurate

detection, and classification of anomalies. There is five new features were used in stage

two in addition to the seven features that have been used in stage one (Anomaly

Detection Phase), that makes them 12 features in total. The added features are listed

below:

Chapter 4: Proposed Intrusion Detection System

63

1- Number of flows from the same source IP: attacker can send for example ICMP

ping packets to every possible address within a subset and wait to see which

machine respond.

2- Number of flows from different source IP: IP spoofing is widely used by

attackers to attack the networks. A high number of different IP addresses to the

same destination address within a short period of time are a strong sign for

attack (DoS/ DDoS attack).

3- Number of flows to the same Destination Port: in some cases the attacker sends

GET request to some ports only (ex. Port 80) to crash the server.

4- Number of flows from different source Port: As IP spoofing is generated by

DDoS attack; ports can also be changed during an attack at random.

5- Protocol type (TCP, UDP, and ICMP): knowing the protocol type in

combination to the all previous features can help to determine the type of attack.

All added features are playing important role in detection and classification of the

attack. Multi-layer feed forward networks (MLP), and RBF neural networks are used in

this stage. We chose these two methods based on prior research and relevance to our

problem context. MLP neural networks have been widely used for data mining and have

also been found to be effective in intrusion detection systems. Two training algorithms

were used (Resilient back propagation, and Levenberg-Marquardt) for training our

neural network. The Neural Network was trained with the labeled training dataset that

contains attack records, and nonattack records. The output from this neural network

stage is the attack type or nonattack traffic.

4.3.5 Alert Module

This is the final stage of the proposed system. This stage involves identifying the events

that occurred whether abnormal or not, then sending the required signals to the

administrator in order to take appropriate action, and quick decision is taking to stop the

intruder to penetrate to the computer network.

Chapter 4: Proposed Intrusion Detection System

64

4.4 Training Dataset

When researchers propose new IDS, they usually evaluate it by testing it on labeled

traffic traces (dataset), i.e., traffic traces with known and marked anomalies and

incidents [126]. Several questions remain open such as the way training data should be

organized to achieve optimal classification results or, more abstract, what characterizes

good training data. Furthermore, researchers are often confronted with typical problems

when creating or evaluating training sets. There are two types of training dataset,

Realistic and Artificial Training Data.

In terms of network intrusion detection, realistic sets are based on real world

network traffic which is captured and later labeled by a human expert or a machine. So,

realistic sets contain training samples which originally were productive network traffic.

In contrast, artificial sets are based on artificially generated network traffic. So the

simulated data was never part of real-world traffic. The labeling is straightforward since

the researcher created the traffic himself and thus has full control over the generation of

malicious and benign traffic.

Usually researchers favor realistic over artificial data sets, provided that both

data sets are comparable in their content. The reason is that artificial data sets might be

flawed in some disguisedly way and hence do not allow proper generalization. An

example of artificial data set is DARPA data set [127]. On the other hand, the

publication of realistic data sets is often difficult or even impossible since privacy laws

complicate publication of sensitive data such as IP addresses. Thus, realistic data sets

often have to stay in the hands of the researchers who created them although the

research community lacks comprehensive data sets. Section 4.4.1, gives an overview of

the existing labeled data sets for intrusion detection and section 4.4.2 describes our

created NetFlow Datasets.

4.4.1 Existing Dataset

A flow based intrusion detection system requires high-quality training and testing

datasets. Unfortunately, there are few labeled datasets for evaluation of IDSs exists and

Chapter 4: Proposed Intrusion Detection System

65

are publicly available and all of them are not flow-based dataset except the work of

Sperotto [132]:

 The DARPA 1998 and DARPA 1999 data sets developed by the MIT Lincoln

Labs and sponsored by the US Defense Advanced Research Projects Agency.

The DARPA data sets [128, 129] consist of artificial background traffic, which

simulates the normal network usage of an air force base, combined with

malicious attack traffic.

 The KDD99 data set [130] and the NSL-KDD data set [131]. The KDD99 data

set is build upon the traffic in the DARPA 1998 data set, but uses an extended

labeling. The NSL-KDD data set, on the other hand, is a reduced version of

KDD99 that aims to avoid record redundancy in the data set.

 A recent attempt to propose a database of labeled traffic for IDSs comparison

and evaluation is the work of Sperotto et al. [132]. This work is the first

contribution on flow-based labeled dataset intended for evaluating and training

network intrusion detection system.

4.4.2 Flow-Based DataSet

Our approach is NetFlow based intrusion detection system, and in order to train the

neural network labeled dataset must be used that, and considering the current situation,

all research on IDS generally suffers from a lack of shared data sets for benchmarking

and evaluation. Several difficulties prevent the research community to create and

publish such traces, in the first place the problem of balancing between privacy and

realism. It is natural that the most realistic traces are those collected at Internet service

providers or in corporate networks. Unfortunately, these traces would reveal privacy

sensitive information about the involved entities; hence, they are rarely published. On

the other hand, artificial traces, i.e., traces that have not been collected but artificially

generated, can avoid the problem of privacy but they usually require deeper domain

knowledge to achieve a realistic result. Therefore, most publications use non-public

traffic traces for evaluation purposes. Moreover, we have no knowledge of any publicly

available labeled flow-based traffic trace.

Chapter 4: Proposed Intrusion Detection System

66

Considering the fact that the previous works commonly use DARPA dataset as a trusted

labeled dataset for intrusion detection research, we built our NetFlow dataset as a subset

of DARPA dataset. Since DARPA dataset is in form of TCP dump data, therefore we

created flows from the raw DARPA dataset using a modified version of softflowd [133].

In our dataset, a flow closely follows the NetFlow v5 definition and has the following

form:

F= {IPsrc,IPdst,Psrc,Pdst,Pckts,Octs,Flags,Protcl,Tstart,Tend}

It represents the unidirectional communication from the source IP addresses IPsrc and

port number Psrc to the destination IP address IPdst and port number Pdst, using

protocol type Protcl. The Pckts and Octs give the total number of packets and octets

transferred during this communication. The field Flags is related to the TCP header flags

which are computed as a binary OR of TCP flags in all packets of the flow. The start

and end time of the flow are given by Tstart and Tend respectively, in millisecond

resolution. The extracted flows are labeled according to the log file of DARPA dataset

and used to prepare all selected features, which used to train NN1 and NN2.

Chapter 5: Experimental Results

67

This chapter presents the experimental results obtained by using two neural network

stages based research methodology proposed in the previous chapter. The experiments

were conducted in three parts. The first part is to train both stages of neural networks

and to find out the optimum number of nodes in hidden layers. The second part of

experiment was conducted to test detection module (neural network stage one). The

third part of experiments was conducted to test the detection and classification module

(neural network stage two) and to see how many percent of the detection rate for normal

traffic and the attacks that were detected and classified correctly.

