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Evolution of Wireless Cellular Networks
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5G Vision and KPIs

20Gbps DL peak data rates
to support AR/VR

10,000 x more traffic

100Mbps, high mobility 

1M devices per sqkm

10-year battery life  

1 ms latency

99.9999% reliability 
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6G Vision and Possible Use Cases

Ubiquitous 
connectivity

Deep 
connectivity

Bio  
connectivity

• Wearable and implantable bio-sensors 
• Healthcare applications
• Brain-machine communications
• Brain-brain communications

• Deep sensing and learning for IoT applications
• Human-machine collaboration
• Collaborative robots in factories and healthcare 

• Space
• Air 
• Ground
• Underwater

• Ultra-high fidelity VR/AR
• Holographic telepresence 
• Multi-sense experience

Holographic 
connectivity
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6G KPIs

6G

10Tbps 
peak 
data

25𝜇𝜇s
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20years 
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10 x 
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6GTechnologies

6G

3D 
networks

THz 
comms

AI

3CSL 
codesign 

NOMA

Large 
intelligent 
reflective 
surfaces
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Use Cases for AI in Wireless Networks

5G/6G 
for

Network resource allocation

Propagation and channel modelling

Communications and control co-design 

Physical layer design 
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Principles of Machine Learning in Wireless Networks

Performance Evaluation

Data Collection Data Cleaning

Model Building Training

Decision Making 
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Signal Strength Prediction in Cellular Networks

• Signal strength information required for deploying  
communication towers 

• Theoretical models are not accurate 
• Real measurements give accurate signal strength values 
• They are costly and inflexible
• AI-based models are superior for signal strength modelling
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AI-based Signal Strength Prediction
• AI-based propagation modelling for outdoor environments
• The current empirical models use the information on transmit

and receive antenna heights, frequency, and the distance
between the transmitter and receiver, and correction factors
for the environment types

• The AI model uses high-resolution satellite images that
capture the environment features.
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An AI Model for Propagation Modelling

Path loss 
model
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Trajectory 
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• System configuration: BS transmitter power, BS height, user 
height, and the ground distance between user and BS.

• Trajectory information: user location, BS location, and the 
ground distance.

• Satellite map: nearby satellite map of users

Yu, Z. Hou, Y. Gu, et al.,” Systems and methods for received signal strength prediction using a d  
federated learning framework,” A.U. Patent 051437, Dec. 2022.
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AI-Based Propagation Modelling - LTE 
Telstra(2.6GHz)

The location of different sites 

(a) Sites from areas 1-4 in Victoria, Australia (b) Sites from areas 5-8 in New South Wales, A
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– Baseline：Path loss model (from 3GPP)

Prediction Results for LTE Signal Strength

3GPP TR 38.901 version 16.1.0 Release 16, “Study on channel model for frequencies from 0.5 to 100 GHz,” Nov. 2020.

𝑃𝑃𝑃𝑃: Path loss

𝑓𝑓𝑐𝑐: Carrier frequency

𝑑𝑑2𝐷𝐷: Distance between base 
station and user in 2 dimension 

ℎ𝐵𝐵𝐵𝐵:Base station height

𝑑𝑑3𝐷𝐷: Distance between base 
station and user in 3 dimension 

ℎ𝑈𝑈𝑈𝑈: User height

𝛿𝛿𝑆𝑆𝑆𝑆:Shadow fading

𝑑𝑑𝐵𝐵𝐵𝐵′ :Break point distance
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Areas
AI-based model

RMSE [dB]
Path loss model

RMSE[dB]
Area1 5.63 9.18
Area2 5.85 9.06
Area3 6.24 10.38
Area4 5.32 8.94
Area5 6.21 8.61
Area6 6.26 9.68
Area7 4.81 8.54
Area8 5.98 10.11

For each site: first 80% data for training and last 20% data for testing

Prediction Results for LTE Signal Strength –Telstra

H. Yu et al., "Distributed Signal Strength Prediction using Satellite Map empowered by Deep Vision Transformer," 2021 IEEE Globecom
Workshops (GC Wkshps), 2021, pp. 1-6, doi: 10.1109/GCWkshps52748.2021.9682021.