5.1 Training and Testing Proposed System

The experiments were performed in MATLAB, using neural network toolbox and our

created NetFlow data set as shown in table 5.1, which implements several training

algorithms including Resilient Backpropagation, Radial Basis Function net, and

Levenberg-Marquardt.

 Table 5.1. Used Data set

Total Data set Normal Records Attack Records

145438 48586 96852

In the experimental stages we have used different number of iterations and hidden layers

to determine the level of training. This test has been done to find out when the neural

network was trained properly to detect attacks. This test has also provided the

background for choosing the number of hidden layers and iterations for the training of

the neural network for the last experiments.

The experiments show that Levenberg-Marquardt is the best training algorithm

because it takes less time, low number of epochs and has good performance and high

accuracy. The Detection Rate (DR) and False Positive rate (FP) have been calculated for

different scenarios according to the following formulas:

𝐷𝑅 =
Number of detected patterns

Total number of patterns
∗ 100[%]

 False positive means if it is normal and the system detected as attack and false positive

rate can be calculated by the following equation:

Chapter 5: Experimental Results

68

𝐹𝑃 =
Number of normal classified as attack

Total number of normal records
∗ 100[%]

 5.2 Anomaly Detection module Test and Results

Anomalies in our system are defined as unusual activities in the network. The purpose

of this module is to find out such activities using a small number of features extracted

from NetFlow raw data. For the neural network that was used in stage one the algorithm

below is a simplified general description of the detection process.

The number of input nodes of the NN1 corresponds to the number of the selected

features of the NetFlow dataset for the first stage (7 Features). The implemented NN1

includes one input layer, one hidden layer and an output layer of 2 nodes (01 as normal

traffic, and 10 as anomaly traffic). The number of nodes in the hidden layers has been

determined based on the back propagation (BP) computation process and the process of

trial and error. Table 5.2 shows the training, validation, and testing results of anomaly

detection module (Stage One).

 Table 5.2 Results of Anomaly Detection phase

 Training Algorithm Resilient
Backpropagation
Test 1

Levenberg-
Marquardt
Test2

Radial Basis
Function Net
Test 3

Parameters

Training dataset 101806

Validation Data 21816

Testing set 21816

Hidden Layer 50 50 20

Number of detected
attacks(14527)

13468 13684 13234

Number of detected
traffic as normal(7289)

6757 6866 6640

Detection Rate 92.7% 94.2% 91.1%

False positive Rate 3.6% 3.4% 5.1%

Algorithm: Anomaly detection module

Loop

 Read 7-tuple inputs from the feature preparation
module.

 Feed parameters to the NN1

 If the data is “normal”, then
o Assign “01” to the output of the NN1 normal

traffic
Else

o Assign “10” to the output of NN as anomaly
activity.

o Call stage two Procedure.
End Loop

Chapter 5: Experimental Results

69

As shown in table, 101806 records were used for training NN1, 21816 records were

used for testing the stage one neural network. It contains 14527 records as attack records

and 7289 as normal records, Figure 5.1, and figure 5.2 shows respectively the detection

rate and performance of detection module (stage one).

Figure 5.1 Detection rate of stage one neural network

Figure 5.2 performance of the anomaly detection module

Chapter 5: Experimental Results

70

5.3 Detection and Classification Module Test and Results

Several techniques that can be used in the process of classifying data ,such as Neural

Networks, statistical methods, and others. In our work, NNs have been used in

classification of data. The results can only be obtained after completing both of training

and testing phases. The intrusion data have been classified into five categories. Table

5.3 describes these categories and the actual outputs from Neural Network stage two

module.

 Table 5.3 Neural Network Classified Categories

No Category NN outputs

1 Dos/DDos Attack 10000

2 Port Scan Attack 01000

3 Land Attack 00100

4 Other/unknown Attack 00010

5 Normal 00001

Table 5.4 below shows a general description of detection and classification procedure in

stage two neural networks.

 Table 5.4. Detection and Classification Procedure

The number of input nodes to the NN2 corresponds to the number of the selected

features from NetFlow dataset for the second stage NN2 (12 Features). The

implemented neural network includes one input layer, one hidden layer and an output

layer of 5 nodes (Table 5.3 contains the descriptions of the outputs). The numbers of

nodes in the hidden layers has been determined based on the back propagation (BP)

Stage two Procedure

Begin

 Read corresponding 12/tuple inputs for NN2

 If the data is “normal”, then
o Assign 00001 to the output of NN2

Else
o Assign appropriate attack category to the

NN2 outputs according to table 1.
End

Chapter 5: Experimental Results

71

computation process and the process of trial and error. Table 5.4 describes the detection

and classification procedure. By applying number of test experiments to evaluate our

approach (NN2), the results are shown in table 5.5.

Table 5.5 Results of detection and classification module

Training Algorithm Resilient
Backpropagation
Test 1

Levenberg-
Marquardt
Test2

Radial Basis
Function Net
Test 3

Parameters

Training dataset 101806

Validation Data 21816

Testing set 21816

Hidden Layer 50 50 20

Number of detected
attacks(14527)

13468 13684 13234

Number of detected
traffic as normal(7289)

6757 6866 6640

Detection Rate 92.7% 94.2% 91.1%

False positive Rate 3.6% 3.4% 5.1%

As shown in table the total input data is 145438 records, 96852 records as attacker and

48558 records as normal, 21816 records were used for testing the neural network stage

two and it contains 14527 records as attack and 7289 records as normal. Figure 5.3

shows the best performance of neural network stage two, while figure 5.4 shows the

detection rate of neural network stage two.

Figure 5.3. Performance of the detection and classification module

Chapter 5: Experimental Results

72

Figure 5.4 Detection rate for stage two neural networks

The classification rate of each attack types was calculated according to the following

formula:

Classification rate =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑡𝑡𝑎𝑐𝑘

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘 𝑡𝑦𝑝𝑒
𝑥100[%]

The best result of the classification module during the test phase is shown in table 5.6.

Table 5.6. The results of classification stage

Attack
name

Total number
of attacks

Number of
classified

attacks

Classification
rate

DoS 4490 4490 100%

Port scan 9929 9919 99.9%

Land 85 85 100%

Unknown 23 18 78%

From the table 5.6, the accuracy classification is calculated for each category of attack

and it‟s almost 100% for all categories except unknown attacks which is about 78%.

5.4 Discussion of Results

Two stages of Anomaly detection systems using neural networks and based on NetFlow

dataset have been proposed and tested. Three different training algorithms (Resilient

Chapter 5: Experimental Results

73

Backpropagation, Radial Basis Function net, and Levenberg-Marquardt) were used for

training of both neural network stages. Anomaly detection stage (NN1) was trained until

the best validation performance 0.0405 was met at epoch 113 as shown in Figure 5.2.

The results in Table 5.2 show that the detection rate is 94.2% with false positive of

5.8%. Results from detection and classification stage (NN2), show significantly larger

improvement of prediction accuracy than the Anomaly detection phase. Figure 5.3

shows that, the best validation performance 0.0022 was met at epoch 93.Table 5.5

shows that the detection rate is relatively high at 99.42% for MLP, and 95.4% for RBF

detection algorithm. The false alarms were as low as 0.58% in MLP neural network and

4.6% in RBF neural network. Table 5.6 shows that, 100% of DoS attack, 99.9% of port

scan attack, 100% of land attack, and 78% of unknown attack were detected and

classified correctly by using stage two neural networks. The analysis of both stages

results shows that, MLP with Levenberg-Marquardt is found to be fast compared to

Resilient Backpropagation, has low memory consumption compared to Radial Basis

Function, and has a lower false alarm rates.

5.5 Comparison of Results

In this section, we compare our results with the other researcher‟s results available in

the literature. Vallipuram and Robert [134] used backpropagation neural network based

on KDD‟99 dataset, the detection rate was 86% with high false alarm rate at 14%.

Mukkamalaa [135] used backpropagation neural networks with the use of DARPA

dataset, and the detection rate was 97.04% and false alarm rate of 2.06%. Dima, Roman,

and Leon [136] used both MLP and RBF neural network with KDD‟99 as a dataset,

their results was 93.2% for RBF, and 92.2% for MLP with 7.2% as false alarm. Muna

Mohammad [138] used MLP AND Fuzzy-clustering algorithm with the use of DARPA

dataset, the detection rate was 99.9% and low false alarm rate 0.1%. Rodrigo Braga

[139] used unsupervised neural network with flow dataset and the results for detection

rate was 99.11% with false alarm rate of 0.99%. Govindarajan and Chandrasekaran

[140] used neural based hybrid classification methods and they used flow dataset, their

results were 96.67% for abnormal traffic, and 96.54% for normal traffic. Prasanta,

Bhattacharyya, Borah and Jugal [141] used both supervised and unsupervised neural

Chapter 5: Experimental Results

74

network with the use of flow dataset and KDD‟99 dataset, the detection rate were 99.1%

for flow dataset and 92.26% for KDD‟99 dataset with false rate of 0.9%.

In our research with two neural network stages based on extracted NetFlow dataset, we

have achieved the detection rate at 99.4% for MLP, and 94.6% for RBF neural network

with low false alarm rate at 0.6%. The results show that our proposed system is greatly

competitive and performs significantly better Detection Rate (DR). From Table 5.7, we

observe and conclude that our system with two neural network stages based on flow

dataset and the use of a small number of extracted features can effectively and

efficiently detect and classify both known and unknown attacks. The obtained false

alarm rate is low compared to other methods that use different techniques and different

datasets.

Chapter 5: Experimental Results

75

Table 5.7. Comparison of Intrusion Detection Systems Using NN.

Research NN type Dataset
used

Detection
Rate (%)

False
Alarm
Rate

Vallipuram and
Robert,2004

Backpropagation KDD-99 86% for
normal traffic

14%

 Mukkamalaa
S., 2005

Backpropagation DARPA 97.04% 2.06%

Dima, Roman and
Leon,2006

MLP and RBF KDD-99 93.2% using
RBF and
92.2% using
MLP

8.8%

[137] Sammany
M,2007

2 hidden layers
MLP

DARPA

96.65% 3.35%

Muna Mhammad T.
Jawhar,2009

MLP and Fuzzy
C-Mean (FCM)
clustering
algorithms

DARPA 99.9% 0.1%

Rodrigo Braga,2010 SOM Open flow
dataset

99.11% 0.99%

LAHEEB
MOHAMMAD
IBRAHIM,2010

DISTRIBUTED
TIME-DELAY
NEURAL
NETWORK

KDD-99 97.24% 2.76%

Govindarajan ,
Chandrasekaran,2011

hybrid
classification
methods

Flow data
set

96.67% for
abnormal
traffic, and
96.54% for
normal traffic

3.33%

 Prasanta Gogoi,
Bhattacharyya,Borah
and Jugal Kalita,2013

Supervised and
unsupervised
neural network

Packet
Level and
Flow
Level
dataset,
KDD-99

99.1% for
packet/flow
level data, and
92.26% for
KDD

0.9%

Our proposed IDSs Two stage
neural network

NetFlow
dataset

94.2% for
stage one NN,
and 99.4% for
stage two NN

0.6%

Chapter 6: Conclusions and Future Work

76

6.1 Conclusion

We have proposed and developed a flow based intrusion detection and classification

method using two neural networks stages for separate tasks. One neural network detects

traffic anomalies that can be attacks and the other one classifies attacks if they exist.

This system can easily be extended, configured, and/or modified by replacing some

features or adding new features for new types of attacks.

 The training of the NNs modules requires a very large amount of NetFlow data

with known types of attacks and considerable time to ensure that the results from the

NNs are accurate. The changes in patterns of usage of the network should not be

undetected, but at the same time, these changes are isolated to NN1. Appearance of new

patterns of attack affects only classification in NN2, which is the main reason to have

two stage neural networks instead of one. Consequently, the events that require

retraining for the two networks are completely independent. Experiments with different

NNs were crucial to define the NN which yields the best classification and training

speed results for both NN stages.

The experimental results of the proposed method prove that the use of NetFlow

dataset and extracting only features that significantly contribute to intrusion detection

gives promising results. The obtained detection rate (94.2% for anomaly detection at

stage one, and 99.4% for classification at stage two) is remarkably good compared to

other approaches, which use larger training sets [142]. These results are comparable to

the best researches that are based on a similar approach using the different type of

training dataset Figure 6.1 illustrates the previous researches results compared to our

approach.

The multilayer Feedforward neural network has a better classification ability compared

to RBFN, but memory and time consumption is 3-5 times greater. Otherwise, RBFN has

a simple architecture and hybrid learning algorithm which leads to less time/memory

consumption and it is better for working in real-time and for retraining with new data.

Chapter 6: Conclusions and Future Work

77

Figure. 6.1. Detection Rate on Different Datasets for IDSs.

6.2 Future Work

While our work has produced some promising results, it is necessary to improve our

system further to detect more known and unknown attacks. Our proposed system also

needs further testing on a wider data set with more variety of attacks.