H. Yu, Z. Hou, Y. Gu, et al.,” Systems and methods for received signal strength prediction using a distributed federated learning framework,” 
A.U. Patent 051437, Dec. 2022.
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– Training sites: Area1&2&3
– Testing sites: Area4
– Testing RMSE: 5.93dB

– Training sites: Area5&6&8
– Testing sites: Area7
– Testing RMSE: 6.33dB

Prediction Results for LTE Signal Strength –Telstra
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AI-based Detector Design in Massive 
MIMO Systems

System Model Graph Neural Network-based Detector

A. Kosasih, V. Onasis, V. Miloslavskaya, W.  Hardjawana, V. Andrean, and B. Vucetic, Graph neural 
network aided MU-MIMO detectors, IEEE Journal on Selected Areas in Commun., Vol. 40, No. 9, July 
2022, pp. 2540-2555. 
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Performance of the AI-based Detector in 
Massive MIMO Systems

Symbol Error Rate

System configurations:
• Quadrature Phase Shift Keying (QPSK)
• Number of Rx : 32, Tx : 8
• Total samples : 100000
• Batch size : 64
• Number of training iterations : 500
• Number of layers for each MLP : 3
• Hidden layer neurons in each MLP : 128
• Optimizer : Adam 
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N – the number of users, each with a single antenna 
M – the number of base station antennas
A – the number of points in the constellation set
T – the number of iterations
L – the number of neurons

Receiver Complexity
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AI-based Error-Control Code Design for 6G 
– Beyond 5G and 6G networks: 

– Channel codes with high error-
correction capability are needed 
to meet the stringent reliability, 
latency and throughput 
requirements of emerging 
applications 

– Start-of-the-art codes: 
– 5G New Radio standard: 

• Polar codes with cyclic 
redundancy check (CRC) 
were adopted for control 
channel

• Low density parity check 
(LDPC) codes were adopted 
for data channel

– Can AI improve the complexity-
performance tradeoff?

Channel 
encoder

Modulator

Channel 
decoder

Demodulator

ChannelError-control 
code

Data

Reconstructed 
data

Decoding 
algorithm

Encoding 
algorithm

Transmitter

Receiver

?

. 
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Reinforcement Learning-based Polar Code Design
– Flexible construction

– Code optimization using reinforcement learning for the 
SCL decoder with any list size

– Agent’s actions are sampled in accordance with the 
policy

– The proposed policy benefits from our frame error rate 
(FER) prediction approach 

– Applicable for various code lengths and rates
– Low description complexity

– Each code is specified by just three integer parameters, 
while the reliability sequence is fixed

– High error-correction capability under SCL 
decoding
– Provide lower FER than the state-of-the-art polar code 

constructions (5G polar codes with CRC11, randomized 
polar subcodes, and polar codes optimized using artificial 
intelligence techniques). 

– Codes of lengths 512, 1024, 2048 and 4096 are 
considered

– (512,256) code is within 0.2 dB from the normal 
approximation bound

– The proposed codes are potential candidates 
for beyond 5G and 6G networks

Gain

(1024,512) codes under SCL 
decoding
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– Transmitter performs adaptive coding based 
on the actual channel state information 

– Precoded polar code is adjusted for given 
target FER, effective SNR and code length

– The key elements are the code feature 
extractor and FER predictor
– Six features are extracted
– The features are fed to the multilayer 

perceptron (MLP), which returns a performance 
estimate. The MLP is trained based on 
simulation results for a few codes. A single 
MLP is used for various target FERs, decoding 
list sizes L and code parameters. 

– Bit-level optimization of the number of 
information bits

– The proposed approach is suitable for 
precoded polar codes with various structures 

– Description complexity
– 5G polar codes: a reliability sequence 

consisting of 1024 integers
– Overhead of the proposed approach compared 

to 5G: 65 weights defining the MLP 

AI-based Adaptive Polar Coding for Time-Varying Channels

Compression 
(feature extraction)

Code

Performance 
analysis

Parameter 
adjustment

Polar code 
generator

Featur
es

Performan
ce 
estimate

Parameters:
- Code rate
- Frozen set 

parameter
s

Multilayer perceptron 
(MLP) predicts the 

performance

Target FER
Effective SNR
Code length

The relative Es/N0 for the 
target FER 10−3, where the 
5G polar codes with CRC11
under SCL decoding are 
used as zero level

Code length n=512
Message length 
k=128,…,384
Decoding with list sizes L=8
Successive cancellation list 
(SCL) decoder
Sequential (SQ) decoder

V. Miloslavskaya, Y. Li, and B. Vucetic, “AI-Based Adaptive Polar Coding”, 
Submitted to IEEE Transactions on Communications in March 2023.