Future work will concentrate on minimizing the number of selected features and to find

out features that only have influence on detection attacks. Our future work will also be

directed towards developing a more accurate model that can be used in real-time for

detecting and classifying anomaly with minimum false alarms and less time.

75%
80%
85%
90%
95%

100%
105%

References

78

[1] B. A. Forouzan, “TCP/IP Protocol Suite”, 1st Edition, McGraw-Hill Companies,

2000.

[2] E. G. Britten, J, Tavs, R. Bournas, “TCP/IP: The Next Generation”, IBM Systems

Journal,Vol. 34, No. 3, pp. 452-472, 1995.

[3] C. J. P. Moschovitis, H. Poole, T. Schuyler and T. M. Senft, “History of the

Internet: A Chronology, 1843 to the Present”, Santa Barbara, CA, 1999.

[4] B. Carlson, A. Burgess and C. Miller, “Timeline of Computing History”,

http://www.computer.org/computer/timeline/timeline.pdf, 2003.

[5] CERT Coordination Center, http://www.cert.org/certcc.html, Jul. 2008.

[6] W. Stallings, “Cryptography and Network Security: Principles and Practices”,

3rd Edition, Prentice Hall, 2003.

[7] Richard Power, “2002 CSI/FBI Computer Crime and Security Survey”, Vol.

VIII, No.1, spring 2002.

[8] E. Strassberg, R. J. Gondek and G. Rollie, “Firewalls: The Complete

Reference”, McGraw-Hill/Osborne, 2002.

[9] Google, http://www.google.com, accessed 16.June, 2003.

[10] T. Titsworth, “Silver Bullets and Cybersecurity”, IEEE Multimedia, Vol. 10, No.

1, pp. 64- 65, 2003.

[11] Internet2 NetFlow Weekly Reports, http://netflow.internet2.edu/weekly, Jul. 2008.

[12] H. Lai, S. Cai, H. Huang, J. Xie, and H. Li, “A parallel intrusion detection system

for high-speed networks”, in Proc. of the Second International Conference Applied

Cryptography and Network Security (ACNS’04), pp. 439–451, May 2004.

[13] M. Gao, K. Zhang, and J. Lu, “Efficient packet matching for gigabit network

intrusion detection using TCAMs”, in Proc. of 20th International Conferece on

Advanced Information Networking and Applications , pp. 249–254, 2006.

[14] M. Roesch, “Snort, intrusion detection system”, Available at:

 http://www.snort.org, Jul. 2008.

[15] V. Paxson, “Bro: a system for detecting network intruders in real-time”, Computer

Networks, vol. 31, no. 23–24, pp. 2435–2463, 1999.

[16] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Operational experiences

with high- volume network intrusion detection,” in Proc. SIGSAC: 11th ACM

Conference on Computer and Communications Security (CSS’04), pp. 2–11,2004.

[17] Z. Fadlullah, T. Taleb, N. Ansari, K. Hashimoto, Y. Y. Miyake, Y. Nemoto, and

N.Kato, “Combating against attacks on encrypted protocols”, in IEEE

International Conference on Communications (ICC’07), pp. 1211–1216, 2007.

[18] T. Taleb, Z. M. Fadlullah, K. Hashimoto, Y. Nemoto, and N. Kato, “Tracing

Back attacks against encrypted protocols”, in Proc. of the 2007 international

Conference on Wireless communications and mobile computing, pp. 121–126,

2007.

[19] S. Song and Z. Chen, “Adaptive network flow clustering,” in: proc. IEEE

International Conference on Networking, Sensing and Control, pp.596–601, 2007.

[20] G. Schaffrath and B. Stiller, “Conceptual integration of flow-based and packet-

based network intrusion detection,” in Proc. of 2nd International Conference on

Autonomous Infrastructure, Management and Security , pp. 190–194, 2008.

[21] Cisco.com, “Cisco IOS Flexible NetFlow White Paper”, http://www.cisco.com.

[22] Cisco.com,”Cisco IOS NetFlow Configuration Guide”, Release 12.4 available at

http://www.cisco.com, Sept. 2010.

References

79

[23] B. Claise, “Cisco Systems NetFlow Services Export Version 9”, RFC 3954

(Informational), July 2008.

[24] B. Claise,”Specification of the IP Flow Information Export (IPFIX) Protocol for

the Exchange of IP Traffic Flow Information”, RFC 5101, 2008.

[25] C. Herringshaw, “Detecting Attacks on Networks”, IEEE Computer, Vol 30, No

12, pp.16- 17, 1997.

[26] D. Joo, T. Hong and I. Han, “The Neural Network Models for IDS based on the

Asymmetric costs of false negative errors and false positive errors”, Expert

Systems with Applications Vol. 25, pp. 69-75, 2003.

[27] G. Giacinto, F. Roli and L. Didaci, “Fusion of Multiple Classifiers for Intrusion

Detection in Computer Networks”, Pattern Recognition Letters, Vol. 24, pp. 1795-

1803, 2003.

[28] Lin M, Miikkulainen R, Ryan J.,”Intrusion detection with neural networks‟‟,

Advances in Neural Information Processing Systems, pp.943–957, 1998.

[29] T. Fioreze,”Self-management of hybrid optical and packet switching networks”,

PhD thesis, University of Twente, Feb. 2010.

[30] T. Fioreze, M. O. Wolbers, R. van de Meent, and A. Pras., ”Finding elephant flows

for optical networks”. In Proc. of 10th IFIP/IEEE Int. Symposium on Integrated

Network Management (IM ’07), pages 627–640, 2007.

[31] R. Durst, T. Champion, B. Witten, E. Miller and L. Spagnuolo, “Testing and

Evaluating Computer Intrusion Detection Systems”, Communications of the ACM,

Vol. 42, No. 7, pp. 53-61, July 1999.

[32] G´EANT, available at: http://www.geant.net, Sept. 2010.

[33] G. He and J. C. Hou.,”An in-depth, analytical study of sampling techniques for

self-similar internet traffic”, In Proc. of the 25th IEEE Int. Conf. on Distributed

Computing Systems (ICDCS ’05), pp. 404–413, 2005.

[34] InMon Corporation,” sflowtrend”, available at: http://www.inmon.com, 2010.

[35] IsarNet Software Solutions,” Isarflow”, available at: http://isarflow.com/, 2010.

[36] C. A. Carver, J. M. D. Hill and U. W. Pooch, “Limiting Uncertainty in Intrusion

response”, 2001 IEEE Man Systems and Cybernetics Information Assurance

Workshop, pp. 142-147, New York, June 2001.

[37] R. A. Maxion and K. M. C. Tan,”Anomaly Detection in Embedded Systems”,

IEEE Trans. On Computers, Vol. 51, No. 2, pp. 108-120, February 2002.

[38] J. McHugh, A. Christie, and J. Allen, “Defending Yourself: The Role of Intrusion

Detection Systems”, IEEE Software, Vol. 17, No. 5, pp. 42-51, 2000.

[39] C. Morariu, P. Racz, and B. Stiller, “Design and Implementation of a Distributed

Platform for Sharing IP Flow Records, In Proc. of the 20th IFIP/IEEE Int.

Workshop on Distributed Systems: Operations and Management , 2009.

[40] C. Morariu and B. Stiller,”DiCAP: Distributed Packet Capturing architecture for

high-speed network links”, In Proc. of the 33rd IEEE Conf. on Local Computer

Networks (LCN ’08), Oct. 2008.

[41] S. B. Cho, “Incorporating Soft Computing Techniques Into a Probabilistic

Intrusion Detection System”, IEEE Transactions on Systems, Man, and

Cybernetics – Part C: Applications and Revise, Vol. 32, No. 2, pp. 154-160, 2002.

[42] J. Quittek, S. Bryant, B. Claise, P. Aitken, and J. Meyer, “Information Model for

IP Flow Information Export”, RFC 5102 (Proposed Standard), Jan. 2008.

[43] J. Quittek, T. Zseby, B. Claise, and S. Zander,” Requirements for IP Flow

Information Export (IPFIX)”, RFC 3917 (Informational).

References

80

[44] B. Trammell and E. Boschi,” Bidirectional Flow Export Using IP Flow

Information Export (IPFIX)”, RFC 5103 (Proposed Standard), 2008.

[45] SURFnet. www.surfnet.nl, Sept. 2010.

[46] M. Fullmer,”Flow-tools”, http://www.splintered.net/sw/flow-tools/, Sept. 2010.

[47] P. Haag, “Nfdump”, available at: http://nfdump.sourceforge.net/, Sept. 2010.

[48] T. Draelos, D. Duggan, M. Collins and D. Wunsch, “Adaptive Critic Designs for

Host- Based Intrusion Detection”, Proc. of the 2002 International Joint

Conference on Neural Networks, Vol. 2, pp. 1720- 1725, May 2002.

[49] R. A. Kemmerer and G. Vigna, “Intrusion Detection: A Brief Introduction and

History”, Security & Privacy Supplement IEEE Computer Magazine, pp. 27-30,

2002.

[50] J. P. Anderson, “Computer Security Threat Monitoring and Surveillance”,

Technical Report, James P. Anderson Co., Fort Washington, Pa, 1980.

[51] D. E. Denning, “An Intrusion-Detection Model”, IEEE Trans. Software Eng., Vol.

13, No. 2, pp. 222-232, February 1989.

[52] S. C. Lee and D. V. Heinbuch, “Training a Neural-Network Based Intrusion

Detector to Recognize Novel Attacks”, IEEE Transactions On Systems, Man, And

Cybernetics - Part A: Systems And Humans, Vol. 31, No. 4, pp. 294-299, 2001.

[53] R. A. Maxion and K. M. C. Tan, “Benchmarking Anomaly-Based Detection

Systems”, IEEE Computer Society Press – International Conference on

Dependable Systems and Networks, pp. 623-630, 25- 28 June 2000.

[54] G. Goth, “Securing the Internet Against Attack”, IEEE Internet Computing, Vol.7,

No. 1, pp. 8-10, 2003.

[55] Y. Lapid, N. Ahituv and A. Neumann, “Approaches to Handling Trojan Horse

Threats”, Computers and Security, Vol. 5, No. 3, pp. 251-256, September 1986.

[56] F. Cohen, “Current Best Practice Against Computer Viruses”, 25th IEEE

International Carnahan Conference on Security Technology, Oct.1-3, 1991.

[57] S. Mohiuddin, S. Hershkop, R. Bhan and S. Stolfo, “Defending Against a Large

Scale Denial-of-Service Attack”, in Proc. 2002 IEEE Workshop on Information

Assurance and Security, New York, pp. 17-19, June 2002.

[58] S. Northcutt and J. Novak, “Network Intrusion Detection”, an

Analyst’sHandbook, 2nd Edition, New Riders Publishing, 2001.

[59] R. Comerford, “No Longer in Denial”, IEEE Spectrum, Vol. 38, pp. 59-61, 2001.

[60] L. Garber, “Denial-of-Service attacks Rip the Internet”, IEEE Computer, Vol. 33,

No. 4, pp. 12-17, April 2000.

[61] DARPA Intrusion Detection Evaluation, Lincoln Laboratory, Massachusetts

Institute of Technology, http://www.ll.mit.edu/IST/ideval/index.html, 2003.

[62] S. Mukkamala, G. Janoski and A. Sung, “Intrusion Detection Using Neural

Networks and Support Vector Machines”, Proc. of the 2002 International Joint

Conference on Neural Networks, Vol. 2, pp. 1702- 1707, May 2002.

[63] A. Housebolder, K. Houle and C. Dougherty, “Computer Attack Trends Challenge

Internet Security”, Security & Privacy – Supplement – IEEE Computer Magazine,

pp. 5-7, April 2002.

[64] D. B. Chapman, S. Cooper and E. D. Zwicky, “Building Internet Firewalls”, 2nd

Edition, O’Reilly & Associates, 2000.

[65] J. McHugh, A. Christie, and J. Allen, “Defending Yourself: The Role of Intrusion

Detection Systems”, IEEE Software, Vol. 17, No. 5, pp. 42-51, 2000.

References

81

[66] T. Verwoerd and R. Hunt, “Intrusion Detection Techniques and Approaches”,

Computer Communications, Vol. 25, No. 15, pp. 1356-1365, 2002.

[67] J. Cannady, “Next Generation Intrusion Detection: Autonomous Reinforcement

Learning Of Network Attacks”, Proc. 23rd National Information Systems Security

Conference, pp. 1- 12, Baltimore, 2000.

[68] Rosenblatt, Frank. x.,” Principles of Neurodynamics: Perceptrons and the

Theory of Brain Mechanisms”, Spartan Books, Washington DC, 1961.

[69] Rumelhart, David E., Geoffrey E. Hinton, and R. J. Williams, “Learning

Internal Representations by Error Propagation”, David E. Rumelhart, James

L.McClelland, and the PDP research group. (Editors), Parallel distributed

processing:Explorations in the microstructure of cognition, Vol.1, MIT, 1986.