Gain
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AI-based Error-Control Code Design for 6G

Blocklengths 32 and 64: V. Miloslavskaya and B. Vucetic, “Design of short polar codes for SCL 
decoding,” IEEE Transactions on Communications, vol. 68, no. 11, pp. 6657–6668, November 
2020.
Blocklengths 128 and 256: V. Miloslavskaya, B. Vucetic, Y. Li, G. Park, and O.-S. Park, “Recursive 
Design of Precoded Polar Codes for SCL Decoding”, IEEE Transactions on Communications, vol. 
69, no. 12, pp. 7945–7959, 2021.
Blocklengths 512 to 4096: V. Miloslavskaya, Y. Li  and B. Vucetic, “Design of Compactly Specified 
Polar Codes with Dynamic Frozen Bits Based on Reinforcement Learning”, submitted to IEEE 
Transactions on Communications.
Analysis of precoded polar codes: V. Miloslavskaya, B. Vucetic and Y. Li, “Computing the Partial 
Weight Distribution of Punctured, Shortened, Precoded Polar Codes”, submitted to IEEE 
Transactions on Communications. 
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AI-based Scheduler Design 
• Scheduling is allocation of communication resources
• Its input is the queue state of the packets in a buffer and channel state 

information 
• The output is the amount of communication resources allocated to each 

user 
• This is a sequential decision-making problem
• Analytical resource allocation is too complex 
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Deep Deterministic Policy Gradient-Based 
Scheduling Design

• The scheduling optimisation problem can be solved 
by Deep Deterministic Policy Gradient (DDPG) algorithm
 HoL Delays
 Downlink SNRs

Users to be scheduled
Number of resource blocks
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DDPG Combined with Expert Knowledge

• Straightforward implementation of DDPG converges slowly
• Models, theoretical formulas, and expert knowledge can 

reduce the convergence time
• By using expert knowledge on the topology of the wireless 

networks, the potential reward of visiting a state, and the 
importance of different samples, the scheduling decision is 
updated according to real-world feedback every few 
milliseconds, and the inference is executed within each TTI 
in 5G NR
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AI-based Wireless Scheduler Design

5G Time-Sensitive Networks:
• Low Latency
• High Reliability
• Jitter

Solutions:
• Domain knowledge-assisted DRL
• Straightforward implementation
• Traditional scheduler
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AI-based Joint Communication-Control Codesign

– Jointly optimizing the scheduling, remote estimation, and 
control algorithm is a high-dimensional problem

– The AI based method is powerful in this kind of problem

Fig. 1: An illustration of Wireless Networked Control System (WNCS)

Wireless Network

Plant 1

Sensor 1 
(Measure plant 

state)

Channel 1

Remote Estimator
(Compute the remote 

state estimates)

Plant 2
Sensor 2

Channel 2

Channel 
M

Controller
(Compute the 
control signal)

Scheduling Command 
and control signal

Plant N
Sensor N

Actuator 1
(Control plant 

based on signal)

Actuator 2

Actuator N
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– Joint training of AI-based controller, estimator, and 
transmission scheduler

Fig. 2: Joint estimation-control-scheduling design in WNCS

AI-based Codesign Framework
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Codesign method
Independent design 1

Independent design 2
Independent design 3

InvDoublePen: Scenario 1

Timestep
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Performance of Codesign

Fig. 4: Comparison of learning curves (low-mobility scenarios) 
– joint and separative estimation-control methods

• Z. Zhao, W. Liu, D. E. Quevedo, Y. Li, and B. Vucetic, “Deep learning for wireless networked 
systems: a joint estimation-control-scheduling approach,” arXiv preprint, Oct. 2022. [Online]. 
Available: https://doi.org/10.48550/arXiv.2210.006
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Conclusions
• AI is a useful tool for communications system and 

network design
• It enables more accurate propagation modelling where 

environment features could be obtained from images 
• AI can reduce the complexity of physical layer algorithms 

and resource allocation protocols
• It can improve the performance of networked control 

systems by joint design
• 6G will be an intelligent platform with integrated 

communications, sensing, control, computing, and 
localization and it will enable distributed AI



Joint PhD model
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Definition Important Elements

A joint PhD is a Doctor of Philosophy 
program that consists of:

• shared candidature between USYD and 
one or more institutions;

• produces a single thesis;
• jointly awarded by USYD and the partner 

institution.

• Enrolment at each institution;
• Must meet admission requirements at 

both institutions;
• Co-supervision by academic(s) from 

USYD and partner institution(s);
• 2 separate testamurs that each 

acknowledge the joint arrangement;
• Typically, coursework is only required at 

home institution;
• PrincipalAgreement vs Student 

Agreement
• Minimum of 30% of the candidature is 

spent at each institution.

Joint PhD Programs
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Institutional Benefits Student Benefits
• Institutional prestige

• Complements existing research 
collaborations

• Access to high quality international students

• Expansion of professional network / 
opportunities

• Cross-cultural learning and experiences

• Access to labs or source materials that may 
not be available at the home institution

• No fees at the host institution!

Joint PhDs: Motivations and Benefits
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Current partnerships:

Partnerships under negotiation (AUFRANDE Program):

Partners

Partner Institution Country Collaboration Tier

University of Glasgow Scotland Multi-faculty

University of Copenhagen Denmark Multi-faculty

Sorbonne University France Multi-faculty

Aix-Marseille University France Multi-faculty

Ca ‘Foscari University of Venice Italy Faculty-level

Grenoble Alpes University France Faculty-level

Partner Institution Country Collaboration Tier

University of Bordeaux France Faculty-level

École Centrale de Lyon France Faculty-level

University Paris-Est Créteil France Faculty-level

Arts et Métiers ParisTech France Faculty-level
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Breakdown Remarks

Tuition fees Fee-waiver/exchange model
(Tuition is paid at the home institution and waived at the host institution)

Living stipends Students can apply for a broad range of scholarships

Travel & accommodation May be partially covered by scholarship by home and/or host institution 
(e.g. $5,000 SGM Joint PhD Travel Scholarship)

Financial Model
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CIoTT Team – Academic and Professional Staff
• 9 academic staff (5 profs, 1 assoc prof and 3 senior 

lecturers)
• 11 research associates (2 DECRAs )
• 1 technical officer
• 1 research administrator
• 1 adjunct professor 
• 1 adjunct lecturer
• 47 HDR students (38PhD and 9MPhil)
• UG&PG capstone project students 125



Page 37The University of Sydney

Research Focus 

• 5G and 6G wireless systems and networks 
• Advanced satellite communication systems
• Wireless and IoT and security
• IoT applications in smart grids, healthcare, and material 

recovery facilities
• Long-range WiFi
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CIoTT Strengths

• High national and international subject ranking (46th in 2018, 
21st in 2021 and 9th in 2022 by ARWU) 

• Advanced laboratory equipment (SDN, RF, networked 
control and industrial robots)

• Critical mass in communications, networking, PHY and IoT 
security (5 IEEE Fellows)

• Multiple government and industry research grants 
• Service in IEEE societies and journals
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Proof of Concept Demonstrators 
• Recycling robot, IQRenew
• Long-range WiFi for mining, Roobuck
• Low-latency WiFi and AGV for warehouse automation, Damon, ABB
• 4G/5G open source SDR/SDN testbed, collaboration CFEN, and  Nokia
• MAC schedulers and rate control in IEEE 802.11ah, Morse Micro
• AI based 5G propagation modelling, Optus
• Heart monitoring and AI-based diagnostics, Westmead Applied Research 

Centre and St Vincent Hospital
• Brain-machine communications 
• Collaborative robot 
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– Experient setups

Fig. 3: Control objectives of MuJoCo tasks

Performance of Codesign

HalfCheetah-v2

Hoper-v2

InvertedDouble
Pendulum-v2



Page 41The University of Sydney

Packet Loss Probability Results 
• (a) Straightforward implementation of DDPG
• (b) DDPG with theoretical formulations in information theory
• (c) DDPG with expert knowledge on scheduler design problem

• The color represents the packet loss probability (orange is high, 
blue is low) 

• The results indicate that theoretical formulations and expert 
knowledge can help improve the convergence time and final 
reliability remarkably.
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