[70] Cybenko, G. “Approximation by superpositions of a sigmoidal function”,

Mathematics of Control, Signals, and Systems, 2(4), 303–314.1989

[71] Hagan, M.T., H.B. Demuth, and M.H. Beale, “Neural Network Design”, Boston,

MA: PWS Publishing, 1996.

[72] Hagan, M.T., and M. Menhaj, "Training feed-forward networks with the

Marquardt algorithm", IEEE Transactions on Neural Networks, Vol. 5, No. 6, pp.

989–9931999,.

[73] Moody, J., and Darken C., "Fast learning in networks of locally-tuned processing

units", Neural Computer, MIT Press Cambridge, MA, USA, Vol. 1, pp.281-294.

1989.

[74] R. Ghosh, "A novel hybrid learning algorithm for artificial neural networks",

Ph.D.Thesis, School of Information Technology, Griffith University, 2002.

[75] Debar H, Becker M, Siboni D.,”A neural network component for an intrusion

detection system”, In: The proceedings of the 1992 IEEE symposium on research

in computer security and privacy, Oakland, CA, p. 240-250, May 1992.

[76] Ghosh AK, Schwartzbard A.,”A study in using neural networks for anomaly and

misuse detection”, In: The proceeding on the 8
th

 USENIX security symposium,

1999.

[77] Horeis T.,”Intrusion detection with neural networks-combination of self-

organizing maps and radial basis function networks for human expert integration”,

Computational Intelligence Society, Research report, 2003.

[78] Lin M, Miikkulainen R, Ryan J.,”Intrusion detection with neural networks‟‟,

Advances in Neural Information Processing Systems, pp.943–957, 1998.

[79] Charron F, Ghosh A, Wanken J.,”Detecting anomalous and unknown intrusions

against programs”, In: 14th Annual Computer Security Applications Conference,

P.259–67,1998

[80] Heywood M, Lichodzijewski P, Zincir-Heywood N.,”Dynamic intrusion detection

using self-organizing maps”, In: The annual Canadian information technology

security, 2002.

[81] Binh Viet N., “Self organizing map (SOM) for anomaly detection”, 2002.

[82] Lin M, Miikkulainen R, Ryan J.,”Intrusion detection with neural networks‟‟,

Advances in Neural Information Processing Systems, pp.943–957, 1998.

[83] Cannady J.,”Artificial neural networks for misuse detection”, In: The proceedings

of the1998 national information systems security conference (NISSC’98), 1998.

[84] S. Mukkamala, G. Janoski and A. Sung, “Intrusion Detection Using Neural

Networks and Support Vector Machines”, Proc. of the 2002 International Joint

Conference on Neural Networks, Vol. 2, pp. 1702- 1707, May 2002.

References

82

[85] Cunningham R, Lippmann R.,”Improving intrusion detection performance using

keyword selection and neural networks”, In: The proceedings of the international

symposium on recent advances in intrusion detection, Purdue, IN, 1999.

[86] Mehdi Moradi, and Mohammad Zulkernine, "A Neural Network Based System for

Intrusion Detection and Classification of Attacks", International Conference on

Advances in Intelligent Systems, Theory and Applications, Luxembourg,

Kirchberg, IEEE, November 2004.

[87] Rachid Beghdad, "Critical Study of Neural Networks in Detection Intrusions",

Press, Computer and Security, Elsevier, June 2008.

[88] Yuehui Chen, Ajith Abraham, and Bo Yang, "Hybrid Flexible Neural-Tree-Bas

Intrusion Detection Systems”, International Journal of Intelligent Systems,

Vol.22, 2007.

[89] Lichodzijewski P, Zincir Heywood AN, Heywood MI. Host-based intrusion

detection using self-organizing maps. In: The proceedings of the 2002 IEEE world

congress on computational intelligence, Honolulu, HI; 2002. p. 1714–9.

[90] S. Zanero and S. M. Savaresi, “Unsupervised learning techniques for an

intrusion Detection system”, in Proc. of the ACM symposium on Applied

computing, pp.412– 419, 2004.

[91] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, “On the capability of

an SOM based intrusion detection system”, in Proceedings of CNN, pp.1808–

1813, 2003.

[92] J. Z. Lei and A. Ghorbani, “Network intrusion detection using an improved

competitive Learning neural network”, in Proceedings of CNSR, pp. 190–197,

2004.

[93] P. Haag.,”Nfsen: Netflow sensor”, available at: nfsen.sourceforge.net, April 2008.

[94] D. Plonka,”Flowscan”, www.caida.org/tools/utilities/flowscan/, April 2008.

[95] B. Claise, “Cisco Systems NetFlow Services Export Version 9”, RFC 3954

(Informational), July 2008.

[96] Cisco.com, “Cisco IOS Flexible NetFlow White Paper”, http://www.cisco.com,

2010.

[97] IP Flow Information Export Working Group, available at:

www.ietf.org/html.charters/ipfix- charter.html, April 2008.

[98] E. Izkue and E. Maga˜na.,”Sampling time-dependent parameters in high-speed

network monitoring”, In : Proc. of the ACM international workshop on

Performance monitoring measurement, and evaluation of heterogeneous wireless

and wired networks, ACM, pp. 13–17, 2006.

[99] L.Yang and G.Michailidis,” Sampled based estimation of network traffic flow

characteristics”, In INFOCOM 2007. 26th IEEE International Conference on

Computer Communications. IEEE, pp. 1775–1783, 2007.

[100] sFlow. www.sflow.org, April 2008.

[101] A. Lakhina, M. Crovella, and C. Diot.,” Characterization of network-wide

 anomalies in traffic flows”, In IMC ’04: Proc. of the 4th ACM SIGCOMM

 conference on Internet measurement, pp. 201–206, 2004.

[102] A. Lakhina, M. Crovella, and C. Diot.,” Diagnosing network-wide traffic

 anomalies”, In: Proc. of the Conference on Applications, technologies,

 architectures, and protocols for computer comm., pp. 219–230, 2004.

[103] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk, and N. Taft.

 “Structural analysis of network traffic flows”, SIGMETRICS Perform. Eval.

References

83

 Rev., 32(1), pp.61– 72, 2004.

[104] Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan. “Network anomography”. In

 Proceedings of the Internet Measurement Conference 2005 on Internet

 Measurement Conference, pages 317–330, 2005.

[105] T. Dubendorfer and B. Plattner,”Host behavior based early detection of worm

 outbreaks in internet backbones”. In: Proc. of the 14th IEEE International

 Workshops on Enabling Technologies: Infrastructure for Collaborative

 Enterprise, WETICE ’05, pages 166–171, 2005.

[106] Y. Gao, Z. Li, and Y. Chen,”A dos resilient flow-level intrusion detection

 approach for high- speed networks”, ICDCS 2006: 26th IEEE International

 Conference on Distributed Computing Systems, pp. 39, 2006

[107] G. Munz and G. Carle, “Real-time Analysis of Flow Data for Network Attack

 Detection”, In Proc. of 10th IFIP/IEEE Int. Symposium on Integrated Network

 Management (IM’07), pp.100–108, 2007.

[108] Mell, P., Hu, V., Lippmann, R., Haines, J., Zissman, M.,”An overview of issues

 in testing intrusion detection systems”, Technical Report NIST IR 7007,

 National Institute of Standards and Technology, June 2003.

[109] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber,

 S.E.Webster, D.Wyschogrod, R. Cunningham, and M. Zissman,” Evaluating

 intrusion detection systems: the 1998 DARPA off-line intrusion detection

 evaluation”, In Proc. of the DARPA Information Survivability Conf. and

 Exposition, pp. 12–26, 2000.

[110] Haines, J., Lippmann, R., Fried, D., Zissman, M., Tran, E., Boswell, and

 S.,”1999 DARPA Intrusion Detection Evaluation: Design and Procedures”,

 Technical Report TR 1062, MIT Lincoln Laboratory, February 2001.

[111] R. Schweller, L. Zhichun, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. Dinda, M.-

 Y.Kao, and G. Memik,” Reverse hashing for high-speed network monitoring:

 Algorithms, evaluation, and applications”, In Proc. of the 25th IEEE Int. Conf.

 on Computer Communications (INFOCOMM ’06), pp. 1–12, 2006.

[112] Q. Zhao, J. Xu, and A. Kumar. Detection of super sources and destinations in

 high-speed networks: Algorithms, analysis and evaluation. IEEE Journal on

 Selected Areas in Communications, 24(10):1840–1852, 2006.

[113] Z. Li, Y. Gao, and Y. Chen.,” Towards a high-speed router-based anomaly

 intrusion detection system”,

 http://conferences.sigcomm.org/sigcomm/2005/poster-121, 2005.

[114] M.-S. Kim, H.-J. Kong, S.-C. Hong, S.-H. Chung and J. Hong, “A flow-based

 method for abnormal network traffic detection”, In Proc. of IEEE/IFIP Network

 Operations and management Symposium (NOMS’04), pp. 599–612, 2004.

[115] A. Lakhina, M. Crovella, and C. Diot.,” Characterization of network-wide

 anomalies in traffic flows”, In IMC ’04: Proc. of the 4th ACM SIGCOMM

 conference on Internet measurement, pp. 201–206, 2004.

[116] A. Lakhina, M. Crovella, and C. Diot.,” Mining anomalies using traffic feature

 distributions”, ACM SIGCOMM Computer Communication Review, vol. 35 (4),

 pp. 217–228, 2005.

[117] J. Kinable,”Detection of network scan attacks using flow data”, In Proc. of the

 8
th

 Twente Student Conference on IT, 2008.

[118] A.Wagner and B. Plattner,” Entropy based worm and anomaly detection in fast

 IP networks”, In Proceedings of the 14th IEEE International Workshops on

References

84

 Enabling Technologies Infrastructure for Collaborative Enterprise, 2005.

[119] C. E. Shannon. A mathematical theory of communication. The Bell System

 Technical Journal, 27(3):379–423, 1948.

[120] A.Wagner, T. Dubendorfer, B. Plattner, and R. Hiestand,” Experiences with

 Worm propagation simulations”, In Proc. of 2003 ACM workshop on Rapid

 Malcode (WORM ’03), pp.34–41, 2003.

[121] M. Lee, T. Shon, K. Cho, M. Chung, J. Seo, and J. Moon, “An Approach for

 Classifying Internet Worms Based on Temporal Behaviors and Packet Flows”,

 In Proc. Of 3rd Int. Conf. on Intelligent Computing, pp. 646–655, 2007.

[122] C. Zou, W. Gong, and D. Towsley. Code red worm propagation modeling and

 analysis. In Proc. of 17th USENIX Security Symposium (USENIX Security

 ‟08), pages 138–147, 2002.

[123] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver,

 “Inside the slammer worm”, IEEE Security & Privacy, Vol.1, pp.33–39, 2003.

[124] T. Dubendorfer, A. Wagner, and B. Plattner,” A framework for real-time worm

 attack detection and backbone monitoring”, In Proc.of 1st IEEE Int.

 Workshopon Critical Infrastructure Protection (IWCIP), pp. 3–12, Nov. 2005.

[125] F. Dressler,W. Jaegers, and R. German, ”Flow-basedWorm Detection using

 Correlated Honeypot Logs”, In Proc. of 15th GI/ITG Fachtagung

 Kommunikation in Verteilten Systemen (KiVS ’07), pages 181–186, 2007.

[126] Mell, P., Hu, V., Lippmann, R., Haines, J., Zissman, M.,”An overview of issues

 in testing intrusion detection systems”, Technical Report NIST IR 7007,

 National Institute of Standards and Technology, June 2003.

[127] S. M. Specht and R. B. Lee,” Distributed Denial of Service: Taxonomies of

 Attacks, Tools, and Countermeasures”, In Proc. of the ISCA 17th Int. Conf. on

 Parallel and Distributed Computing Systems (ISCA PDCS), pp. 543–550, 2004.

[128] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber,

 S.E.Webster, D.Wyschogrod, R. Cunningham, and M. Zissman,” Evaluating

 intrusion detection systems: the 1998 DARPA off-line intrusion detection

 evaluation”, In Proc. of the DARPA Information Survivability Conf. and

 Exposition, pp. 12–26, 2000.

[129] R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das.,” The 1999 DARPA

 off-line intrusion detection evaluation”, Computer Networks, vol. 34(4), pp.597–

 595, 2000.

[130] S. J. Stolfo,W. Fan,W. Lee, A. Prodromidis, and P. K. Chan,” Cost-based

 Modeling for Fraud and Intrusion Detection: Results from the JAM Project”, In

 Proc. of the 2000 DARPA Information Survivability Conference and Exposition,

 pp.130–144, 2000.

[131] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of the

 KDD CUP 99 data set. In Proc. of the 2nd IEEE Int. Conf. on Computational

 Intelligence for security and defense applications, pages 53–58, 2009.

[132] Sperotto, A., Sadre, R., van Vliet, D.F. and Pras, A. A Labeled Data Set For

 Flow-based Intrusion Detection. In: IP Operations and Management,

 Proceedings of the 9th IEEE Intenational Workshop IPOM, October 29-30,

 2009.

[133] Softflowd, available at: https://code.google.com/p/softflowd/.

[134] M. Vallipuram and B. Robert, "An Intelligent Intrusion Detection System based

 on Neural Network", IADIS International Conference Applied Computing,2004

https://code.google.com/p/softflowd/

References

85

[135] Mukkamala, S.; and Sung, A.H.,” Feature selection for intrusion detection using

 neural networks and support vector machines”, Transportation Research

 Record, pp. 33-39. 2003.

[136] D. Novikov, V. Roman Yampolskiy, and L. Reznik, "Anomaly Detection

 Based Intrusion Detection", IEEE Third International Conference

 on Communication, Networking & Broadcasting, pp 420-425, 2006.

[137] Sammany, M.; Sharawi, M.; El-Beltagy, M.; and Saroit, I.,” Artificial neural

 networks architecture for intrusion detection systems and classification of

 attacks”, Accepted for publication in the 5th international conference

 INFO2007, Cairo University.2007

[138] Muna Mhammad T. Jawhar,” Design Network Intrusion Detection System

 Using hybrid Fuzzy- Neural Network”, International Journal of Computer

 Science and Security, Vol. (4).2009.

[139] Rodrigo Braga,” Lightweight DDoS Flooding Attack Detection Using

 NOX/OpenFlow”, 35th Annual IEEE Conference on Local Computer Networks

 LCN, Denver, Colorado 6, 2010

[140] M.Govindarajan, and RM.Chandrasekaran,” Intrusion detection using neural

 based hybrid classification methods”, computer networks journal. Vol. 55, issue

 8, pp.1662-1671, 2011

[141] Prasanta Gogoi, D.K. Bhattacharyya, B. Borah, and Jugal K. Kalita “MLH-IDS:

 A Multi-Level Hybrid Intrusion Detection Method”, the Computer Journal

 Advance Access published May 12, 2013

[142] DARPA1998, available at: http://www.ll.mit.edu/IST/ideval/docs/1998.

http://www.ll.mit.edu/IST/ideval/docs/1998

Biography

86

Biography

Yousef Abuadlla was born on April, 10, 1969 in Zahra, Libya. In

1989, he began his Bachelor‟s degree at Faculty of Electrical

Engineering, University of Al-Fatah-Tripoli, Libya. He graduated

in 1993 with B.Sc. degree in Computer Engineering. He started to

work in 1993 for Research and Development Center (R&D) in

Computer Department. He continued his studies at the Faculty of

Electrical Engineering University of Belgrade in 2001, where he

enrolled in the master studies. The final work of M.Sc. (thesis)

defended at the Faculty of Electrical Engineering in Belgrade. He

graduated in 2003 with degree in Engineering Science in the field

of onboard computers. Upon his return to Libya continued to

work in Research and Development Center in Tripoli.

Between 2004- 2006, he worked as assistant lecturer as a part

time for Computer network and Operating system courses at the

Technical Institute in Zahra.

He started PhD degree at the Faculty of Electrical Engineering

University of Belgrade in the fall 2008. He participated in one

international conference. Upon completion of his doctoral studies,

he will continue his work for Research and Development Center.

Appendices

87

Прилог 1.

Изјава о ауторству

Потписани-a Yousef Abuadlla

број уписа 930 __

Изјављујем

да је докторска дисертација под насловом

Систем за детекцију упада заснован на токовима са две неуралне мреже

 резултат сопственог истраживачког рада,

 да предложена дисертација у целини ни у деловима није била предложена
за добијање било које дипломе према студијским програмима других
високошколских установа,

 да су резултати коректно наведени и

 да нисам кршио/ла ауторска права и користио интелектуалну својину
других лица.

 Потпис докторанда

У Београду, 22/09/2014

Appendices

88

Прилог 2.

Изјава o истоветности штампане и електронске верзије

докторског рада

Име и презиме аутора ___Yousef Abuadlla_____

Број уписа __930___

Студијски програм Computer Engineering_____

Наслов рада Систем за детекцију упада заснован на токовима са две

неуралне мреже

Ментор __Zoran Jovanovic

Потписани ____

изјављујем да је штампана верзија мог докторског рада истоветна електронској

верзији коју сам предао/ла за објављивање на порталу Дигиталног

репозиторијума Универзитета у Београду.

Дозвољавам да се објаве моји лични подаци везани за добијање академског

звања доктора наука, као што су име и презиме, година и место рођења и датум

одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне

библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

 Потпис докторанда

У Београду, 22/09/2014

Appendices

89

Прилог 3.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку „Светозар Марковић“ да у Дигитални

репозиторијум Универзитета у Београду унесе моју докторску дисертацију под

насловом:

Систем за детекцију упада заснован на токовима са две неуралне

мреже

која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном

за трајно архивирање.

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета

у Београду могу да користе сви који поштују одредбе садржане у одабраном типу

1. Ауторство
2. Ауторство – некомерцијално
3. Ауторство – некомерцијално – без прераде
4. Ауторство – некомерцијално – делити под истим условима

5. Ауторство – без прераде

6. Ауторство – делити под истим условима

(Молимо да заокружите само једну од шест понуђених лиценци, кратак опис
лиценци дат је на полеђини листа).

 Потпис докторанда

У Београду, 22/09/2014

Appendices

90

1. Ауторство - Дозвољавате умножавање, дистрибуцију и јавно саопштавање

дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора

или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих

лиценци.

2. Ауторство – некомерцијално. Дозвољавате умножавање, дистрибуцију и јавно

саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од

стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну

употребу дела.

3. Ауторство - некомерцијално – без прераде. Дозвољавате умножавање,

дистрибуцију и јавно саопштавање дела, без промена, преобликовања или

употребе дела у свом делу, ако се наведе име аутора на начин одређен од

стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну

употребу дела. У односу на све остале лиценце, овом лиценцом се ограничава

највећи обим права коришћења дела.

4. Ауторство - некомерцијално – делити под истим условима. Дозвољавате

умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе

име аутора на начин одређен од стране аутора или даваоца лиценце и ако се

прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не

дозвољава комерцијалну употребу дела и прерада.

5. Ауторство – без прераде. Дозвољавате умножавање, дистрибуцију и јавно

саопштавање дела, без промена, преобликовања или употребе дела у свом делу,

ако се наведе име аутора на начин одређен од стране аутора или даваоца

лиценце. Ова лиценца дозвољава комерцијалну употребу дела.

6. Ауторство - делити под истим условима. Дозвољавате умножавање,
дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на
начин одређен од стране аутора или даваоца лиценце и ако се прерада
дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава
комерцијалну употребу дела и прерада. Слична је софтверским лиценцама,
односно лиценцама отвореног кода.

